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Abstract
Human  domestication  of  grasses  has  been  pivotal  to  human  civilization  as  a  main  caloric  source,  however  this  has  come  at  the  expense  of

decreased  genetic  diversity.  As  plants  evolved  alongside  a  plethora  of  microorganisms,  some  of  them  critical  to  plant  growth  and  health,

domesticated plants demonstrate consistently changed rhizobiomes, along with lowered tolerance to stress. In the last few decades, the interest

in  specific  beneficial  microorganisms  to  staple  crops  has  been  growing  gradually,  due  to  improved  high-output  data  techniques,  extensive

research, and rising concerns on the production of enough food for a growing world population undergoing world climate change. Here,  we

review how wheat domestication trade-off effects may have impacted the recruitment of an ideal rhizobiome assembly, describe known wheat-

specific beneficial species of both fungi and bacteria, and propose the exploration of wild relatives and indigenous species for identification and

reinstatement of beneficial microbial interactions that may have been lost through the effects of domestication.
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 Domestication

Humans  have  domesticated  plants  and  animals  since  the
Neolithic  revolution  around  13,000  years  ago,  which  enabled
the first sedentary agricultural societies and eventual develop-
ment  of  human  societies[1].  In  domestication  processes,
morphological  and  physiological  changes  in  plant  and  animal
traits are chosen and developed through specific nurturing and
breeding  of  wild  species  for  the  enhancement  of  specific
beneficial  traits[2].  While  humans  have  had  by  far  the  highest
success  rate  in  domesticating  species,  in  number  and  geogra-
phical  area,  domestication  is  in  no  way  specific  or  limited  to
homo  sapiens,  as  ants  have  been  observed  to  domesticate
aphids, viruses have been domesticated by parasitic wasps, and
more[3,4].  Indeed,  by  looking  at  domestication  as  a  type  of  co-
evolution between two species,  for reciprocal  fitness increases
and geographic spread,  we can assume domestication to be a
specific  kind  of  mutualism,  in  which  both  species  nurture  one
another for traits through multispecies interactions[5].

Grasses  are  among  the  most  important  staple  crops  for
human  use.  Historically,  wheat  (triticum sp.)  and  barley
(Hordeum  vulgare)  were  the  two  first  domesticated  plants,
followed by maize (Zea mays) and rice (Oryza sativa), with many
more  following  for  indirect  consumption  trough  fodder,  or
industrial uses, like rye-grass (Lolium sp.) and cottons (Gossypim
sp.)  respectively[6].  Wheat,  maize  and  rice  are  the  three  major
cereal  crops  cultivated  and  consumed  world  wide,  supplying
food, feed and industrial raw materials for more than one-third
of  the  world's  population  as  both  spring  and  winter  crops[7,8].
Wheat  is  the  second  most  produced  staple  crop,  after  maize
(World  food  situation:  FAO  cereal  supply  and  demand  brief,
2016),  while  using  the  most  land  area  compared  to  any  other
food  crop,  at  220.4  MHa  (United  Nations,  2016).  Among  the

main producers, most are situated in areas under critical danger
of  desertification,  according  to  UNEP's  1997  World  Atlas  of
Desertification  (2nd Edition),  as  can  be  seen  in Fig.  1,  and  as
such,  the  food  production  growth  needed  to  feed  the  world
population  up  to  2050  will  come  90%  from  intensification  of
existing  agricultural  systems,  and  only  10%  from  expanding
arable land.

 Phenotype tradeoffs of domestication processes

In  plants,  domestication  is  usually  associated  with  pheno-
typic  traits  like  germination success  rates,  size,  seed retention,
root  architecture,  and  other  physiological  and  morphological
traits,  in  functions  of  desired  edibility  and  usage  of  specific
plant  organs[9−11].  From  the  plant's  point  of  view,  the  deve-
lopment  of  such  traits  will  depend  on  a  shift  in  resource
allocation,  usually  from  stress  tolerance,  towards  growth  and
reproduction[12,13].

