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Abstract
Multiple biases still exist in metagenomic analysis workflows compromising a precise quantification of microbial species and function. In the present study it

is illustrated that inappropriate mapping of short reads could result in length-dependent gene abundances and further reduce the accuracy of downstream

analyses. Specifically, mapping reads directly to predicted coding genes using alignment-based Bowtie 2 and alignment-free Salmon generated abundance

values which dramatically decreased and increased with the diminution of gene length, respectively.  This introduced high technical  variabilities in gene

abundances, which can be reflected by the variances, 623.39 for the abundance values using Bowtie 2 and strikingly 38,451.37 for the transcripts per million

(TPM) using Salmon. In contrast,  the abundance values calculated using the 'contig mapping' method proposed in this study were not affected by gene

lengths  with  a  low  variance  of  224.08.  The  universality  of  this  problem  was  demonstrated  by  using  four  short-read  datasets  from  different  sequencing

strategies. When identifying functional genes with significant differences between groups, only 55% (380 of 694) of KEGG orthologs were not influenced by

mapping methodologies. Therefore, the 'contig mapping' method is recommended to minimize technical variabilities.
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Introduction

Benefiting  from  the  development  of  next-generation  sequencing
(NGS) technologies, metagenomic sequencing has become a powerful
tool  in  the  last  two  decades  to  reveal  the  taxonomic  and  functional
inventories  of  various  environmental  microbiomes[1,2].  The  NGS
platform,  however,  typically  generates  a  large  number  of  short  reads
by sequencing artificially produced fragmented DNA, which is referred
to  as  the  shotgun  sequencing  approach[3].  According  to  a  standard
operating  procedure  for  metagenomic  data  analysis,  short  reads  are
assembled  to  restore  the  sequence  information  of  microbial  DNAs,
which usually obtain a set of long sequences named contigs instead of
complete  genomes[3,4].  The  follow-up  taxonomic  and  functional
quantification is generally achieved by mapping short reads in turn to
the assembled contigs or predicted coding genes[5,6].

A series of algorithmic tools have been developed to accomplish
an  efficient  and  accurate  short  read  mapping,  among  which  the
most  prevalent  choices  are  Bowtie  and  BWA,  both  with  more  than
40,000  citations  in  total[7−9].  Bowtie  and  BWA  both  were  imple-
mented based on the alignment-based Burrows-Wheeler Transform
(BWT)  method,  while  another  alignment-free  tool  named  Salmon
has  recently  been  developed  using  a  dual-phase  parallel  inference
algorithm[10].  Although  Salmon  was  originally  designed  and  tested
for the mapping of RNA-seq reads, it has also been recommended in
metagenomic  analysis  due  to  its  ultra-fast  speed,  and  was  widely
used  to  deal  with  the  increasingly  large  sequencing  data[6,11−13].  In
the  latest  version,  Salmon  provides  a  '--meta'  option  for  metage-
nomic  analysis.  The  above  tools  were  commonly  vaguely  applied,
without  an  explicit  description  of  relevant  parameters,  to  estimate

the  sequencing  depth  and  abundance  of  contigs  and/or  genes.
However, unlike contigs and the transcripts in RNA-seq which them-
selves are directly assembled from short reads, the coding genes in
metagenomic  analysis  are  just  predicted  open  reading  frames
(ORFs)  on  contigs[14].  This  would  imply  the  existence  of  abundant
reads with only a subset of their sequences (on the right or the left
side)  mapping  to  the  gene  sequences,  thereby  producing  local
alignments that affect the abundance estimation.

