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Abstract
Gamma-aminobutyric acid (GABA) is a nonprotein amino acid that is well recognized as an endogenous plant signaling molecule. Nitric Oxide

(NO)  is  a  signaling  molecule  that  has  diverse  biological  functions  in  plants.  There  has  been  increasing  research  evidence  that  elucidates  the

protective roles of GABA and NO in improving plant growth and abiotic stress resistance of turfgrass species through enhancing photosynthetic

and  antioxidant  defense  capacities,  maintenance  of  membrane  integrity,  osmotic  adjustment  and  ion  hemostasis,  and  increasing  gene  and

protein expressions and accumulation of certain metabolites. Furthermore, the crosstalk between GABA and NO for modulating stress response

are of interests in recent years. This review summarizes the current research advances of the physiological and molecular mechanisms involved in

GABA- and NO- mitigated abiotic stress effects and discusses knowledge gaps in exploiting role of GABA an NO in turfgrass stress resistance. The

review  aims  at  promoting  future  research  work  towards  a  deeper  understanding  of  GABA  and  NO  applications  in  enhancing  turfgrass

management, production, and environmental adaptation.
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 Introduction

Turfgrasses  are  among  the  economically,  environmentally,
ecologically,  recreationally,  and  aesthetically  important  grass
species[1].  They  are  generally  classified  into  cool-season  and
warm-season  species  based  on  their  required  temperatures
and precipitation for optimum plant growth and development.
However, both species can be periodically subjected to abiotic
stresses  within  their  adaptation  zones.  The  frequency  and
severity  of  stresses  are  expected  to  increase  as  a  result  of
climate  change,  which  will  further  limit  grass  management,
production  and  environmental  adaptation.  Various  cultural
practices  have  been  implemented  in  promoting  turfgrass
stress  management.  One  of  them  is  called  'chemical  priming',
which  uses  protective  chemical  agents  in  inducing  defense
mechanisms  to  alleviate  stress  injury  and  enhance  stress
resistance[2,3].

Gamma-aminobutyric  acid  (GABA)  is  a  ubiquitous  nonpro-
tein  amino  acid  and  an  endogenous  signaling  molecule[4].
GABA  often  accumulates  in  response  to  a  wide  range  of
environmental stimuli, leading to changes of physiological and
biochemical  responses  that  can  modulate  stress  tolerance[5,6].
Nitric oxide (NO) is a gaseous molecule that has shown diverse
biological  functions  in  plants,  including  delaying  leaf  senes-
cence  and  increasing  abiotic  stress  tolerance[7,8].  As  a  signal
molecule,  NO  levels  are  regulated  by  both  endogenous  and
environmental  cues[9].  This  review  emphasizes  the  physiolo-
gical  and  molecular  mechanisms  of  exogenous  GABA  or  NO
application and their interactions in the amelioration of abiotic
stress tolerance on turfgrass species.

 Drought stress

Water  deficit  can  severely  inhibit  the  growth,  persistence,
and  physiological  activities  of  both  cool-  and  warm-season
turfgrasses.  Foliar  application  of  GABA  improves  drought
tolerance  of  turfgrass  species.  Creeping  bentgrass  (Agrostis
stolonifera L.)  is  one  of  the  most  important  cool-season
turfgrass species used on golf courses. Foliar application of 500
µM GABA before or during drought stress or growing plants in
a  Hoagland  solution  containing  GABA  improved  growth  and
physiological  activities  of  this  species  under  drought  stress.
Specifically, decrease in leaf electrolyte leakage and increases in
leaf  green  color  and  stolon  length,  relative  water  content,
chlorophyll  florescence  (Fv/Fm),  net  photosynthetic  rate,
contents of chlorophyll, water-soluble carbohydrate and amino
acids  (glycine,  valine,  proline,  5-oxoproline,  serine,  threonine,
aspartic  acid  and glutamic  acid)  and organic  acids  (malic  acid,
lactic  acid,  gluconic  acid,  malonic  acid  and  ribonic  acid)  were
found  in  GABA-treated  plants  compared  to  the  untreated
plants  under  drought  stress[10−13].  Antioxidants  play  an  impor-
tant  role  in  reducing  oxidative  damages  induced  by  reactive
oxygen  species  (ROS)  in  plant  cell  under  abiotic  stress  con-
ditions.  Application  of  500 µM  GABA  reduced  leaf  superoxide
(O2