The  genetic  suite  of  traits  marking  the  divergence  from  a
crop's  wild relative is  called 'domestication syndrome'  and will
take  place  biochemically  as  a  conversion  from  the  production
of  growth-related  primary  metabolites  (common  among  all
plants)  to  defense-related  secondary  metabolites  that  will  be
unique  to  the  plant  species,  and/or  to  the  event  that  induced
their  synthesis[14,15].  This  exchange  is  critical  since  plant
resources  are  limited  and  its  defenses  are  metabolically
expensive,  carbon and nitrogen-wise[16].  The amplification of a
defensive trait is usually generated through specific selection of
individual  genes  and  their  neighboring  regions  (between
10−100  kb)[17] thus  also  possibly  affecting  random  non-
deleterious genes.  Indeed,  tradeoffs  can also happen naturally
due  to  the  genetic  links  and  placement  of  genes  in  chromo-
somes,  as  observed  in  Salicaceae  seeds  for  example,  which
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demonstrate  a  tradeoff  between  seed  number  and  seed  mass
naturally,  with  seed  mass  strongly  correlating  with  seed
longevity[18].  This  tradeoff  can  then  easily  turn  into  a  genetic
bottleneck  in  dry  seasons  since  the  species  depends  on  plain
floods  for  its  survival.  Thus,  natural  and  artificial  (anthropo-
genic)  causes  will  eventually  bring  forth  a  reduction  in  gene
diversity,  as  can  be  observed  in  the  domesticated  maize  (Zea
mays ssp. Mays),  which  demonstrates  a  loss  of  38% in  nucleo-
tide  diversity  in  comparison  to  its  ancestor  (Zea  mays ssp.
Parviglumis)[19],  and in wheat that demonstrated 69% and 84%
reduced  diversity  in  bread  and  durum  wheat  respectively[20].
Many other cultivars, like corn, olives and sunflowers have been
compared  with  their  wild  ancestors  and  show  that  the  hypo-
thesis  of  a  trade-off  between increased yields  and defenses  to
be widely supported[12,21,22].

The  domestication  of  wheat  is  especially  well  recorded  due
to  the  species  importance  to  humans,  with  its  first  polyploi-
dization event occurring around 500,000−150,000 years before
the  present,  to  form  a  new  amphi-tetraploid  species  with  14
chromosome  pairs  named Triticum  turgidum  L. sp dicoccoides,
which  was  in  turn  domesticated  to  form Triticum  dicoccum –
the direct ancestor of durum wheat. A second polyploidization
occurred around the Neolithic (Agriculture) revolution ~10,000
years  before  present,  between Triticum  dicoccum and  the  wild
diploid species Triticum tauschii to form the modern hexaploid
Triticum aestivum – the 'bread wheat'[23], characterized by traits
like  reduced  maturity  shattering  of  spikelet,  glume  reduction,
loss of seed dormancy, increased carbohydrates and decreased
proteins and minerals in the seed's germplasm[24].

Additional  phenotypical  differences  between  domesticated
and  wild  emmer  have  been  observed  to  include  increased
shoot biomass in general, with higher total leaf area, and shoot
fresh weight in particular, among the domesticated varieties in
comparison  to  their  wild  counterparts[25].  Also,  underground
phenotypical  differences  to  the  plant's  root  architecture  have
also  been  observed  to  be  substantial,  with  root  biomass  in
general[26], and specific traits like primary and total root length,
depth, width and dry weight in particular being observed to be
higher  in  domesticated  genotypes,  compared  to  wild  ones[25].
Differences  were also observed in  the exudation profile  of  the
root's  system  among  domesticated  and  wild  genotypes,  were
despite  the  observation  of  general  increase  in  exudation  of
organic  compounds[27] in  domesticated  genotypes,  specific
compounds  like  poly  alcohols,  were  found  to  be  significantly
higher  in  the  wild  emmer  than  in  domesticated  durum
varieties[26].

It  is  important  to  state  that  along  the  plant's  domesticated
traits,  its  environment  also  had  progressive  changes,  with

human  development  and  agrotechnical  advances  like  increas-
ing inputs of chemicals as fertilization and pesticides – leading
to  a  decrease  in  both  necessity  and  capacity  of  plants  to  self-
support  naturally[28],  along  direct  changes  to  the  soil  physical,
chemical,  and  microbial  components[29].  Indeed,  higher  abun-
dances  of  bacterial  endophytes  have  been  observed  in  wheat
rhizosphere  under  low  nutrients  treatment[30],  which  along  an
increased  amount  of  organic  acids  released  into  the  rhizo-
sphere in nutrient-poor plants[31], both support the theory that
the domestication syndrome of wheat, as far as its effects on its
rhizobiome,  was  driven  by  both  genetics  and  human  mani-
pulation of agricultural soil.

 The rhizobiome

The  rhizosphere  harbors  a  substantial  number  of  microor-
ganisms  interacting  with  roots,  with  bacteria  and  fungi
accounting  for  more  than  90%  of  the  total  soil  microbial
biomass[32,33]. Fungi and bacteria in the soil interact with plants
along  a  parasite-mutualist  continuum,  in  which  the  microbes
may  harm  or  benefit  its  host  as  a  function  of  the  relative
benefits  and  costs  to  each  species[34].  Indeed,  soil  microorga-
nisms play an essential part on plants' health and performance
by  positively  or  negatively  manipulating  their  biochemistry,
development and physiology[35].

