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Abstract
Switchgrass  (Panicum  virgatum L.)  is  a  native  and  prominent  perennial  grass  species  used  for  feedstocks.  High-throughput  phenotyping  of

biomass  component  traits  is  desirable  for  switchgrass  improvement  and production.  The objective  of  this  study was to  establish correlations

between the manually measured traits and image-extracted measurements in switchgrass grown in a controlled environment. Red-green-blue

(RGB) images from side- and top-views were automatically collected from the plants varying in growth stages for assessing their relationships

with  manually  measured  traits.  Plant  height,  tiller  number,  crown  diameter,  and  shoot  dry  weight  were  all  significantly  correlated  with  RGB

image-based measurements including side-view height (SHT), side convex hull (SCH), side projected area (SPA), top convex hull (TCH), and top

projected area (TPA). For a particular plant trait, a good prediction was observed based on an image-based measurement, including plant height

and SHT (R2 = 0.992), tiller number and SPA (R2 = 0.86), crown diameter and SCH (R2 = 0.72), and shoot dry weight and SPA (R2 = 0.88). Plant height

was also well predicted by SCH (R2 = 0.94) and SPA (R2 = 0.88). Overall, SHT, SCH, and SPA extracted from RGB images well predicted plant height,

tiller number and shoot dry weight. The results demonstrated that the image-based parameters could be leveraged in quantifying the growth

and development of switchgrass.
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 INTRODUCTION

Switchgrass (Panicum virgatum L.) is one of the primary grass
species  used  as  a  bioenergy  crop  to  support  conversion  of
cellulosic  biomass  to  energy[1].  Although  switchgrass  has  the
potential  for  high  biomass  yield,  the  sustainable  biomass  pro-
duction of  this  species can be the principal  limitation,  particu-
larly  in  the northern United States where growing seasons are
short[2].  While  biomass  yield  is  a  key  target  for  most  breeding
programs in switchgrass, assessment of yield-related traits such
as plant height, tiller number, and stem thickness can be useful
in indirect selection for biomass yield[3,4].  To develop a rational
strategy  for  developing  switchgrass  with  improved  biomass
yield,  it  would  be  beneficial  to  gain  a  better  understanding of
biomass  related  traits.  This  requires  yield  component  traits  of
switchgrass plants to be timely and accurately evaluated when
creating new germplasm in comparison with existing cultivars.

Frequent  monitoring of  yield  component  traits  through tra-
ditional  phenotyping  methods  are  time-consuming,  laborious,
and  destructive  to  plants,  especially  while  managing  multiple
populations  consisting  of  hundreds  of  individual  plants.  With
the  development  of  high-throughput  phenotyping  (HTP)
platforms,  sensor-based  sophisticated  phenotyping  approa-
ches have greatly improved the capacity for rapid and accurate
estimation  of  phenotypic  traits  including  plant  growth  and
architecture or biomass of single plants or populations without
destroying  plants.  To  date,  various  sensors  and  digital  images
have  been  used  for  HTP[5,6].  Of  them,  red-green-blue  (RGB)
imaging  is  one  of  the  most  widely  applied  technologies  for

quantifying  phenotypic  traits  of  interest.  For  example,  RGB
image-extracted  measurements  have  been  used  to  predict
biomass  yield-related  traits  in  grain  crops  grown  in  controlled
environments  or  in  the  field,  including  plant  height[7−11],  tiller
number[7,12],  leaf  or  shoot  area[10,13,14],  stem  diameter[8],  and
biomass[9,15,16],  as  well  as  ground  cover  and  persistence  of
perennial ryegrass (Lolium perenne L.)[17]. The use of RGB images
can  also  distinguish  growth  patterns  in  grass-legume  mixed
pasture  systems  in  response  to  nutrient  application[18].  All
previous  research works  have  demonstrated promising results
when using HTP for crop improvement and production.

