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Abstract
Turfgrasses are used extensively throughout the world, and there is a steadfast demand to develop turfgrass varieties with improved abiotic and

biotic  stress  tolerances  that  will  perform  well  with  limited  management  inputs.  Modern  breeding  programs  incorporate  advanced  breeding

strategies such as DNA sequencing and high-throughput phenotyping with traditional breeding strategies to identify and select germplasm and

genes  of  interest.  Molecular  biology  methods  and  DNA  sequencing  technology  have  rapidly  increased  in  recent  years,  and,  as  a  result,  plant

phenotyping  is  currently  a  bottleneck  in  the  process  of  advancing  breeding  programs.  Recent  advances  in  remote  sensing  technology  have

offered  improved,  non-destructive  plant  phenotyping  approaches  such  as  visible  light  imaging,  spectral  imaging,  infrared  thermal  imaging,

range sensing,  and fluorescence imaging.  Integrated mobile and time efficient platforms are being developed,  coupling remote sensing with

robotics  and  unmanned  aerial  systems  technology  for  high-throughput  plant  phenotyping  applications  across  large  field  spaces.  Modern

turfgrass  breeding  programs  will  continue  to  research,  develop,  and  implement  remote  sensing  technologies  to  assess  larger  numbers  of

genotypes  and  identify  elite  germplasm.  All  together,  these  efforts  will  improve  cultivar  development  efficiency  and  aid  plant  breeders  in

developing  improved  turfgrass  cultivars  to  meet  current  and  future  demands  of  the  turfgrass  industry.  This  review  provides  an  overview  of

ground- and aerial-based plant phenotyping platforms, with particular emphasis placed on applications to turfgrass breeding practices. Similarly,

imaging technologies  that  have  been used in  various  plant  breeding programs are  discussed,  with  indications  as  to  how those  technologies

could be applicable to turfgrass breeding programs.
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 Introduction

Turfgrasses are utilized throughout inhabited regions of  the
world for home lawns, athletic field and golf  course turf,  parks
and  recreational  areas,  and  roadside  vegetation[1].  In  addition,
turfgrass seed and sod production contribute to the significant
economic,  ecological,  and  environmental  values  of  the  turf
industry[2].  It  is  estimated that  maintained turfgrass  in  the  U.S.
covers  approximately  20  million  hectares  of  managed  land[3].
The  annual  economic  value  of  the  turfgrass  industry  is
approximately  $60  billion,  making  a  large  contribution  to  the
national  economy[4].  The  value  of  turfgrass  continues  to  grow
due  to  strong  demand  for  use  in  landscape,  recreation,  and
sports areas, as well as environmental and aesthetic benefits of
turfgrasses  such  as  moderating  temperatures,  preventing  soil
erosion,  reducing  noise  and  air  pollution,  and  increasing
property values[1,5].

Extensive  efforts  in  turfgrass  breeding  have  resulted  in  per-
sistent,  attractive  varieties  with  improved  turf  quality  charac-
teristics,  pests  and  stress  tolerance,  and  reduced  maintenance
requirements[6].  Breeding  objectives  currently  focus  on  impro-
ving  tolerance  to  abiotic  stress  factors  such  as  drought,  heat,
cold,  and  salinity  and  biotic  stresses  such  as  diseases  and
insects[7−10].  In  addition,  efforts  are  also  aimed  at  developing
grasses  that  will  perform  at  high  levels  with  limited  inputs  of
fertility, irrigation, pesticides, and mowing[7−9]. Breeders of seed

propagated species continue to focus on improving seed yield
characteristics  and  identifying  grasses  with  resistance  to  seed
production  diseases  such  as  stem  rust,  caused  by Puccinia
graminis,  while  for  sod  propagated  species,  breeders  focus  on
developing  varieties  with  improved  sod-forming  ability[7−9].  In
addition  to  the  aforementioned  objectives,  breeders  are
working  to  maintain  the  high  turf  quality  characteristics  that
have been bred into all major turfgrass species to date[9].

Modern  breeding  programs  strive  to  incorporate  advanced
breeding strategies such as DNA sequencing and high-through-
put  phenotyping  with  traditional  breeding  strategies  to  iden-
tify and select germplasm and genes of interest[11−14]. In recent
years,  DNA  sequencing  and  molecular  biology  methods  have
rapidly  increased,  and,  as  a  result,  plant  phenotyping  is  curr-
ently  a  bottleneck  in  the  process  of  advancing  breeding
programs[15−17].  Recent  advances  in  remote  sensing  have
offered  improved,  non-destructive  plant  phenotyping  approa-
ches[18−20].  These  advancements  have  been  coupled  with
improvements in robotics and unmanned aerial  systems (UAS)
technology  to  provide  mobile,  time  efficient  platforms  for
remote sensors that have contributed to high-throughput plant
phenotyping applications across large fields (Fig. 1).