.−)  and  hydrogen  peroxide  (H2O2)  contents  and  enhanced
activities of antioxidant enzymes such as superoxide dismutase
(SOD),  catalase  (CAT),  peroxide  (POD),  glutathione  reductase
(GR),  monodehydroascorbate  reductase  (MDHAR),  and  dehy-
droascorbate  reductase  (DHAR),  contributing  to  drought  tole-
rance  in  creeping  bentgrass[14,15].  Furthermore,  GABA  treat-
ment alters gene expression under drought stress. For example,
creeping  bentgrass  plants  treated  with  GABA  before  drought
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stress  showed  upregulated  the  expression  of  genes  such  as
DREB1/2,  WRKY1/24/41,  DHNs, HSP70, CDPK26, MAPK1, ABF3,
WRKY75, MYB13, MT1, SOD, CAT, POD, APX, MDHAR, DHAR,  and
GR involved  in  transcription  regulation,  osmotic  adjustment,
antioxidant metabolism, and protein protection under drought
stress[14,16].  The  promotive  effects  of  GABA  on  drought
tolerance  has  also  been  found  in  other  turfgrass  species.  In
perennial  ryegrass  (Lolium  perenne L.),  foliar  application  of  50
mM GABA one day before drought stress increased leaf relative
water  content,  and  decreased  wilt  rate,  canopy  temperature
depression, electrolyte leakage, and lipid peroxidation, but had
no  effects  on  SOD  and  CAT  activity  under  drought  stress,
compared  with  the  untreated  plants[17].  It  appears  that  some
GABA-mediated  physiological  processes  such  as  antioxidant
metabolism  vary  with  grass  species,  applied  concentration  of
GABA, and duration and intensity of drought stress.

Sodium  nitroprusside  (SNP)  and  potassium  nitrite  (PN),
donors of NO, are compounds that produce NO in plants. It has
been  found  that  application  of  NO  donors  improves  drought
tolerance  of  several  turfgrass  species.  In  perennial  ryegrass,
spray  of  400 µM  SNP  enhanced  seed  germination,  root  and
shoot  length,  chlorophyll  and  proline  contents,  and  reduced
electrolyte leakage, compared to the untreated plants exposed
to  polyethylene  glycol-induced  water  stress[18].  Foliar  applica-
tion of 150, 200 and 250 µM SNP or PN prior to drought stress
increased  activities  of  SOD,  CAT  and  ascorbate  peroxidase
(APX)  in  perennial  ryegrass,  Kentucky  bluegrass  (Poa  pratensis
L.),  and  bermudagrass  (Cynodon spp.),  with  maximum  activity
observed  with  the  treatment  of  200 µM  SNP  or  PN  during
drought stress and recovery[19]. Application of 50, 100, and 150
µM SNP generally increased drought tolerance by maintaining
leaf  relative  water  content,  chlorophyll  and  proline  contents,
SOD  and  APX  activity,  and  reducing  electrolyte  leakage  in
creeping  bentgrass  and  tall  fescue  (Festuca  arundinacea
Schreb.)  under  drought  stress[20].  Foliar  spray  of  another  NO
donor,  100  mM  nitrosoglutathione  (GSNO),  enhanced  activity
of  sucrose  :  sucrose  1-fructosyltransferase  for  fructan  biosyn-
thesis,  resulting  in  a  3-fold  increase  in  fructan  content  in
perennial  ryegrass  exposed  to  drought  stress[21].  Since  fructan
is  a  major  carbohydrate  reserve  for  cool-season  turfgrass
species, accumulation of fructan may facilitate osmoregulation
and  membrane  protection,  thus  contributing  to  stress
tolerance. The GSNO-treated plants also had higher GR activity
and  reduced  glutathione  content,  suggesting  that  the  NO-
enhanced  drought  tolerance  was  partially  due  to  mitigating
oxidative  stress[21].  On the  contrary,  foliar  spray  of  200 µM NO
scavenger,  2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-
oxide  (PTIO)  increased  stress  injury  by  inducing  membrane
permeability  and  accumulating  ROS  in  tall  fescue  and  red
fescue (Festuca rubra L.) during drought stress and recovery[22].
These  results  demonstrate  that  foliar  application  of  NO
alleviates  drought  stress  injury  in  some  turfgrass  species
through  maintaining  chlorophyll  content,  membrane  stability,
osmoregulation, and antioxidant enzyme activity.