Plant  growth-promoting  rhizobacteria  (PGPRs),  microorga-
nisms  that  colonize  the  rhizosphere  and  roots,  are  known  to
improve both yields and tolerance of biotic and abiotic stresses
in  plants[36,37].  PGPRs  can  also  help  enhance  plant  growth
through  nitrogen  fixation[38],  hormonal  secretions[39],  specific
antifungal  and  antibiotic  activity[40−42],  facilitation  of  essential
minerals uptake[43,44] and induction of systemic resistance[45−48].
Specific  strains  have  been  found  to  help  reduce  the  need  for
chemical  fertilizers  while  maintaining  commercially  viable
yields and grain quality[49] thus contributing to local and global
environment  by  decreasing  non-renewable  resource
dependence[50].  Furthermore,  different  studies  demonstrate
that there is also potential for exopolysaccharides (EPS) produ-
cing bacteria,  like Bacillus  subtilis and Azospirillum  brasilense in
water-stress amelioration[51].

Fungi  also  play  a  critical  role  in  the  rhizospheric  microbial
community, having a total soil microbial biomass ratio of fungi:
bacteria ranging from 1:1 in agricultural soils and up to 1000:1
in coniferous forests[52], as intensity of soil management shows
a  high  correlation  to  lower  values,  a  phenomenon  commonly
thought  to  be  caused  by  tillage  and  fertilization[53].  The
Glomeromycota  Arbuscular  mycorrhiza  fungi  (AMF)  for
example,  are  considered  a  main  player  in  maintaining  soil
carbon  pools,  as  it  can  forms  symbiotic  relationships  with
nearly  90% of  all  plant  species[54,55] by  adding their  hyphae to
plant's  roots,  thus  increasing  the  plant's  water  and  mineral
uptake  network[56].  AMF  will  also  expedite  decomposition  of
organic  matter,  improving  soil  structure  and  nutrient  carriage
capacity[57].  Other  fungi  species  have  been  found  to  increase
grain  yield,  nitrogen  uptake[58],  alleviate  biotic  and  abiotic
stresses[59,60],  promote growth through phosphorous solubility
in  soil[61] and  increase  seedling  roots[62],  among  many  other
benefits.

As  such,  maintaining  a  beneficial  and  healthy  rhizospheric
community,  should  be  in  the  plants'  human  caretakers  best
interests[63] as  partially  summarized  for  wheat  in Table  1
(bacteria) and Table 2 (fungi) below.
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Fig.  1    Correlation  between  main  wheat  producer  world  areas
and  extent  of  soil  degradation,  according  to  Agricultural  Market
Information  System  (AMIS)  2018  reports  and  UNEP's  1997  World
Atlas of Desertification (2nd Edition).
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 The rhizospheric effect on the rhizobiome

In  the  past  decade,  with  increasing  understanding  of  the
importance  of  the  relationship  between  plants  and  their  soil
microbiome,  the  shaping  of  a  plant's  rhizobiome  has  come
under  study[64].  The  'Rhizospheric  effect'  (RE),  defined  as  the
chemical,  biological  and  physical  changes  in  the  immediate
vicinity of plants roots in the soil,  and including the apoplastic
spaces  inside roots  (the 'endorhizosphere'),  is  created through
root  exudates,  decomposition  of  organic  matter  and
rhizodeposition[65].  These will modify the soil environment in a
way that  will  benefit  the plant  through recruitment of  specific
microorganisms,  thus  forming  a  distinct  micro-environment
and microbiome living within it[65,66].

It  is  estimated  that  plants  allocate  around  10%  of  all  their
fixed carbon (reaching up to 30%−40% of total fixed carbon in
seedlings[67])  to  compounds  intended  to  be  exuded  to  the
rhizosphere[68].  These  exudates  can  contain  protons  (H+),  oxy-
gen,  water  and  inorganic  acids,  but  mainly  consist  of  primary
and  secondary  metabolites,  like  amino  acids,  carbohydrates,
organic acids, flavonoids, glucosinolates, hormones and etc.[69].
These  compounds  have  shown  to  mediate  interactions
between  the  plant  and  its  surroundings,  from  the  immediate
physical characteristics of the soil to other organisms like other
plants,  fungi,  microbes  insects  or  even  herbivores[60,70−73].
Specific root exudates such as strigolactones and flavonoids for
example,  have  been  observed  to  play  critical  roles  in  commu-
nication  between  plants  and  rhizospheric  microbes,  from

Table 1.    Known PGPR species for wheat.