The use of  ground-  and aerial-based platforms and imaging
technologies  for  high-throughput  phenotyping  applications
have  been  thoroughly  reviewed  previously[13,16,17,19,21−26].  This
review provides an overview of ground- and aerial-based plant
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phenotyping  platforms,  with  particular  emphasis  placed  on
applications  to  turfgrass  breeding practices.  Similarly,  imaging
technologies  that  have  been  used  in  various  plant  breeding
programs are discussed, with indications as to how those tech-
nologies could be applicable to turfgrass breeding programs.

 Plant phenotyping

A  phenotype  is  the  physical  appearance  of  a  plant;  this
includes  complex  traits  related  to  architecture,  growth,  deve-
lopment,  physiology,  ecology,  yield,  and  tolerance  to  abiotic
and  biotic  stresses[23,27].  Plant  phenotyping  is  the  act  of  asse-
ssing  phenotypic  plant  traits  in  order  to  rank  or  compare
germplasm  to  identify  elite  lines  for  breeding  purposes[28].
Traditionally,  plant  phenotyping  has  involved  the  use  of
manual and visual assessments, which are labor intensive, time
consuming,  and  variable  due  to  observational  bias  and
preference[29].  These  limitations,  in  light  of  genotyping
advancements[30−32],  have  led  to  a  phenotyping  bottleneck  in
plant  breeding  programs[15,33−36].  However,  many  breeding
programs have combined efforts from biological science, com-
puter science, mathematics, physics, data science, and statistics
to  develop  more  efficient  phenotyping  methods,  which  is  an
area  of  research  commonly  known  as  high-throughput  plant
phenotyping[37].  The  high-throughput  phenotyping  approa-
ches  employed in  breeding programs consist  of  both  ground-
and  aerial-based  platforms  that  are  equipped  with  various
remote sensors to efficiently collect quantitative and geospatial
data across large geographic areas[38].

 Ground-based plant phenotyping platforms

Ground-based plant phenotyping involves the assessment of
plant  phenotypes  using  proximal  sensors,  which  are  located

close  to  the  plants  of  interest[19].  For  this  application,  sensors
may be handheld or mounted on phenotyping platforms such
as  stationary  towers,  cable  suspensions,  and  ground
vehicles[39,40].  Handheld  sensors  are  convenient  to  use  but
require  long  periods  of  time  to  phenotype  large  fields,  which
can  result  in  significant  environmental  variation  during  the
data collection process[23,24,41].  Moreover,  data collection is not
always  consistent  among  different  evaluators  using  handheld
devices, and this adds systematic error to resulting datasets[42].
Another limitation of handheld sensors is that only one sensor
may  be  used  at  a  time,  which  does  not  provide  the  best
solution  for  a  high-throughput,  time  efficient  means  of  plant
phenotyping[23].  Stationary  towers  and  cable  suspensions  are
also acceptable for certain phenotyping applications,  but their
use  is  limited  by  aspects  such  as  inability  to  cover  large  field
areas and angle distortion issues that arise from having a single
viewpoint and collecting data across large fields[22].

Several  ground  vehicle  plant  phenotyping  platforms  have
been developed for various breeding applications in crops such
as cotton (Gossypium  barbadense L.)[43],  maize (Zea  mays L.)[44],
triticale  (× Triticosecale Wittmack  L.)[45],  and  wheat  (Triticum
aestivum L.)[46,47].  These  ground  vehicle  platforms  range  from
simple  pushcart  designs  to  more  sophisticated  motor-driven
buggies  and  are  capable  of  accommodating  multiple  sensors
and  other  data  recording  devices[43,45,46,48−50].  For  turfgrass
applications,  there  are  different  types  of  ground-based  plat-
forms  with  various  sensors  and  cameras  to  be  used  in  field
phenotyping  (Fig.  2).  Researchers  have  demonstrated  the
usability  of  ground-based  mobile  platforms  to  accurately  and
precisely  monitor  characteristics  such  as  soil  moisture[51−53],
turfgrass  health[51−54],  and  turfgrass  disease  symptoms[54].  A
major benefit of ground-based platforms is that they generate
high spatial resolution data, which is required for plant science
research and breeding programs. However,  field-scale applica-

 
Fig. 1    Overview of high-throughput phenotyping tools for modern turfgrass breeding programs. 1: UAS for remote sensing data collection
on  mowed  turf  plot  trials;  2:  ground  robot  for  proximal  sensing  data  collection  on  mowed  turf  plot  trials;  3:  turfgrass  breeder  for  visual
assessment and oversight of various data collection practices on mowed turf plot trials; 4: ground vehicle for proximal sensing data collection
on  mowed  turf  plot  trials;  5:  ground  vehicle  for  proximal  sensing  data  collection  on  turfgrass  nursery  trials;  6:  turfgrass  breeder  for  visual
assessment and oversight of various data collection practices on turfgrass nursery trials; 7: ground robot for proximal sensing data collection
on  turfgrass  nursery  trials;  8:  UAS  for  remote  sensing  data  collection  on  turfgrass  nursery  trial;  9:  weather  station  for  environmental  data
collection. All data is stored and processed via cloud computing services.
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tions of these ground-based approaches are limited by the time
to  phenotype  large  areas  and  the  fact  that  soil  conditions
immediately  following  irrigation  or  precipitation  events  can
limit access to ground-based platforms[22−24,41].