 Temperature stress

High  temperatures  often  cause  declines  in  the  quality  and
growth  of  cool-season  turfgrasses,  especially  when  they  are
cultivated  in  transition  and  warm  climatic  regions.  Low
temperatures  particularly  limit  the  growth  and  productivity  of

warm-season  turfgrasses,  but  cool-season  turfgrass  species
may suffer  from freezing injury  in  temperate  regions  as  plants
go through an annual  cycle  of  overwintering.  GABA-improved
heat tolerance has been mainly studied in creeping bentgrass.
Foliar  spray  of  500 µM  GABA  increased  chlorophyll  content,
Fv/Fm, photosynthetic rate,  osmotic adjustment,  and activities
of  SOD,  POD,  and APX,  and decreased electrolyte  leakage and
reduced  accumulation  of  O2·−,  H2O2,  and  malondialdehyde
(MDA)  in  creeping  bentgrass  exposed  to  heat  stresses[11,23,24].
Analysis of metabolites revealed that GABA-treated plants had
increased  levels  of  amino  acids  (glutamic  acid,  aspartic  acid,
alanine,  threonine,  serine,  and  valine),  organic  acids  (aconitic
acid,  malic  acid,  succinic  acid,  oxalic  acid,  and  threonic  acid),
sugars (sucrose, fructose, glucose, galactose, and maltose), and
sugar alcohols such as mannitol and myo-inositol[13,25,26]. Foliar
spray of  500 µM GABA also altered nutrient  status  in  creeping
bentgrass  under  heat  stress,  with  higher  leaf  nitrogen,
phosphorus,  calcium,  sodium,  and  copper  levels,  and  lower
contents  of  boron  and  manganese  observed  in  GABA-treated
plants  than  the  untreated  plants[27].  Heat  stress  largely  causes
leaf senescence of turfgrass plants. Exogenous GABA treatment
delayed leaf senescence of creeping bentgrass exposed to heat
stress  by  reducing  chlorophyll-degrading  enzyme  activities,
increasing  the  abundance  of  heat  shock  proteins  of  HSP70,
HSP90-1,  HSP101  and  antioxidant  proteins  of  Cu/ZnSOD  and
APX4,  and  other  proteins  such  as  ATP-dependent  6-phospho-
fructokinase  5,  fructokinase  2,  fructofuranosidase,  galactinol-
sucrose  galactosyltransferase  2,  asparagine  synthetase,  as  well
as  transcription  factor  of  C2H2  zinc-finger  protein[23,28].  At  the
gene level, a spray of 500 µM GABA upregulated expression of
ABF3, POD, APX, DHN3,  and MT1,  and  genes  encoding  heat
shock  protein  such  as HSP12, HSP17.8, HSP26.7, HSP70, HSP82,
HSP90.1-A1, HSP90.1-B1,  and HSP90-5),  as  well  as  heat  shock
factors such as HSFA-2c, HSFA-2d, HSFA-6a, HSFB-2b,  and HSFC-
2b in  creeping  bentgrass  under  heat  stress[16,24,29].  In  addition,
vvi-miR845c,  ama-miR156, and  other  novel  miRNAs  such  as
novel-24223,  novel-2964, and novel-10098 could  be  involved  in
GABA-regulated  heat  tolerance  of  creeping  bentgrass[30].
Collectively,  exogenous  application  of  GABA  improves  heat
tolerance  by  enhancing  osmoprotection,  antioxidant  activity,
upregulating  HSF  pathways  and  post-transcriptional  regula-
tion,  modulating  mineral  nutrient  availability  and  amino  acid
metabolism, and suppressing chlorophyll degradation.

Application  of  NO  donors  can  also  improve  heat  and  cold
tolerance  of  turfgrass  species.  After  tall  fescue  leaves  were
vacuum-infiltrated  with  100 µM  with  SNP  and  subsequently
exposed  to  44  ºC,  the  SNP-treated  leaves  exhibited  higher
Fv/Fm,  lower  electrolyte  leakage,  reduced  contents  of  O2

.−,
H2O2, and  MDA,  and  induced  expressions  of psbA, psbB,  and
psbC genes  encoding  subunits  of  PSII  complex  protein  under
heat  stress[31].  Bermudagrass  sprayed  with  100 µM  SNP  had
lower  MDA  content  and  electrolyte  leakage  and  higher
chlorophyll  content  and  chlorophyll  fluorescence  parameters,
activities  of  SOD  and  POD,  and  expression  of  cold-responsive
genes  such  as LEA and CBF under  4  ºC,  but  such  effects  were
suppressed  by  pretreatment  with  the  NO  scavenger  PTIO  or
PTIO  plus  NG-nitro-L-arginine-methyl  ester  (L-NAME,  NO
synthase inhibitor)[32]. These research findings suggest that NO-
mediated  heat  and  cold  tolerance  is  associated  with  the
maintenance  of  cell  membrane  stability,  antioxidant  enzymes