In  our  previous  practices  of  metagenomic  analysis,  some  short
genes  obtained  remarkably  low  abundance  values  (or  even  0%)
through  direct  mapping  of  reads  using  Bowtie  2  or  Salmon,  likely
owing to the removal of local alignments. Some studies suggested a
filtration  of  short  genes  with  lengths  less  than  those  of  reads[15,16].
Nevertheless, it is proposed that such a problem should intrinsically
influence  the  abundance  calculation  of  most  genes  with  different
effect  sizes  depending  on  gene  lengths.  In  other  words,  the  abun-
dance values of a gene might partly be determined by its biological
nature  (i.e.,  length).  A  local-alignment  mode  of  reads  mapping  is
supported  by  Bowtie  2,  as  well  as  the  BWA-MEM  algorithm[9,17].
Moreover,  it  would  also  be  better  to  calculate  gene  abundance
values  based  on  the  mapping  of  reads  to  contigs,  which  theoreti-
cally  does  not  produce  local  alignments.  However,  no  assessment
has been conducted to date to evaluate the accuracy of these meth-
ods  in  regard  to  the  aforementioned  issue.  Therefore,  in  this  study
six  methodologies  of  read  mapping  in  calculating  the  gene  abun-
dance  values  of  short-read  sequencing  datasets  were  tested  and
compared,  considering  the  importance  of  gene  quantification  for
downstream analyses. 

METHOD
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Materials and methods
 

Shotgun sequencing and metagenomic assembly
A  total  of  43  samples  of  cyanobacterial  enrichment  cultures  which
were  provided  by  the  Freshwater  Algae  Culture  Collection  of  the
Institute of Hydrobiology (FACHB) at Wuhan, China,  were used in this
study. In addition, two samples of surface seawater were collected at a
depth of ~1 m from Daya Bay, China. Microbial DNA was extracted as
described  in  our  previous  studies[18,19].  The  extracted  DNA  samples
were  then  randomly  fragmented  to  an  average  length  of  ~350  bp
using an ultrasonicator (Covaris M220). Paired-end sequencing libraries
were prepared and sequenced using different strategies, i.e.,  different
read  lengths  and  different  platforms  (Supplementary  Table  S1 & S2).
For  metagenomic  analysis,  raw  reads  were  firstly  trimmed  to  clean
reads  using  Trimmomatic  v0.36  to  remove  adapters  and  low-quality
bases  (Q  <  20).  Trimmed  reads  with  lengths  <  50  bp  or  having  more
than  five  unidentified  nucleotides  (N)  were  discarded  using  custom
Perl  scripts.  All  filtered  reads  were  then  assembled  using  the  SPAdes
v3.13.0 pipeline[20]. 

Comparison of different mapping methodologies
The  ORFs  on  contigs  were  predicted  as  protein-coding  genes  using
Prodigal  v2.6.3[14].  Mapping of  short  reads to contigs and genes were
first performed using Bowtie 2 v2.5.1 in both the global mode (i.e., with
default  parameters)  and  the  local-alignment  mode  (with  the  para-
meter '--local')[9]. Read mappings were also performed with the help of
BWA v0.7.17,  using the BWA-MEM program which tacitly  support  the
local-alignment  mode[17].  The  SAM  files  produced  by  Bowtie  2  and
BWA-MEM were converted to BAM files, which were then sorted, both
using SAMtools[21].  The mean coverage depth (i.e.,  the mean number
of  times  a  nucleotide  was  sequenced)  were  calculated  using  custom
Perl  scripts.  The  abundance  values  of  protein-coding  genes  were
calculated using the following equation:

A =
Md

Nr
×107 (1)

where A is  the abundance, Md is  the mean coverage depth,  and Nr is
the total  number of paired clean reads.  Mapped reads and TPM were
further calculated for genes using the alignment-free Salmon with the
methodology called selective alignment and the parameter '--meta' as
recommended  by  the  authors[10,22].  Moreover,  Salmon  was  run  both
without decoys and with the contigs as decoy sequences. In the 'contig
mapping' method presented in this study, the coverage depth of each
site on a contig was first calculated by the command 'samtools depth'.
Values of Md for genes were calculated based on the above results of
contig  depths  and  the  GFF  files  generated  by  Prodigal,  which  record
the location information of genes. In other words, the Md of a gene was
calculated as the mean of the coverage depths of nucleotides between
the  start  and  end  site  of  the  gene  on  the  contig.  A  custom  Python
script was developed to output the Md and abundance of genes ( more
details  at https://github.com/biotengwk/Meta_pipeline).  Statistical
analysis and visualization were mainly performed using R v4.0.3.