 Aerial-based plant phenotyping platforms

Aerial-based  plant  phenotyping  involves  the  assessment  of
plant  phenotypes  using  aerial,  remote  sensors,  which  are
located farther  away from the plants  of  interest  than proximal
sensors[26].  Aerial-based  plant  phenotyping  efforts  began  by
using  traditional,  manned  vehicles  such  as  small  airplanes,
blimps,  and  parachutes,  which  all  remain  useful  for  certain
phenotyping applications today[23]. However, advancements in
UASs  have  increased  rapidly  in  recent  years,  and  these  plat-
forms  have  become  routinely  used  for  remote  sensing-based
plant phenotyping applications.

Traditional aerial vehicles such as small airplanes and blimps

require  a  person  to  be  onboard  for  operational  purposes[23].
These  vehicles  have  higher  payloads  than  UASs  but  generally
require relatively higher operational altitudes and speeds. Such
limitations  have  given  rise  to  a  widespread  use  of  UAS
technology.  By  definition,  a  UAS  consists  of  a  vehicle  that  can
travel  through  the  air  without  a  person  onboard  for
operation[55].  The UASs are typically categorized as either fixed
wing  or  multicopter  aircrafts.  The  selection  of  one  platform
over  the  other  is  dependent  upon  a  specific  application  and
available  resources,  as  these  platforms  vary  widely  in  terms  of
maneuverability, initial costs, maintenance costs, run time, and
payload[23].

Fixed wing UASs, compared to multicopter UASs, have faster
flight  speeds,  longer  flight  times,  and  can  carry  a  heavier
payload[56]. This means that fixed wing systems can cover more
land area and can accommodate more sensors and other data
recording devices onboard. The limitations to fixed wing UASs
are also attributed to the fast travel speeds; operators must be
aware  of  image blurring risks  and ensure  onboard sensors  are
compatible  with  the  fast  speeds  of  travel[56].  In  addition,  fixed
wing aircrafts cannot hover, and, with exception to some fixed
wing  aircrafts  that  have  vertical  takeoff  and  landing
capabilities,  they  require  relatively  large  areas  for  takeoff  and
landing[56].  Multicopter  UASs,  on  the  other  hand,  have  slower
flight speeds, shorter flight times, and cannot carry as heavy of
a  payload  as  fixed  wing  systems[57].  The  ability  of  multicopter
platforms  to  maintain  stable  positions  at  slower  travel  speeds
and  lower  altitudes  gives  them  an  advantage  for  use  in  plant
science research and breeding programs[58].

 Remote sensing technologies

Various remote sensing technologies have been explored for
plant  phenotyping  applications.  Many  of  these  technologies
are  based on plant  interactions  with  light  at  wavelengths  that
span  much  of  the  electromagnetic  spectrum  (Fig.  3).  The
following sections provide detailed descriptions of visible light
imaging, spectral imaging, infrared thermal imaging, and fluore-

 
Fig.  2    Examples  of  ground-based  phenotyping  devices  used  in
turfgrass  breeding and research.  Left:  pushcart  with multispectral
sensor;  middle:  light  box  with  digital  camera;  right:  hand-held
NDVI meter. (Photo credit: Brian Schwartz).

 
Fig. 3    Plant light reflectance curve at wavelengths ranging from 300 nm to 2,500 nm. Chlorophyll absorption, red edge, spongy mesophyll
reflectance, and water absorption regions are shown[23,169].
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scence imaging technologies with particular emphasis on their
usefulness in high-throughput plant phenotyping for turfgrass
breeding  applications.  These  remote  sensing  approaches  are
primarily  used  to  assess  two-dimensional  plant  characteristics
but can be used to assess limited three-dimensional plant traits
as  well.  However,  light  ranging  and  detection  (LiDAR)  and
ultrasonic  sensors  represent  much  more  appropriate  options
for assessing three-dimensional plant architecture and are also
discussed herein.

 Visible light imaging
Visible light imaging is based on plant interactions with light

intensities  in  the 400 nm to 700 nm wavelength range (Fig.  4)
and is  meant to mimic human perception[23].  For phenotyping
purposes,  visible  light  imaging  is  primarily  used  to  capture
plant  characteristics  such  as  color,  morphology,  and
architecture[23,25]. This is an affordable and convenient imaging
solution and has been extensively  used for  plant  phenotyping
applications among various crop species[13,26].  Standard digital
cameras  are  typically  used  for  visible  light  imaging  to  capture
raw  data  that  correspond  with  photon  fluxes  in  the  red  (~650
nm), green (~550 nm), and blue (~450 nm) spectral bands (Fig.
4); for this reason, these images are often called RGB images.