 
GABA and NO for stress resistance

Page 2 of 6   Jiang Grass Research 2023, 3:3



activities,  photosystem  II  efficiency,  and  inducing  the  expre-
ssion of cold-responsive genes in turfgrass species.

 Salinity stress

Salinity  is  a  major  stress  limiting  growth  of  both  cool-and
warm-season turfgrass in salt-affected areas. The increasing use
of  non-potable  water  containing  high  salt  can  also  lead  to
salinity  stress[33].  Salinity  imposes  both  osmotic  and  ionic
stresses  to  the  plants,  and  salinity  tolerance  is  strongly  asso-
ciated  with  osmotic  and  ionic  stress  tolerance[34].  In  perennial
ryegrass,  foliar  application  of  50  and  100  mM  GABA  increased
proline  and  total  soluble  protein  content  and  POD  and  SOD
activity, and reduced H2O2 and MDA content and Na+/ K+ ratio
under  50  and  100  mM  NaCl  stress[35].  Across  four  perennial
ryegrass cultivars, foliar spray of 500 µM GABA resulted in lower
leaf Na+ concentration at both 100 mM and 200 mM NaCl and
maintained higher Fv/Fm at 200 mM NaCl, compared with H2O
treatment[36].  Also  in  perennial  ryegrass,  the  addition  of  1  mM
GABA to 175 mM NaCl solution increased seed germination by
32%  and  subsequently  enhanced  shoot  dry  weight,  shoot
carbon and nitrogen contents, compared to the NaCl treatment
alone[37] .  Creeping bentgrass irrigated with 500 µM GABA had
significantly  higher  leaf  relative  water  content  and  Fv/Fm  and
lower  electrolyte  leakage,  compared  to  the  untreated  plants
exposed to 250 mM NaCl[38]. Furthermore, GABA treated plants
showed  increased  total  polyamines,  spermidine,  amino  acids
such as glutamic acid, alanine, phenylalanine, aspartic acid, and
glycine,  and carbohydrates such as galactose,  talose,  trehalose
and  xylose  under  salinity  stress[13].  In  addition,  upregulated
expression of some genes involved in zinc homeostasis,  starch
degradation,  and  the  biosynthesis  of  wax,  fatty  acid,  chlo-
rophyll, and abscisic acid were observed in creeping bentgrass
roots  exposed  to  250  mM  NaCl  containing  500 µM  GABA
solution, including cytochrome P450 (CYP450), zinc transporter
29 (ZTP29), alpha-amylase 3 (AMY3), 3-ketoacyl-CoA synthase 6
(KCS6), aldehyde oxidase (AO), acetyl-CoA carboxylase 1 (ACC1),
and  magnesium-chelatase  (Mg-CHT)[38].  It  appears  that  GABA
ameliorates  salinity  tolerance  by  improving  seed  germination,
shoot  growth,  photochemical  efficiency,  antioxidant  activities
and  osmotic  adjustment,  and  reducing  Na+ accumulation  and
oxidative  injury,  and  regulating  genes  involved  in  chlorophyll,
carbon and hormone metabolism.

Application  of  an  NO  donor  enhances  salinity  tolerance  of
turfgrass species. Foliar spray of 200 µM SNP reduced chlorotic
and  necrotic  leaf  tissue,  increased  leaf  fresh  weight  and  dry
weight  and  leaf  photochemical  efficiency,  and  decreased  leaf
Na+ concentration, compared to the plants treated with H2O in
perennial  ryegrass  cultivars  at  200  mM  NaCl[36].  Bermudagrass
treated  with  100 µM  SNP  was  more  tolerant  to  400  mM  NaCl
stress  by  maintaining  higher  chlorophyll  content,  Fv/Fm,
K+/Na+,  Mg2+/Na+,  and  Ca2+/Na+ ratio,  and  lower  levels  of
electrolyte leakage, MDA, H2O2, and activities of SOD, POD, and
APX activities, compared to the untreated plants, while a spray
of 200 µM NO inhibitor PTIO plus 200 µM L-NAME inhibited the
NO-promoted  positive  effects  on  plant  performance  under
salinity  stress[39].  The  results  indicate  that  NO  plays  a  role  in
maintaining  cell  membrane  stability  and  ion  homeostasis  as
well as alleviating oxidative damage, thus contributing to plant
growth and salinity tolerance.