HTP provides a feasible and efficient way for continuous trait
analysis  for  plant  species  that  are  harvested  as  biomass;
however, such technology has not been extensively studied in
perennial  tall  grass  species  including switchgrass.  Since HTP is
the  utilization  of  engineering,  algorithmic  and  computational
techniques  for  acquiring  data,  a  reliable  model  needs  to  be
developed to ensure the accuracy of HTP-based predictions. In
this  study,  RGB  images  were  taken  to  capture  plant  growth
changes and biomass yield development in switchgrass grown
in  a  well-controlled  environment.  We  attempted  to  reveal  the
relationship between RGB image-extracted measurements and
manually  measured  traits  in  switchgrass  to  demonstrate  whe-
ther we can leverage the image-based traits in quantifying the
growth  and  development  of  switchgrass,  thereby  significantly
reducing  time  and  labor  inputs  in  phenotypic  data  collection.
The  correlation  results  and  prediction  model  will  help  design
for  future  experiments,  especially  for  HTP  of  complex  traits  of
switchgrass germplasm. Knowledge generated from this study
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will  aid  crop  management  and  breeding  programs  in  develo-
ping varieties of switchgrass and other perennial grass species.

 RESULTS

 Manually measured traits
Plant  height,  tiller  number,  and  crown  diameter  were  mea-

sured five times and shoot dry weight was measured four times
during  the  experiment.  Across  sampling  times,  substantial
changes  of  these  traits  were  observed  for  individual  pots,
ranging from 21.0 to 157.0 cm for plant height, 3 to 61 for tiller
number, 1.8 to 13.0 cm for crown diameter,  and 1.1 to 183.1 g
for  shoot  dry  weight  (Fig.  1).  Moreover,  all  traits  were  signi-
ficantly correlated with each other, with the highest correlation
found between tiller number and shoot dry weight (r = 0.96***),
followed by tiller  number and plant height (r = 0.84***),  shoot
dry weight and plant height (r = 0.82***), shoot dry weight and
crown  diameter  (r =  0.80***),  and  tiller  number  with  crown
diameter (r = 0.75***) (Supplemental Table S1).

 RGB image-based parameters
RGB images were collected on the day prior  to  manual  trait

collection during the experiment. The image-extracted measure-
ments also varied considerably across sampling times and pots,
ranging from 22.4 to 152.8 cm for side-view height (SHT), 443.5
to 13,590.6 cm2 for side-view convex hull (SCH), 97.8 to 5,193.9
cm2 for side-view projected area (SPA), 34.1 to 13.7 cm for side-
view  maximum  width  (SMD),  56.7  to  4,723.8  cm2 for  top-view
convex  hull  (TCH),  and  22.1  to  1,328.4  cm2 for  top-view

projected area (TPA) (Fig. 2). These measurements were all sig-
nificantly  correlated  with  each  other,  including  those  derived
from  side-view,  top-view,  and  between  side-and  top-view
images  (Supplemental  Table  S2).  Specifically,  the  highest
correlation  was  found  between  SPA  and  TPA  (r =  0.97***),
followed  by  SCH  and  SHT  (r =  0.96***),  SCH  and  SPA  (r =
0.95***),  SCH and TPA (r =  0.95***),  SHT and SPA (r =  0.94***),
SCH and TCH (r = 0.93***),  TCH and TPA (r = 0.91***),  and TPA
and SMD (r = 0.91***).

 Correlation and model between RGB image-based and
manually collected measurements

The  correlation  between  image-extracted  and  manually  co-
llected measurements  is  of  importance in  determining predic-
tion  accuracy  made  by  HTP.  In  this  study,  we  found  that  the
manually  collected  traits  were  all  significantly  associated  with
the  image-extracted  measurements.  Plant  height  was  highly
correlated  with  side-view  measurements  SHT  (r =  0.996),  SCH
(r =  0.97),  and  SPA  (r =  0.94)  (Table  1).  Plant  height  was  well
predicted by SHT and SCH, with R2 of 0.99 for SHT and 0.93 for
SCH  (Fig.  3).  The  root  mean  square  error  (RMSE)  of  the  model
was 3.56 for SHT and 10.6 for SCH (Fig. 3). Plant height was also
well correlated with the top-view-image measurements such as
TPA (r = 0.91) and TCH (r = 0.85) (Table 1). Although significant,
plant  height  was  less  correlated  with  SMD  (r =  0.74).  Tiller
number  was  strongly  correlated  with  SPA  (r =  0.93)  (Table  1),
followed  by  TPA  (r =  0.91),  SCH  (r =  0.85),  SHT  (r =  0.84),  and
TCH  (r =  0.77)  (Table  1).  Tiller  number  was  relatively  well
predicted  by  SPA  with  R2 of  0.86  (Fig.  3)  and  RMSE  of  4.45
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Fig. 1    Boxplots of the manually collected traits of switchgrass at different times of plant growth under controlled environment conditions.
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(Fig.  3).  A  relatively  lower  correlation  was  observed  between
tiller  number  and  SMD  (r =  0.67).  Crown  diameter  was  signifi-
cantly  correlated  with  SCH  (r =  0.85),  SMD  (r =  0.83),  TCH  (r =
0.82), SHT (r = 0.79), TPA (r = 0.79), and SPA (r = 0.76) (Table 1).