Once RGB data are captured,  there are different approaches
that  can  be  taken  to  process  the  data  depending  on  the
objectives of a given project. One approach for analyzing these
data is to convert RGB images into color indices such as excess
green index,  green index,  green leaf  index,  greenblue,  norma-
lized difference index, or visible atmospherically resistant index,
which can be done using gray-scale, single band data (Table 1).
This  approach  can  also  be  used  to  obtain  measurements  of
percentage  green  cover  by  thresholding,  which  is  a  pixel
classification  procedure  whereby  pixels  with  values  above  a
threshold  are  classified  as  green  and  pixels  below  a  threshold
are classified as non-green[59]. A second approach is to convert
RGB pixel  values to hue,  saturation,  and brightness (HSB) pixel
values,  which can subsequently be used to generate measure-
ments  including  percentage  ground  cover[60] and  plant
color[61].  The  HSB  data  can  also  be  used  to  calculate  the  dark
green color  index (Table 1).  In  addition to plant characteristics
such  as  green  cover  and  plant  color,  plant  breeders  can  also
obtain  plant  height  information  using  the  Structure-from-
Motion  technique,  which  combines  computing  algorithms,
digital  cameras,  and  aerial  vehicles  to  reconstruct  a  three-
dimensional  digital  surface  model  of  the  target[62,63].  This
approach  is  challenging  to  use  in  mowed  turfgrass  research
because  of  the  low  canopy  height  (<  10  cm)  but  does  offer
some promise in estimating yield for seed production research
and breeding programs.

Visible  light  imaging  has  been  widely  used  in  turfgrass
science  research  to  date[64].  Since  the  early  2000s,  researchers
have  routinely  used  RGB  digital  imagers  attached  to  ground-
based,  enclosed lighting systems (Fig.  2)  to collect  phenotypic
data  for  turf  plot  trials.  Percentage  ground  cover  measure-
ments have been used to evaluate important turfgrass characte-
ristics  such  as  establishment  rate[65−68] and  turf  performance
during  periods  of  drought[69−73] and  traffic[74,75] stress,  for
example.  Turfgrass  color  measurements,  indicated by the dark
green  color  index  (Table  1),  have  been  used  to  monitor
turfgrass diseases[76−78] and seasonal turf performance[79,80].

In  recent  years,  studies  have  been  conducted  to  assess  the
potential  applications  for  RGB  imagers  mounted  to  aerial

platforms. The first study to use a UAS-mounted RGB camera in
turfgrass  science  research  found  only  a  1.5%  difference
between  digital  image  data  and  ground  survey  data  when
studying  turfgrass  response  40  d  after  herbicide  application
using  an  unmanned  helicopter[81].  More  recently,  Zhang  et
al.[82] compared  ground-  and  aerial-based  measurements  on
small  plot  bermudagrass  (Cynodon spp.)  and  zoysiagrass
(Zoysia spp.)  research  field  trials  and  found  that  both  UAS-
based  green  leaf  index  and  visible  atmospherically  resistant
index,  introduced  by  Louhaichi  et  al.[83] and  Gitelson  et  al.[84],
respectively,  adequately  predicted  ground-based  percent
green cover ratings. Hong et al.[85] evaluated the ability of UAS-
based  RGB  imagery  to  detect  early  drought  stress  in  creeping
bentgrass  (Agrostis  stolonifera L.)  and reported that  the green-
blue color index (Table 1) enabled drought stress detection 5 d
before  decreases  in  visual  turf  quality  were  observed.  These
studies offer foundational evidence that RGB digital imagery is
an  affordable,  entry-level  plant  phenotyping  tool,  and  it  is
anticipated  that  additional  studies  of  UAS-based  visible  light
imaging  will  be  reported  in  the  future  to  further  characterize
the  usefulness  and  limitations  of  this  technology  for  turfgrass
breeding applications.

Based on prior research in turfgrasses and other crops, some
limitations  of  UAS-based  RGB  imagery  have  been  identified.
Examples of current concerns include the difficulties in differen-
tiating  various  plant  stresses,  processing  datasets  when  sun
and shade irregularities exist within the plant canopies at time
of  data  collection,  and  challenges  in  distinguishing  soil  from
vegetation  in  noncontinuous  plant  canopies.  These  and  other
issues  are  being  further  studied  to  search  for  solutions  and
enhance  the  usability  of  this  technology  for  phenotyping
applications.  On  a  positive  note,  commercial  UASs,  fully  inte-
grated  with  RGB  cameras  and  software  for  mapping  missions,
are  available  for  plant  breeders,  requiring  minimal  technical
training to operate compared to earlier developed platforms.