 Other abiotic stresses

There  are  almost  no research reports  illustrating exogenous
GABA effects on turfgrass tolerance to other abiotic stresses. A
few  publications  have  elucidated  the  role  of  NO  in  enhancing
tolerance to other stresses including cadmium (Cd) in perennial
ryegrass[40] and  tall  fescue[41,42],  copper  (Cu)  in  perennial
ryegrass[43],  chromium  (Cr)  in  tall  fescue[44],  and  shade  in  tall
fescue[45].  In perennial ryegrass, the addition of 100 µM SNP to
the  growing  medium  reduced  toxicity  of  Cd  stress  by
decreasing root-to-shoot translocation of Cd and increasing the
activities  of  antioxidant  enzymes  in  both  roots  and  shoots  of
stressed plants[40]. The treatment of 200 µM SNP decreased the
Cd  content  by  11%  in  tall  fescue  under  50  mg·L−1 Cd  stress,
while 100 µM c-PTIO, 200 µM L-NAME alone, or a combination
of  the  two,  increased  Cd  content  by  24%[41].  In  addition,
application of 100 µM SNP improved photosystem II  efficiency
of tall fescue under 50, 300, 500 mg·L−1 Cd stress, while the 100
µM  of  NO  synthesis  inhibitor  L-NAME  suppressed  the  positive
effects of NO[42]. Moreover, the integrated analyses of transcrip-
tomics  and  metabolomics  revealed  81  differentially  expressed
genes  and  15  differentially  expressed  metabolites  involved  in
20  NO-induced  pathways  including  antioxidant  activities,
secondary  metabolites,  arginine  and  proline  metabolism,  ABC
transporters,  and  nitrogen  metabolism[41].  When  perennial
ryegrasses  were  exposed  to  200 µM  Cu  stress,  the  addition  of
50, 100, and 200 µM SNP increased chlorophyll content, photo-
synthesis  and  antioxidant  enzyme  activities,  and  reduced
oxidative damages, with the more pronounced effects on plant
growth  noted  with  100 µM  SNP  treatment  under  Cu  stress[43].
Application  of  100 µM  SNP  improved  physiological  and
photosynthetic  activities  of  tall  fescue  against  Cr  stress[44].
Under  shade  condition,  100 µM  SNP  treatment  increased  leaf
widths,  chlorophyll  and  proline  concentrations,  and  the
activities  of  SOD,  CAT,  and POD,  but  decreased leaf  lengths of
tall  fescue,  to  a  greater  extent  under  moderate  shade
compared  to  the  low  shade  or  heavy  shade  conditions[45].
Collectively, NO plays a positive role in maintaining growth, cell
membrane  integrity,  antioxidant  activities  and  function  of  the
photosynthetic  system,  and  alleviating  oxidative  damage  for
plants under various stress conditions.

 Crosstalk between GABA and NO

The  interactive  effects  of  GABA  and  NO  on  abiotic  stress
resistance  have  been  studied  in  plant  species,  but  not
extensively investigated in turfgrass. The mediation of GABA on
NO  production  or  vice  versa  could  be  beneficial  to  improving
stress  resistance  of  the  plants.  Exogenous  application  of  NO
inhibitor  in  the  presence  of  GABA  increased  arsenate  toxicity
but  addition of  NO donor  alleviated the adverse  effects  of  NO
inhibitor,  indicating  that  NO  was  crucial  in  GABA-mediated
arsenate  tolerance  in  tomato  (Solanum  lycopersicum L.)  and
brinjal  (Solanum  melongena L.)  seedlings[46].  When  soybean
(Glycine  max L.)  sprouts  were  exposed  to  salinity  stress,
treatment of GABA alleviated the inhibition of NO on phenolics
biosynthesis  by  enhancing  the  production  of  NO,  while  NO
donor  treatment  also  alleviated  the  inhibition  of  GABA  on
phenolics biosynthesis[47].