All  coding  genes  were  annotated  using  the  Hidden  Markov
Models  (HMM)  database  of  KEGG  Orthologs  (KOfam,  downloaded
from ftp://ftp.genome.jp/pub/db/kofam/ on  18  April  2023)  imple-
mented  in  HMMER  v3.1b2  with  the  parameters:  e-value  ≤ 10 −5;
alignment  coverage  ≥ 0.5 [23].  Considering  the  non-normal  distribu-
tion  of  abundance  data[24],  non-parametric  Wilcoxon  signed-rank
tests  (wilcox.test  in  R)  was  conducted  to  analyze  the  intergroup
differences of KEGG Orthologs (KOs) and all estimated p-values were
adjusted using the 'Bonferroni'  method (p.adjust  in  R).  Comparison
of the results using six different mapping methodologies was shown
by  the  UpSet  plot  with  the  help  of  UpSetR  package.  A  circular

diagram of the chromosome sequence was generated using Circos v
0.69 as described previously[25]. 

Results
 

Length-dependent gene abundances produced by
alignment-based methods
To  examine  the  technical  variability  probably  induced  by  mapping
algorithms, the abundance values of protein-coding genes on a single
contig were calculated with the help of alignment-based tools Bowtie
2  and  BWA-MEM.  As  part  of  our  previous  study[18],  an  enrichment
culture  of Anabaena sp.  FACHB-83  was  subjected  to  shotgun
sequencing  on  an  Illumina  HiSeq  platform  which  generates  150  bp
pair-end reads (i.e.,  PE150).  After  quality  control  processing,  a  total  of
6,500,346  paired  clean  reads  were  obtained  with  a  mean  length  of
145  bp.  Metagenomic  assembly  yielded  a  long  contig  of  2.9  Mb  in
length, which formed a circular chromosome of a bacterium belonging
to  the  Armatimonadota  phylum  as  assigned  by  the  Genome
Taxonomy  Database  Toolkit  (GTDB-Tk)[26].  The  abundance  values  of
both the chromosome and the predicted 2,737 protein-coding genes
on it were subsequently calculated.

In  theory,  the  abundance  value  of  the  chromosome  (175.79  by
Bowtie  2  and  176.35  by  BWA-MEM,  both  with  default  parameters)
should be the mathematical expectation of gene abundance values.
However,  the  results  for  coding  genes  were  rather  unexpected.  By
using  Bowtie  2  with  default  parameters,  the  abundance  values  of
genes ranged from near 0 to more than 200 with a mean of 147.86
which  was  much  less  than  the  chromosome  abundance,  and  sur-
prisingly  gradually  decreased  with  the  diminution  of  gene  length
(Fig.  1b).  It  was speculated that  the elimination of  local  alignments
in  a  global  mode  should  account  for  this  variability.  To  assess  this
effect size, it was assumed that there were adequate reads of equal
length (d)  which could map to each site of the contig with length l
totally at random. As l >> d,  it  could be further assumed that there
was an equal number (n) of reads on average mapped to the contig
and  started  at  each  site  around  a  specific  gene.  Therefore,  there
would  be n(l-d+1)  reads  forming  global  alignments  with  the  gene,
and 2n(d−1) reads forming local alignments with the gene. Because
in  local  alignments  only  half  of  a  read  on  average  was  mapped  to
the  gene,  the  global  alignments  and  local  alignments  contributed
nd(l-d+1) and nd(d−1) bases, respectively, to the coverage depth of
the gene. In other words, when calculating the coverage depth and
abundance  values  of  the  gene,  a  total  of ndl reads,  instead  of  only
nd(l-d+1) in a global mode, should be included. Thus,  the equation
relating the gene abundance (Agene)  generated using Bowtie  2  and
the contig abundance (Acontig), which served as a proxy for the theo-
retical gene abundance, could be inferred as shown in Fig. 1a. Excit-
ingly, this relationship model (the red line shown in Fig. 1b) fits the
gene abundances well,  supporting the conjecture that the elimina-
tion of local alignments leads to such variability.