 Spectral imaging
Spectral  imaging  sensors,  also  known  as  imaging  spectro-

photometers,  collect  data  from  the  interaction  of  plants  with
light  intensities  that  span  much  of  the  electromagnetic
spectrum[28].  There  are  several  key  wavelengths  (Fig.  3)  along
the  spectrum  that  have  been  extensively  studied  in  prior
research. Light reflection from plant leaves is limited within the
visible  light  range,  as  much  of  the  light  is  absorbed  by  leaf
pigments,  particularly  the  chlorophyll;  there  is  a  notably  high
reflectance  at  approximately  550  nm  in  the  green  region  and
low  reflectance  at  approximately  450  nm  and  680  nm  in  the
blue  and  red  regions,  respectively[86].  As  wavelengths  extend
into  the  near-infrared  range  (690  nm  to  730  nm),  there  is  a
marked  increase  in  light  emittance  due  primarily  to  light
scattering within leaf cells[87].  This region has proven useful for
assessing  various  plant  characteristics,  and  because  of  the
drastic  increase  in  reflection  at  this  region,  it  is  commonly
called the 'red edge'[88]. Just beyond this region, there is a water
absorbing  band  at  970  nm  that  has  been  used  as  an  indirect
assessment  of  plant  leaf  water  content[89−91].  There  are  also
additional regions of interest as wavelengths progress into the
short-wave  infrared  region  (1,000  nm  to  2,500  nm).  For
example, strong water absorbing bands exist at 1,200 nm, 1,450
nm,  1,930 nm,  and 2,500 nm,  which could potentially  be used
for remote assessment of leaf water content[92−95].
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Spectral  imaging  can  be  further  classified  into  multispectral
imaging  and  hyperspectral  imaging  (Fig.  5).  Multispectral
imaging  collects  discrete  light  reflectance  data  from  approxi-
mately  3  to  10  bands,  where  the  bands  are  typically  broader
than those in hyperspectral sensing[96]. These bands are typica-
lly  well  characterized  and  often  assigned  descriptive  titles.

Hyperspectral imaging, on the other hand, collects continuous
light  reflectance data  from tens  to  thousands of  bands.  In  this
case, the bands are much narrower than those in multispectral
sensing, and they do not typically have descriptive titles.

Arguably  the  most  noteworthy  work  to  come  from  plant
spectral  imaging  research  to  date  has  been  the  derivation  of

 
Fig. 4    Light wavelengths along the electromagnetic spectrum captured by various optical sensors. Visible light imaging sensors for 400 nm
to 700 nm, spectral imaging sensors for 400 nm to 2,500 nm, and infrared thermal imaging sensors for 7,500 nm to 13,000 nm[17].

Table 1.    Color, temperature, and vegetation indices used in plant remote sensing research and breeding applications.

Index Formula Reference

Canopy-Air Temperature Difference (CATD) TL – TA [162]

Canopy Temperature Variability (CTV) σTC [163]

Crop Water Stress Index (CWSI)
(TC−TA)− (TC−T A) ll

(TC−T A)ul− (TC−T A)ll
[164]

Dark Green Color Index (DGCI)

(
Hue−60

60+ (1−Saturation)+ (1−Brightness)

)
3

[61]

Difference Vegetation Index (DVI) Near Infrared − Red [108]

Enhanced Vegetation Index (EVI) 2.5
Near Infrared−Red

Near Infrared + (6Red)− (7.5Blue)+1
[110]

Excess Green Index (ExG) 2Green – Red – Blue [165]

Green Chlorophyll Index (GCI)
Near Infrared

Green
−1 [111]

Green Difference Vegetation Index (GDVI) Near Infrared – Green [113]

Green Index (GI)
Green
Red

[166]

Green Leaf Index (GLI)
2Green−Red−Blue
2Green+Red+Blue

[83]

GreenBlue (GB)
Green−Blue
Green+Blue

[85]

Normalized Difference Index (NDI)
Green−Red
Green+Red

[167]

Normalized Difference Red Edge (NDRE)
Near Infrared−Red Edge
Near Infrared+Red Edge

[112]

Normalized Difference Vegetation Index (NDVI)
Near Infrared−Red
Near Infrared+Red

[106]

Optimized Soil Adjusted Vegetation Index (OSAVI)
Near Infrared−Red

Near Infrared+Red+0.16
[109]

Ratio Vegetation Index (RVI)
Red

Near Infrared
[104]

Simple Ratio (SR)
Near Infrared

Red
[105]

Temperature Stress Day (TSD) Tstress – Tnon-stress [168]

Transformed Vegetation Index (TVI)
Near Infrared−Red
Near Infrared+Red

[107]

Visible atmospherically resistant index (VARI)
Green−Red

Green+Red−Blue
[84]
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various vegetation indices (Table 1), which are calculated based
on simple mathematical functions such as differences or ratios
between spectral reflectance at two or more spectral bands[97].
Vegetation  indices  are  found  to  be  useful  in  assessing  chloro-
phyll and biomass production[98], plant stress and health[99−101],
and nutritional status[102] in plants.