Other  reports  also  suggested  that  GABA-regulated  stress
responses  were  largely  associated  with  NO  production,  but

GABA and NO for stress resistance
 

Jiang Grass Research 2023, 3:3   Page 3 of 6



interestingly,  effects  of  NO  on  plant  responses  seemed
independent  from  GABA,  at  least  in  some  plant  species.  In
creeping  bentgrass,  application  of  500  mM  GABA  to  the  roots
increased  endogenous  NO  production,  depending  on  nitrate
reductase and NO-associated protein pathways, which could be
associated  with  the  enhancement  of  antioxidant  defense  and
whole-plant  drought  tolerance[15].  Similarly,  GABA  treatment
increased  salinity  tolerance  of  wheat  (Triticum  aestivum L.)  by
enhancing  antioxidant  and  photosynthetic  capacity,  proline
metabolism  and  N–S  assimilation,  ion  homeostasis,  and  plant
growth  through  regulation  of  NO  production[48].  The  NO-or
GABA-pretreated  white  clover  (Trifolium  repens L.)  had  higher
NO  content  than  the  untreated  plants  under  drought  stress,
which  were  correlated  with  higher  relative  growth  rate,
chlorophyll  content,  net  photosynthetic  rate,  total  antioxidant
capacity,  and  accumulation  of  some  key  amino  acids,  sugars,
organic acids, and sugar alcohols involved in the TCA cycle, but
lower carbonyl content and electrolyte leakage[49]. Notably, the
same study showed that SNP-pretreatment did not alter GABA
content  compared  to  the  untreated  plants  under  drought

stress[49]. The similar results were found in muskmelon (Cucumis
melo L.)  that  exogenous  GABA  enhanced  endogenous  NO
content,  nitrate  reductase  activity,  and  NO  synthase  activity,
but  SNP  treatment  did  not  change  GABA  level  under  the
salinity–alkalinity stress[50].  It was suggested that NO might act
as a downstream signal of GABA to regulate metabolic activity
and  increase  the  salinity–alkalinity  stress  tolerance  of
muskmelon[50].  Moreover,  SNP  treatment  resulted  in  lower
GABA  content  in  tea  (Camellia  sinensis L.)  roots  under  cold
stress than the control[51], indicating that NO-improved the cold
resistance of tea plant was not mainly through the GABA shunt.
The  interactive  effects  of  GABA  and  NO  are  positive  but  also
complicated in mediating plant stress resistance, and the exact
coordinating  mechanisms  between  these  two  molecules
deserve further investigation, especially in turfgrass species.

 Conclusions and perspectives

Plants treated with GABA or NO donor exhibit better overall
growth  and  greater  stress  resistance,  compared  to  the
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Fig. 1    A model illustrating exogenous application of γ-aminobutyric acid (GABA) and nitric oxide (NO) on improving turfgrass resistance to
abiotic stresses.
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nontreated  plants  of  various  turfgrass  species.  The  enhanced
stress  resistance  by  exogenous  GABA  or  NO  is  strongly  asso-
ciated with through enhancing photosynthetic and antioxidant
defense  capacities,  maintenance  of  membrane  integrity,
osmotic  adjustment  and  ion  hemostasis,  and  increasing  gene
and  protein  expressions  and  accumulation  of  certain  metabo-
lites (Fig. 1). The crosstalk between GABA and NO plays a role in
regulating plant responses to stress conditions.

To  achieve  maximum  effects  on  stress  resistance,  multiple
applications of chemicals before stress, during the stress treat-
ment  or  after  recovery  are  often  conducted.  However,  the
benefits  of  GABA  or  NO  application  are  largely  affected  by
chemical  concentrations,  stress  intensity  and  duration,  tissue
type,  as  well  as  different  turfgrass  species  and  cultivars.  Given
the  complexity  of  chemical  action,  further  research  work  is
necessary to identify GABA or NO effects on a broad spectrum
of improvements in stress resistance. More specifically, it is not
clear  whether  the  GABA,  NO  or  their  interactions  are  effective
against  the  combined  abiotic  stresses,  such  as  drought  and
heat,  drought  and  salinity,  and  whether  there  are  significant
genetic  differences  with  turfgrass  species  and  cultivars  in
responsiveness to one or a mixture of multiple chemical agents
under  abiotic  stress  conditions.  Future  research  is  needed  to
address  chemical  agents  promoting  plant  resistance  to  multi-
ple stresses in turfgrass species or cultivars. It is anticipated that
chemical  application  will  be  more  extensively  used  as  a
practical  management  tool  to  mitigate  the  adverse  effects  of
abiotic stresses on turfgrass.
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