Shoot dry weight was correlated with SPA (r = 0.94) (Table 1).
However, it was better predicted by SPA with a polynomial with
R2 of 0.95, compared to the linear model with R2 ≈ 0.88 (Fig. 3).
The RMSEs of the linear and polynomial models were 19.2 and
12.8 (Fig. 3). Shoot dry weight was also correlated with TPA (r =
0.85), SHT (r = 0.82), and SCH (r = 0.79), but SMD and TCH were
less  correlated  with  shoot  dry  weight  (Table  1).  We  also
analyzed  shoot  dry  weight  correlation  by  excluding  the  data
from  the  final  harvest  date.  As  a  result,  correlations  between
shoot  dry  weight  and  RGB  image-based  measurements  were
improved  by  4  to  26%  (except  for  TPA)  (Supplemental  Table
S3),  increasing  from  0.79  to  0.93  for  SCH,  0.80  to  0.90  for  SHT,
0.94 to 0.98 for  SPA,  0.37 to 0.63 for  SMD, and 0.55 to 0.77 for
TCH.

 DISCUSSION

In this study, manual data were collected at different growth
stages  for  switchgrass  during  the  experiment,  which  allowed
variations  of  biomass-related  traits  to  be  captured  for  further
analysis.  The  range  and  average  values  of  plant  height  were
comparable  to  our  previous  results  obtained  from  a  segre-
gating  mapping  population  of  switchgrass  grown  in  the
field[19].  In  addition,  correlations  among  plant  height,  crown
diameter,  and  shoot  dry  weight  were  consistent  with  that
found in the field study, but much higher levels of correlations
were  identified  in  this  controlled  environment  study,  possibly
because  the  measurements  in  controlled  environments  were
more  accurate  compared  to  the  field  study.  Variations  and
correlations  of  the  trait  measurements  provided  a  good  basis
for  establishing  a  relationship  with  measurements  generated
through RGB images.

Consistent  with  changes  of  manually-collected  traits  over
time,  the corresponding RGB image-based measurements also
varied  largely  during  the  experiment.  We  found  high  corre-
lations  within  the  side-  or  top-view  based  measurements  and
between the two types of imaging positions. Notably, SCH was
well  correlated  with  SHT,  SPA,  and  TPA  with  a  correlation
coefficient  ≥ 0.95,  suggesting  that  SCH  could  be  one  of  the
most important parameters representing image-based traits of
switchgrass. Good correlations between SHT and SPA, SPA and
TCH,  and  TPA  and  TCH  indicated  that  plant  projected  area
might  also  explain  relationships  among  image-based  traits.
With  the  same  RGB  imaging  platform  at  the  Ag  Alumni  Seed
Phenotyping  Facility  (AAPF),  a  high  correlation  (r =  0.90)  was
shown  between  SCH  and  SPA  in  wheat  (Triticum  aestivum L.)
plants[9].  Our  results  demonstrated  that  RGB  image-based
measurements were reliable for differentiating plant growth of
switchgrass grown in a controlled environment.

SH
T 

(c
m

) 
 

SC
H 

(c
m

2 ) 
 

Days a�er plan�ng  

SP
A 

(c
m

2 ) 
 

SM
D 

(c
m

) 
 

TC
H 

(c
m

2 )
  

TP
A 

(c
m

2 )
  

 
Fig. 2    Boxplots of the red-green-blue image-extracted measurements of switchgrass at different times of plant growth.

Table 1.    Pearson correlation coefficients among manually collected traits
and red-green-blue image-extracted measurements in switchgrass across
sampling times.