Trenholm et al.[103] used a hand-held Cropscan multispectral
radiometer  to  measure  turfgrass  reflectance  at  seven  wave-
lengths, which were subsequently used to calculate four vege-
tation  indices  as  indicators  of  turfgrass  visual  quality,  shoot
density, and shoot tissue injury from traffic wear. This was one
of the earlier studies to correlate turfgrass reflectance data with
traditional  visual  qualitative  estimates.  Fitz–Rodríguez  and
Choi[97] found  that  normalized  difference  vegetation  index,
ratio  vegetation  index,  and  difference  vegetation  index  (Table
1)  correlated  well  with  turfgrass  visual  quality  under  different
irrigation  treatments.  Developing  new  and  improved  vegeta-
tion indices  has  been the focus  for  research projects  for  many
years,  and  those  types  of  studies  are  still  actively  being
conducted  at  present[104−113].  However,  the  normalized  diffe-
rence vegetation index, which was first introduced by Rouse et
al.[106],  has  been  extensively  studied  and  remains  one  of  the
most  widely  used  vegetation  indices  of  plant  health  across
various plant species, including turfgrasses[100,101,114,115].

Spectral imaging is a promising technology for high-through-
put plant  phenotyping applications.  As  mentioned above,  this

technology  is  adaptable  to  ground-  or  aerial-based  platforms
and offers the ability to investigate plant interactions with light
intensities beyond the visible light range. Many plant responses
are  more  active  outside  the  visible  light  range;  therefore,
spectral  imaging  in  the  near-infrared  and  short-wave  infrared
regions  offer  insights  to  many  plant  behaviors  that  are  not
detectable  with  visible  light  imaging  platforms.  Widespread
implementation  of  spectral  imaging  technologies  in  plant
science research and breeding programs has been slowed by a
few  difficulties  that  are  being  addressed  in  current  research
projects.  Two  of  the  most  notable  limitations  to  spectral
imaging are the large quantities of data that are generated and
the startup costs associated with purchasing these instruments.
However,  research  and  advancements  in  fields  such  as
computer  science  and  data  science  are  offering  solutions  to
these issues.

 Infrared thermal imaging
Infrared thermal  imaging,  also known as  long-wave infrared

imaging,  thermal  long-wave  infrared  imaging,  or  forward-
looking  infrared  imaging,  collects  reflectance  data  in  the  far-
infrared  and  long-wave  infrared  range  of  wavelengths,  which
span  from  7,500  nm  to  13,000  nm  (Fig.  4).  Over  the  last  few
decades,  there  has  been  mounting  interest  in  using  infrared
thermometers to characterize drought- and heat-induced plant
water stress based on the concept that water-stressed canopies

 
Fig.  5    Comparison  of  multispectral  imaging  and  hyperspectral  imaging.  Discrete  light  reflectance  data  is  generated  from  multispectral
sensors whereas continuous light reflectance data is generated from hyperspectral sensors[170].
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have  higher  temperatures  than  well-watered  canopies[116].
However,  other  than  plant  physiological  status,  canopy
temperature  measurements  can  also  be  affected  by  other
factors  such  as  surface  soil  exposure,  solar  radiation,  and  air
temperature  at  the  time  of  observation.  Indices  have  been
developed to normalize canopy temperature measurements to
account for these types of environmental factors (Table 1).

Among the indices listed in Table 1, crop water stress index is
one of the most commonly used indices in studies on turfgrass
irrigation  scheduling.  Jalali-Farahani  et  al.[117] reported  that
midday  estimates  of  crop  water  stress  index  in  bermudagrass
were  related  to  soil  percent  available  extractable  water.
Bijanzadeh  et  al.[118] monitored  crop  water  stress  index  of
bermudagrass subjected to deficit irrigation on a monthly basis
in  southern  Iran  and  concluded  that  turfgrass  quality  can  be
maintained with seasonal crop water stress index being kept at
a value of approximately 0.15.  However,  one of the challenges
is  to  accurately  measure  the  upper  and  lower  limit  of  tempe-
rature  difference  between  canopy  and  air;  such  types  of
baseline  values  vary  across  different  soil  and  environmental
conditions[119] and  could  be  dynamic  during  the  day[120].  A
model  was  developed  to  predict  those  baselines  in  tall  fescue
with  meteorological  factors  such  as  air  temperature,  solar
radiation, vapor pressure deficit, and wind speed[121].

Another  limitation  regarding  the  application  of  canopy
temperature is the dynamic nature of the measurement, which
is  highly  variable  if  the  time  of  data  collection  stretches  too
long.  More valuable  information can be derived regarding the
water  status  of  the  plants  if  the  data  collection  can  be  done
within  a  few  minutes.  Infrared  thermal  cameras  mounted  on
UASs  would  provide  an  option  for  thermal  imagery  to  be
collected across turfgrass breeding trials within minutes. More-
over,  exposed  soil  among  vegetation  could  potentially  be
removed  if  combined  with  RGB  and  multispectral  imagery.
Several  hurdles  need  to  be  overcome  to  use  UAS-based  ther-
mal imagery including temperature calibration, canopy tempe-
rature  extraction,  and  establishment  of  canopy  temperature-
based  crop  water  stress  indicator[122].  Early  exploration  was
reported  using  UAS-based  thermal  imagery  to  detect  early
drought  stress  in  creeping  bentgrass[85].  The  researchers
detected  a  rise  of  canopy  temperature  under  15%  and  30%
evapotranspiration  replacements  before  visible  decline  of  turf
compared  to  100%  ET  plots.  More  studies  are  needed  to
address  these  limitations  associated  with  using  UAS-based
thermal imagers to detect drought stress in turfgrass.