When  using  Bowtie  2  in  the  local-alignment  mode  (i.e.,  with  the
parameter  '--local'),  such  length-decay  of  gene  abundance  was
largely  mitigated,  with  the  total  variance  reduced  from  623.39  to
389.65  and  the  mean  value  increased  to  168.44  (Fig.  1b & c).  Most
genes  however  still  showed  abundance  values  lower  than  that  of
the chromosome, especially those with short lengths. Slightly better
performance  was  achieved  using  BWA-MEM,  suggesting  that  read
mapping  in  local-alignment  mode  indeed  reduced  the  technical
variability  (Fig.  1d).  Encouragingly,  by  using  the  'contig  mapping'
method (i.e.,  calculating the abundance values  of  a  gene based on
its  position and the coverage depth of  each site  on the contig,  see
Materials  and  methods),  the  best  performance  was  accomplished
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with the minimum variance of 224.08 and a mean abundance value
of 175.54 which was very close to that of the chromosome (Fig. 1e).
Potential  sources  of  the  remaining  variability  may  be  complex  and
derived  from  systematic  differences  in  sequencing  depth  between
genome  regions  resulted  from  genome  organization,  GC-content,
and  so  on[5,27].  Particularly,  extraction  and  sequencing  of  genomic
DNAs undergoing replication will lead to higher sequencing depths
of  sequences  around  the  replication  origin oriC[28].  In  line  with  this
interpretation, a symmetric pattern of coverage depth was observed
on the chromosome similar to that of the GC-skew (Supplementary
Fig. S1), reflecting a theta mode of chromosome replication which is
prevalent  in  bacteria[29].  The  GC-skew  transition  corresponds  with
the oriC or replication terminus in general[29]. Thus, the approximate
location of oriC can be inferred according to GC-skew and sequence
depth (Supplementary Fig. S1), although without a reference in the
latest DoriC database[30]. 

Length-dependent gene abundances produced by
alignment-free methods
By using Salmon,  it  is  nevertheless  striking to find that  the calculated
transcripts per million (i.e., TPM) increased rapidly with the diminution

of  gene  length  (Fig.  2a).  Especially,  for  genes  with  lengths  less  than
1,000 bp,  the TPM could range from 217.76 to more than 1,000,  only
except  for  three  genes  that  were  shorter  than  reads  and  had  TPM
values  near  0  (Fig.  2a).  The  variance  of  the  TPM  values  increased  by
about  two  orders  of  magnitude  (up  to  38,451.37).  More  dramatically,
when the chromosome was used as a decoy sequence to help for the
filtration  of  mismapped  reads,  the  TPM  values  diverged  more  and
more during the diminution of gene length (Fig. 2b). By analyzing the
intermediate  result  files  of  Salmon,  it  was  found  that  an  excessive
restriction  in  the  value  of  'EffectiveLength'  likely  accounted  for  such
dramatic results (Fig. 2c). This measure, as described by the authors of
Salmon,  was  employed  considering  the  probability  of  sampling
fragments from a specific transcript, which reflects the nature of RNA-
seq  (https://salmon.readthedocs.io/en/latest/salmon.html).  However,
there  is  no  need  to  take  into  consideration  such  an  effect  for  pre-
dicted  coding  genes  in  metagenomic  sequencing.  Thus,  the  TPM
values were recalculated using the number of mapped reads (i.e.,  the
'NumReads'  generated  by  Salmon)  and  real  gene  lengths  instead.  As
anticipated,  this  analysis  revealed  similar  results  to  those  of  Bowtie  2
(Fig. 1b & 2d). Because reads best aligned to the decoy sequence were
discarded,  there  were  lower  values  of  TPM to  different  extents  in  the
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decoy-aware  mode  (Fig.  2b & e).  Interestingly,  it  was  also  found  that
genes  with  short  (less  than  145  bp)  upstream  and  downstream
noncoding  regions  decreased  to  the  greatest  extent  as  indicated  by
the TPM results  (Fig.  2b),  implying that  the arrangement  of  genes  on
the  chromosome  affected  the  assignment  of  a  paired-end  read
regarding whether it constituted a valid mapping to the genes. 