Plant height Tiller number Crown
diameter

Shoot dry
weight

SCH 0.97*** 0.85*** 0.85*** 0.79***
SHT 0.996*** 0.84*** 0.79*** 0.82***
SPA 0.94*** 0.93*** 0.76*** 0.94***
SMD 0.74*** 0.67*** 0.83*** 0.37*
TCH 0.85*** 0.77*** 0.82*** 0.55**
TPA 0.91*** 0.91*** 0.79*** 0.86***

N  =  97  for  correlation  analysis  between  plant  height,  tiller  number  and
crown  diameter  with  all  images  based  on  measurements;  N  =  31  for  co-
rrelation  analysis  between  shoot  dry  weight  and  image-based  measure-
ments.  *,  **,  ***  represent  significance  at P <  0.05,  0.01,  and  0.001,
respectively.
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The  use  of  HTP  has  shown  great  potential  to  predict  plant
growth and yield component traits  for  crop improvement and
production.  It  is  crucial  to  evaluate  the  relationship  between
imaging  parameters  with  ground  truth  measurements  for  a
plant species before a model is developed and used to predict
the  actual  plant  growth  and  biomass  yield  accumulation.  Our
results  showed  that  plant  height  was  well  predicted  by  SHT
(r =  0.996),  demonstrating  that  plant  height  of  switchgrass
could be accurately assessed by using RGB images. Similarly,  a
high correlation was shown on wheat (r = 0.99) using the same
HTP platform[9].  The RGB images for measuring plant height of
grass  species  were  also  assessed  in  the  field  by  using  an
unmanned  aerial  vehicle  or  phenotyping  robot,  with  good
correlations found in rice (Oryza sativa L.) (r ≈ 0.84)[20], sorghum
(Sorghum  bicolor L.)  (r ≈ 0.87) [8],  and  maize  (Zea  mays L.)  (r ≈
0.95)[21].  Collectively,  it  appeared  that  RGB  images  or  images
generated  by  other  remote  sensing  techniques  were  reliable
for  indicating  the  changes  of  plant  height  in  annual  or
perennial grass species.

Tiller  number  is  a  key  component  of  plant  architecture  that
affects  biomass  yield  of  switchgrass[22].  In  this  study,  we
observed  that  SPA  (r =  0.93)  and  TPA  (r =  0.91)  were  good
indicators  for  tiller  numbers  in  switchgrass.  In  wheat,  approxi-
mately 81% of the variation of tiller number was explained by a
model  containing  both  SPA  and  TCH[9],  while  64%  of  the
variation in tiller number was explained by using image-based
height/width ratios  with shoot fresh matter  in Setaria[7].  More-
over, RGB imaging measurements have been used for assessing
tillering and architecture traits in germplasm of rice and barley
(Hordeum vulgare L.)[23,24]. Therefore, we expect that SPA or TPA
or  both  serve  as  good references  for  predicting tiller  numbers
of switchgrass plants, especially valuable for evaluating a large
amount of germplasm.

The  HTP  for  rapid  assessment  of  plant  biomass  yield  is  pro-
mising  for  crop  improvement  and  production.  The  projected
area  produced  by  RGB  image  analysis  could  estimate  shoot
biomass in rice and wheat[9,13].  In this  study,  among all  image-
extracted measurements, SPA had the highest correlation with
shoot  dry  weight  (r =  0.94),  further  supporting  that  SPA  is  a
reliable  estimate  of  shoot  dry  matter  of  perennial  grasses.
Taken  together,  image-based  HTP  is  accurate  and  useful  for
assessing biomass development of switchgrass.

It  is  known  that  plant  biomass  of  switchgrass  reaches  a
maximum at the flowering stage[25]. In this study, the final set of
data  of  shoot  dry  weight  was  collected  after  some  plants
flowered.  We  speculated  that  the  linear  correlation  between
shoot  biomass  and  image-derived  measurements  might  be
somewhat  affected  due  to  a  flowering  event  of  some  plants.
The results showed that shoot dry weight was better predicted
with SPA using a quadratic polynomial instead of linear model
(Fig.  3).  Moreover,  the  linear  correlations  between  shoot  dry
weight  and  RGB  image-based  measurements  were  also
improved when the last-harvest data set was excluded from the
analysis  (Table  1, Supplemental  Table  S3).  A  previous  study
found that the use of RGB traits well predicted shoot dry matter
and  leaf  area  at  early  growth  stages  of  maize,  but  such
predictions became less  accurate when estimating these traits
at  later  growth  stages[15].  Depending  on  plant  species,  the
influence  of  plant  growth  stage  may  need  to  be  taken  into
consideration  when  developing  a  model  with  image-based
measurements.  Nevertheless,  SPA  was  consistently  well  corre-
lated with shoot dry weight, demonstrating a good and reliable
indicator for predicting shoot biomass yield of switchgrass.