 Fluorescence imaging
Fluorescence  is  the  emitted  light  generated  during  the

absorption  of  short  wavelength  radiation,  and  in  plants,  the
chlorophyll  complex  is  the  most  common  fluorescing  machi-
nery.  As chloroplasts  are irradiated with actinic  or  blue light,  a
portion  of  the  light  absorbed by  chlorophyll  will  be  reemitted
as fluorescence[123].  The proportion of absorbed light that gets
reemitted varies due to the plant's light metabolic capacity[124].
This fluorescence is a valuable indication of the plant's ability to
assimilate  actinic  light[125].  Moreover,  adding  brief  pulses  of
saturating blue light to the actinic light is useful to assess plant
status for physiological parameters such as non-photochemical
quenching and photo-assimilation[23].

Fluorescence  imaging,  also  known  as  chlorophyll  fluore-
scence  imaging,  is  the  procedure  of  capturing  images  of

fluorescence  emitted  by  plants  upon  illumination  with  visible
or  ultraviolet  light[126].  This  technique  commonly  uses  charge-
coupled  device  cameras  that  are  sensitive  to  fluorescence
signals  generated  by  light-emitting  diodes,  pulsed  flashlights,
or pulsed lasers[127]. Fluorescence imaging provides an efficient
means for in vivo assessment of the electron transport rate, the
extent of non-photochemical quenching, and the effective and
potential  quantum  efficiency  of  photosystem  II[128−130].  Many
uses  of  chlorophyll  fluorescence  imaging  have  been  investi-
gated  including  early  detection  of  pathogen  attack[131−135],
herbicide  injury[136,137],  and  other  abiotic  and  biotic  stress
factors[134,138−140].

Although fluorescence imaging is a promising technique for
assessing plant  health status,  there are  several  limitations that
have  inhibited  its  implementation  for  high-throughput  plant
phenotyping  in  field  settings.  Fluorescence  imaging  requires
that  plants  be  dark-adapted  prior  to  light  excitation,  meaning
data  collection  for  each  plant  sample  will  take  multiple
minutes[126].  In  addition,  currently  available  fluorescence
imaging  systems  are  only  capable  of  measuring  fluorescence
from  single  leaves;  for  high-throughput  applications,  the
technology  must  be  developed  to  assess  multiple  plants  at
once.  Another  complication  is  that  substantial  power  sources
are needed to operate various light and sensor components of
fluorescence  imaging  systems[141].  For  this  technology  to  be
applicable  for  high-throughput  plant  phenotyping,  concerns
around  robustness,  reproducibility,  and  fluorescence  image
processing must be addressed.

 Other imaging technologies
Plant  traits  related  to  height  and  canopy  architecture  are

highly  prioritized  in  breeding  goals  and  can  be  obtained
through three-dimensional reconstruction of plant canopies[28].
LiDAR  and  ultrasonic  sensors  are  both  classified  as  ranging
sensors, which means they measure the distance to the nearest
object  by  emitting  an  electromagnetic  signal  and  calculating
the time difference between emitting and receiving the signal
to indicate distance to the target[142]. For LiDAR, a laser beam is
emitted  to  the  target  and  the  reflected  light  is  analyzed[143].
One  of  the  advantages  of  using  LiDAR  is  being  able  to  supply
structural  information  of  plants  with  high  accuracy  compared
to  other  sensors  due  to  view-obscuration  from  nadir  view.  In
theory,  LiDAR-based  plant  phenotyping  can  provide  informa-
tion from the leaf level to the canopy level, potentially helping
diagnosis  of  plant  status  and  crop  management[143].  Growing
literature  reported  the  use  of  LiDAR-based  plant  phenotyping
in  row  crops  such  as  maize[144],  sorghum  [Sorghum  bicolor (L.)
Moench.][145],  soybean  [Glycine  max (L.)  Merr.][146],  and
cotton[147],  focusing  on  traits  including  plant  height,  row
spacing, and biomass.

Given  the  high  cost  and  availability  of  the  integrated  plat-
form,  LiDAR  is  less  explored  for  plant  phenotyping  than  other
technologies.  Limited  studies  investigated  the  use  of  LiDAR-
based  phenotyping  in  turfgrass.  Nguyen  et  al.[148] reported
using  an  unmanned  ground  vehicle  (DairyBioBot)  and  LiDAR
pipeline  for  the  high-throughput  phenotyping  of  biomass  in
forage  perennial  ryegrass  (Lolium  perenne L.)  with  R2 =  0.73  at
the  plot  level  when  correlating  with  fresh  mass  basis
observation.  Nonetheless,  the  application  of  LiDAR  in
individual-plant-level phenotyping is promising in the future as
this technology continues to be developed and becomes more
affordable and integrated in user-friendly platforms.
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Vines & Zhang Grass Research 2022, 2:1   Page 7 of 13