Length-dependent gene abundances influence the
functional quantification
In  theory,  length-dependent  gene  abundance  resulted  from
inappropriate application of mapping algorithms are ubiquitous in all
metagenomic practices using the NGS platforms. To support this, three
additional  datasets  were  adopted,  including  the  metagenome  of
another  enrichment  cyanobacterial  culture  (Calothrix  sp.  FACHB-168)
using  Illumina  HiSeq  PE125,  and  two  marine  metagenomes  from  our
previous  study[19],  DAYAB-A02  and  DAYAB-A35,  using  the  DNBseq
PE150  and  DNBseq  PE100  (MGI  Tech,  China)  platform,  respectively
(Supplementary  Table  S1).  For  each  dataset,  the  longest  contig  with
coverage depth > 30 was selected to calculate the abundance values
of  coding  genes  using  six  different  mapping  methodologies  as
described  above.  As  anticipated,  length-dependent  gene  abundance
values  were  observed  in  all  four  datasets  using  Bowtie  2  or  Salmon
(Supplementary  Figs  S2−S5).  An  unexpected  observation  was  that
mapping  methodologies  based  on  local  alignment  generated  high

variances  even  exceeding  those  generated  using  Bowtie  2  with  a
global-alignment  mode  (Fig.  3a).  This  was  largely  due  to  multiple
outliers  with  extremely  high  abundance  values  (Supplementary  Figs
S2−S5). The 'meta' mode of Prodigal (vs the 'single' mode used above),
which  was  designed  to  apply  to  metagenomes[14],  probably  account
for  these  outliers.  For  example,  Prodigal  with  the  'meta'  mode
predicted  more  genes  (2,743  vs  2,737)  for  the  chromosome  from
FACHB-83 and the gene with the highest abundance value resided in a
non-coding  region  as  predicted  with  the  'single'  mode.  Anyway,  the
'contig  mapping'  method  proposed  here  still  had  the  best
performance,  showing  the  minimum  variance  of  gene  abundance
values regardless of sequencing strategies (Fig. 3a).

The  ubiquity  of  length-dependent  gene  abundance  in  analyzing
short-read  sequencing  data  potentially  compromises  the  quantita-
tive  profiling  of  metagenomic  datasets.  In  a  comparison  of  func-
tional genes between the enrichment cultures of Microcystis sp. and
Nostoc sp.  (Supplementary  Table  S2,  data  from  our  previous
study[18]),  the  above  six  different  mapping  methodologies  resulted
in  different  sets  of  KOs  with  significant  differences  in  abundance
values (Fig. 3b). Particularly, only 55% (380 of 694) of KOs were iden-
tified  by  six  approaches  simultaneously.  Further,  the  largest  differ-
ence was found between alignment-based and alignment-free algo-
rithms (Fig. 3b). Except for the above 380 KOs, four alignment-based
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methods  had  an  intersection  of  62  KOs  while  two  alignment-free
approaches using Salmon identified 97 distinct KOs in total. Overall,
the  results  demonstrate  that  inappropriate  application of  mapping
algorithms likely decreases the accuracy of downstream analyses in
metagenomic  analysis.  One  representative  example  is  K08480,  an
important  circadian  clock  gene  named kaiA[31].  When  using  the
'contig mapping' method, K08480 showed a significant difference in

abundance  between  two  groups  of  enrichment  cultures  with
adjusted p-value  <  0.05  (Fig.  3c).  However,  due  to  significantly
smaller lengths of the genes annotated to K08480 in Nostoc sp., the
abundance  values  were  elevated  using  Salmon  and  resulted  in  no
significant  difference  (Fig.  3d & e).  It  is  difficult  to  categorically
declare  which  approaches  produce  the  estimates  closest  to  the
ground  truth.  Nevertheless,  as  demonstrated  above,  the  'contig
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mapping' method minimizes the technical variability and is at least
more plausible than other approaches. 