The  advantages  of  using  the  HTP  platform  over  manual
phenotyping methods include time and labor savings as well as
being non-destructive  to  plants.  In  AAPF at  Purdue University,

 
Fig.  3    The  selected  models  to  predict  the  manually  collected  traits  using  red-green-blue  image-extracted  measurements  across  sampling
times. RMSE, the root mean square error. N = 97 for plant height and tiller number analysis. N = 31 for shoot dry weight.
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the  RGB  imaging  system  is  capable  of  measuring  up  to  120
switchgrass plants per hour. In comparison, a group consisting
of five to six people normally would be able to process at most
15  plants  per  hour.  Without  the  HTP  platform,  when  large
quantities of samples need to be processed, some parts of the
experiment  design  and  data  collection  plan  would  not  be
carried  out  due  to  the  lack  of  capacity  in  handling  a  large
number of samples.  The investment in the AAPF as a facility is
indeed significant. However, for the cost of each imaging event,
the  charge  is  set  at  $0.05/image  (12  images  taken  per  plant).
Even when the cost for growing plants in the growth chamber
inside  the  AAPF  is  taken  into  consideration,  the  current
expense  rate  comes  to  1.5  per  pot  per  day,  still  an  affordable
amount.  Therefore,  the  HTP  in  a  controlled  environment  is  an
efficient  and  affordable  platform  for  rapidly  assessing  plant
traits.  Nevertheless,  there  is  the  limitation  of  space  and  a  cost
associated with  using a  growth chamber,  limiting the  number
of plants to be assessed. In a field setting, the cost to maintain
greater numbers of plants may be reduced, which could be an
advantage  for  imaging  more  switchgrass  germplasm  using
HTP. To date, RGB-based HTP has been used in the field for crop
species, with imagery acquired using unmanned aerial vehicles
(UAVs)[8,11,16,20].  Our  results  in  a  controlled  environment  will
provide a good reference for future phenotyping plant growth
of  switchgrass  in  the  field  using  such  technology.  As  more
advanced  imaging  and  computing  technologies  becoming
available,  it  is  expected  that  HTP  will  gain  more  popularity  in
studying crop plants including perennial grass species.

 CONCLUSIONS

This study illustrated an application of HTP in predicting low
throughput phenotypic measurements in switchgrass grown in
a  controlled  environment.  Plant  height,  tiller  number,  and
shoot dry weight were highly correlated with RGB image-based
measurements,  especially  with  side-view  image-extracted
parameters.  The  models  generated  from  these  parameters
could be helpful  in predicting plant growth and biomass yield
of switchgrass. Our results also demonstrated a feasible means
by which germplasm resources of other perennial grass species
may  be  assessed  through  HTP  for  their  potential  use  in
breeding  programs  and  crop  management.  Further  research
could be conducted to develop the variety-specific correlations
between image-traits and physically measured traits to verify if
there  exists  a  generic  model  across  different  varieties.  Such
research  will  especially  be  valuable  for  germplasm  enhance-
ment for crop improvement and production.

 MATERIALS AND METHODS

 Plant growth and growing conditions
The  switchgrass  cultivar  Cave-in-Rock  was  used  in  the

experiment, as it  is commonly cultivated and highly adaptable
to  a  wide  range  of  soils  and  growing  conditions.  Seeds  were
sown in 32 bar-coded pots (23 cm diameter, 21 cm deep) filled
with propagation potting mix (Sungro, Agawam, MA, USA). The
pots were placed in a well-controlled growth chamber room in
the  AAPF  at  Purdue  University  (IN,  USA)  (Fig.  4a).  Seven  days
after  germination,  one  healthy  plant  was  kept  in  each  pot.
Plants  were  grown  under  temperatures  of  29  °C/26  °C  (day/
night) and photosynthetically active radiation of 800 µmol m−2

s−1 with a 16-h photoperiod. Plants were automatically watered
as needed and fertilized with a soluble fertilizer (N-P-K, 15-5-15
Cal-Mag) (Scotts Inc.,  Marysville,  OH, USA).  After 38 d of estab-
lishment, manual trait collection started along with initiation of
high-throughput imaging.