Ultrasonic  sensors  are  generally  more  affordable  compared
to  LiDAR.  Similar  to  LiDAR,  ultrasonic  sensors  can  be  used  to
estimate  geometrical  parameters  of  plants  (for  instance,  plant
height and canopy volume) if appropriate acquisition and data
processing is applied. Studies were carried out to use ultrasonic
sensors to estimate plant height in cotton[43],  alfalfa (Medicago
sativa L.)  and  bermudagrass[149],  and  wheat[150].  Yuan  et  al.[151]

compared LiDAR,  ultrasonic  sensor,  and RGB camera mounted
on UAS in estimating plant height in wheat and concluded that
LiDAR  and  UAS-mounted  RGB  camera  provided  the  best
results.  Therefore,  the  strength  of  ultrasonic  is  not  prominent
but  it  provides  an  alternative  for  LiDAR  in  estimating  plant
height on the ground level when the target plants are too small
for UAS applications.

 Conclusion and future perspective

Plant breeding programs have greatly benefited from recent
advancements  in  DNA  genotyping  technologies.  However,
plant phenotype assessment has become the limiting factor in
screening  large  numbers  of  plants  in  current  plant  breeding
programs.  Advancements  in  remote  and  proximal  sensing
technologies have led to the development and implementation
of  high-throughput  plant  phenotyping  practices,  which  is
beginning  to  increase  the  efficiency  of  plant  phenotyping.
Visible  light  imaging  has  been  the  most  widely  used  remote
sensing approach. This is  a relatively inexpensive phenotyping
solution  for  assessing  plant  traits  such  as  ground  cover  and
canopy  architecture.  Future  research  efforts  of  visible  light
imaging for plant phenotyping applications should emphasize
the  need  for  improved  analysis  approaches  to  account  for
shading  issues  and  light  variation  as  well  as  alleviating  diffi-
culties associated with distinguishing soil from plant tissues.

Spectral  imaging  technologies  have  expanded  in  recent
years  and  are  becoming  increasingly  more  prevalent  in  plant
science  research  efforts.  This  technology  is  expected  to  con-
tinue to expand for additional plant phenotyping applications.
Turfgrass breeders have already begun experimenting with this
technology  and  have  found  promising  results  thus  far.  As  the
technology  advances,  it  is  expected  that  the  initial  costs
associated  with  purchasing  equipment  will  reduce;  this  will
enable  more  plant  breeding  programs  to  utilize  this  techno-
logy. Research efforts should continue in developing improved
data handling and processing options to better accommodate
the large datasets generated using this imaging technology.

Thermal imaging and fluorescence imaging are two techno-
logies  that  are  also  being  adapted  to  field  applications.
Although  these  technologies  are  not  currently  suited  for  in-
field breeding applications, researchers are experimenting with
these technologies to determine their usefulness in monitoring
plant health and growth characteristics.  As these technologies
continue  to  be  developed,  it  is  anticipated  that  they  will  be
more  readily  used  in  turfgrass  breeding  applications.  Addi-
tionally, range sensors such as LiDAR will be further developed
for  use  in  assessing  morphological  characteristics  such  as  leaf
texture,  leaf  width,  and  plant  height  for  turfgrass  breeding
programs.

In  addition  to  the  phenotyping  tools  mentioned  in  this
review,  various  other  technologies  are  being  explored  to  effi-
ciently assess plant root phenotypes both in controlled environ-
ment  and  field  conditions.  Programs  such  as  EZ  Rhizo[152],  IJ
Rhizo[153],  Root  System  Analyzer[154],  Root  Trace[155],  Smart

Root[156],  and WhinRhizo[157] have been widely used for image-
based analysis of root architecture. However, these approaches
do  not  offer in  situ root  analyses,  as  they  require  roots  to  be
cleaned of  soil.  Options for in  situ root assessment include the
use  of  mini-rhizotrons  equipped  with  cameras  or  scanners  to
periodically  gather  root  architecture  data[158].  This  approach  is
not  well-suited for  high-throughput  applications  and can only
accommodate  limited  numbers  of  genotypes[159].  Other
promising  approaches  currently  being  investigated  include
non-destructive methods such as magnetic resonance imaging
and  X-ray  computed  tomography[160,161].  The  development  of
high-throughput  phenotyping  tools  for  characterizing  root
performance  under  stresses  such  as  drought,  insect  feeding,
and  disease  will  be  valuable  resources  for  plant  breeding
programs in the future.

Modern  turfgrass  breeding  programs  will  continue  to
research, develop, and implement remote sensing technologies
for  high-throughput  plant  phenotyping  applications.  These
technologies  will  enable  turfgrass  breeders  to  assess  larger
numbers  of  genotypes  to  efficiently  identify  elite  germplasm.
All  together,  these  efforts  will  improve  cultivar  development
efficiency  and  aid  plant  breeders  in  developing  improved
turfgrass  cultivars  to  meet  current  and  future  demands  of  the
turfgrass industry.
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