Discussion

Metagenomic analysis  workflows employ a  large and diverse  array  of
tools[3,6].  Subtle differences among different tools of the same class as
well  as  different  settings  of  the  same  tool  potentially  bring  multiple
biases  influencing  the  quantification  of  microbial  community  and
function[5,32].  In this study, multiple mapping algorithms were applied
to  calculate  gene  abundance  values  for  short-read  sequencing
datasets.  Results  indicated  that  mapping  reads  directly  to  predicted
genes  intrinsically  induce  length-dependent  gene  abundance  values
regardless  of  whether  an  alignment-based  or  an  alignment-free
algorithm  was  applied.  Such  interference  primarily  caused  by  the
elimination of partly mapped reads had a serious implication especially
for the quantification of genes less than 1000 bp in length (Fig. 1b & 3),
and further influenced downstream analysis (Fig. 3b). According to our
previous  data[33],  more  than  60%  of  the  total  genes  from  11,502
representative  prokaryotic  genomes  are  less  than  1000  bp  in  length.
Moreover,  genes  of  the  same  function  can  be  very  variable  in  length
due  to  different  evolutionary  histories  as  well  as  errors  from
sequencing and metagenomic assembly,  which in  turn perplexes  the
comparison  between  datasets  (Fig.  3c−e).  Local-alignment  methods
(Bowtie  2  with  '--local'  and  BWA-MEM)  performed  a  little  better  than
those based on global-alignment,  but were still  inferior  to the 'contig
mapping'  method.  Therefore,  we  recommend  calculating  gene
abundances  based  on  gene  coordinates  and  coverage  depths  of
contigs,  and  developed  a  publicly  available  Python  script  to
accomplish this task, which was suitable for all  short-read sequencing
datasets from NGS platforms. In addition to the best performance, this
also reduce the computational cost because reads mapping to contigs
is necessary for metagenomic binning[34].

According to the technical procedures of metagenomic sequenc-
ing, a contig sequence represents a real genomic or environmental
DNA fragment and in an ideal scenario each site on it  has an equal
sequencing  depth[4,35].  Thus,  one  may  argue  that  all  genes  on  the
same contig can be assigned abundance values equal to that of the
contig.  This  was  observed  roughly  to  be  the  case,  as  the  average
value of gene abundances using the 'contig mapping'  method was
indeed  approximately  equal  to  the  contig  abundance  (Fig.  1e),
which exists as proof of the accuracy of the present method. Never-
theless,  this  study  was  conducted  based  on  the  fact  that  mapping
reads directly to genes has been widely applied in previous studies,
especially  those  solely  focused  on  genes  related  to  specific  func-
tions,  e.g.,  antibiotic  resistance  genes[6,12].  Furthermore,  genes  on
the same contig still show variations in their coverage depths, likely
indicating important  biological  processes,  including the replication
of  portions  (Supplementary  Fig.  S1).  Another  controversy  may
surround  the  measure  of  gene  abundance.  In  the  field  of  RNA
sequencing,  terms  like  TPM,  reads  per  kilobase  of  transcript  per
million  reads  mapped  (RPKM)  and  fragments  per  kilobase  of  tran-
script  per  million  reads  mapped  (FPKM)  have  been  proposed  as
measures  of  gene  expression[36].  TPM  and  RPKM,  though  having
been  used  by  many  studies  in  metagenomic  analysis  workflows,
both  are  calculated  using  read  counts.  According  to  the  present
results,  coverage  depths  performed  much  better  than  the  read
counts in calculating the abundance of metagenomic genes due to
the occurrence of local alignments. The abundance value calculated
by the  Eqn (1)  with  the  help  of  our  Python script  is  similar  but  not
identical to RPKM. As the fact that the FPKM measure can easily be
converted to TPM by dividing by the sum of all values and multiply-
ing  by  106[37],  the  gene  abundance  in  metagenomic  analyses  can

also  be  converted to  a  relative  abundance which are  similar  to  the
TPM measure using the same method. This is in agreement with the
classical  thinking  in  quantitating  the  abundance  of  contigs  and
metagenomic  assembled  bins  (MAGs)  in  multiple  workflows,  e.g.,
CheckM[38].  Because  TPM  has  been  considered  to  be  more  suitable
for  inter-group  comparisons[37],  the  above  abundance  data  calcu-
lated  by  using  BWA,  Bowtie  2,  and  our  'contig  mapping'  method
were further normalized to relative abundance. As expected, a new
comparison  revealed  similar  results,  though  with  a  slightly  higher
proportion  of  KOs  (60%,  399  of  667)  which  were  identified  by  six
approaches  simultaneously  (Supplementary  Fig.  S6),  indicating
again the strong influence of length-dependent gene abundance. In
summary, the present results suggest that a cautious application of
computer  algorithms  by  taking  the  biological  and  experimental
nature  into  account  is  imperative  to  improve  the  accuracy  of
metagenomic analysis. 
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