 Manual trait measurements
Plant  growth  and  biomass  component  traits  were  manually

measured  at  38,  45,  57,  69,  and  78  d  after  planting  (DAP),
except that shoot dry weight measurement was omitted at 38
d.  This  ensured  a  range  of  plant  growth  stages  to  be  charac-
terized  during  the  experiment.  Plant  height  was  determined
from  the  soil  surface  to  the  top  of  the  uppermost  leaf  blade.
Tiller  number  was  counted  for  each  pot.  Crown  diameter  was
taken  by  measuring  the  widest  point  across  plants  approxi-
mately 2.0 cm above the soil surface. At each harvest, all tillers
from  the  randomly  selected  pots  were  collected  for  determi-
ning  shoot  dry  weight  after  drying  at  80°C  in  an  oven  for  3  d.
The  remaining  pots  were  kept  for  continuous  measuring  and
imaging.  There  were  32,  32,  20,  13,  and  7  pots  for  measure-
ments  of  plant  height,  tiller  number,  and  crown  diameter  at
their respective DAPs. For shoot dry weight, there were 12, 7, 5,
and 7 pots harvested at 45, 57, 69, and 78 DAPs, respectively.

 High-throughput phenotyping
AAPF  is  an  automated  HTP  facility  that  enables  imaging-

based, high-throughput, nondestructive measurements of crop
traits.  The  plants  were  imaged  each  time  prior  to  manual  trait
collection. For imaging, bar-coded pots in growth chambers at
the  AAPF  were  automatically  transferred  to  the  AAPF’s  RGB
imaging  tower  (Fig.  4b).  A  custom-made  ARIS  RGB  imager
(ARIS, Eindhoven, The Netherlands) equipped with a standard 5
Megapixel  RGB  camera  (Basler  Ace,  Germany)  and  a  mono-
chrome  camera  (acA2440-20gm)  for  chlorophyll  fluorescence
image acquisition were used to automatically acquire side- and
top-view  plant  images,  which  are  illustrated  in Fig.  5.  The
detailed  description  of  image  acquisition  processes  through
multiple imaging booths at AAPF were described previously[10].
Briefly,  the  fluorescence  images  were  leveraged  in  the  early
step  of  image  processing,  namely  the  image  segmentation
step.  Using  the  fluorescence  image  of  a  plant,  the  black  and
white  template  of  an  image  was  established  using  the  Otsu
algorithm. This template was used to isolate the corresponding
RGB plant from its background, leaving only the plant’s pixels in

a ba b

 
Fig. 4    (a) Growth chamber and (b) red-green-blue imaging tower
in  the  Ag  Alumni  Seed  Phenotyping  Facility  at  Purdue  University
(IN, USA)
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the  cut  out  image.  After  the  plant  in  the  RGB  image  was
segmented, the traits such as the width, height, and area were
measured.  We  used  the  script  developed  in  Python  for
computations.

In each RGB imaging event,  12 predefined side-view images
from 360 degree  angles  (0,  30,  60,  90,  120,  150,  180,  210,  240,
270,  300,  and 330)  and one top-view image were acquired for
each  pot.  Several  RGB  image-based  traits  were  extracted
including SHT, SCH, SPA, SMW, TCH, and TPA. The descriptions
of  these  parameters  are  provided  in Table  2.  All  images  were
analyzed  by  using  a  proprietary  image  analysis  pipeline
provided  by  ARIS,  which  conducts  image  segmentation  using
the chlorophyll fluorescence image of a plant[10].

 Statistical data analysis
The  values  from  the  image-extracted  measurements  ob-

tained through 12 side-views from 0 to 330 degree angles were

averaged  for  each  pot  at  each  sampling  time  for  correlation
analysis  with  manually  collected  traits.  For  the  top-view,  one
image  was  collected  for  each  pot  at  each  sampling  time  and
was  used  for  correlation  analysis.  The  data  from  different
sampling  times  across  all  individual  pots  was  pooled  for
determining  Pearson  correlation  coefficients  using  the  SAS
program (version 9.4;  SAS Institute,  Cary,  NC, USA).  Seven data
points  were  excluded  from  all  correlation  analysis  due  to  a
failure in obtaining a top-view image at a particular time during
the experiment.
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