Organism Benefit Source

Azospirillum brasilensis Sp. 245 Growth rate. Water stress alleviation (Alvarez, Sueldo, and Barassi 2015)
Azospirillum lipoferum Water stress alleviation (Agami, Ghramh, and Hashem 2017)
Burkholderia phytofirmans Water use efficiency. Grain yield. Photosynthetic rates (Poupin 2015)
Bacillus amyloliquefaciens Temperature stress alleviation (Tiwari et al. 2017)
Azospirillum brasilense Sp245 Temperature stress alleviation (Hernaández-esquivel and Castro-mercado

2020)
Pseudomonas Putida Temperature stress alleviation (Zulfikar Ali et al. 2011)
Pseudomonas fluorescens Salt stress alleviation (Fathalla and El-Mageed 2020)
Pantoea agglomerans Temperature stress alleviation (Cherif-Silini et al. 2019)
Mycobacterium sp Temperature stress alleviation (Dilfuza Egamberdieva and Phylogeny 2014)
Pseudomonas Putida Water stress alleviation (Mahmoudi et al. 2019)
Pseudomonas extremorientalis Salinity tolerance (D. Egamberdieva 2011)
Pseudomonas chlororaphis Salinity stress alleviation (Mahmoudi et al. 2019)
Bacillus pumilus Salinity stress alleviation. Proline accumulation. P

solubilization
(Ansari, Ahmad, and Pichtel 2019)

Hallobacillus sp. SL3 Root length. Dry weight (Ramadoss et al. 2013)
Enterobacter asburiae Number of tillers. Grain weight. Growth rates (Kang et al. 2015)
Pseudomonas aureantiaca Increased seedling root growth (Dilfuza Egamberdieva 2009)
Bacillus safensis Increase in root and shoot biomass, height of plants,

yield, as well as increase in chlorophyll content
(Chakraborty et al. 2013)

Aeromonas hydrophila/caviae (strain MAS-765 Increased the dry matter yield of roots and shoots (Ashraf, Hasnain, and Berge 2004)
Bacillus mojavensis Increase in root and shoot weight, chlorophyll

content, and nutrient uptake under salt stress
(Pourbabaee AA, Bahmani E, Alikhani HA
2016)

Lactobacillus plantarum Increased PGPR abundance (Agnolucci et al. 2019)
Stenotrophomonas rhizophila Biotic stress resistance (Liu et al. 2021)
Curtobacterium flaccumfaciens Growth promotor under drought (Hone et al. 2021)

Table 2.    Known beneficial fungi species for wheat.

Organism Benefits Source

Morchella snyderi Increased root systems, biotic and abiotic stress alleviation (Ridout and Newcombe 2016)
Penicillium sp. Abiotic stress alleviation
Rhizophagus irregularis Nutrient uptake, growth, and yield (Li et al. 2018)
Penicillum expansum Growth promotors trough P solubility in soil (Xiao et al. 2009)
Mucor ramosissimus
Candida krissii
Azospirillum lipoferum Grain yield increase, nitrogen uptake (Gaur 1988)
Trichoderma sp. Systemic resistance, mycotoxin suppression, seed germination

rate increase
(Basinska-Barczak Aneta 2020) (Basinska-Barczak
Aneta 2020) (Nawrocka and Małolepsza 2013)

Funneliformis mosseae Increased nutrient content, lower free radicals and increased
root area under salt stress

(Links et al. 2014)

Penicillium olivicolor Increased seedling root (Khokhar et al. 2013)
Sebacina Vermifera Increased biomass along resistance against biotic and abiotic

stresses.
(Ray and Craven 2016)

Chaetomium sp. Biotic stress alleviation (Blaszczyk, Salamon, and Katarzyna 2021)
Gloms etunicatum
Glomus intraradices

Increased micro and macronutrients uptake in seedlings (Mardukhi et al. 2011)

Aspergillus niger Catalase activity, nitrifier (Ripa et al. 2019)
Aspergilus flavus
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attracting beneficial PGPRs and mycorrhizal fungi, to staving off
parasites[74].

The  microbial  composition  of  the  rhizosphere  has  been
observed  to  develop  through  both  recruitment  of  a  specific
subset from the existing community in the soil[75], and through
the seed's microbiome, inherited from its maternal tissues[76,77].
While  there  are  various  factors  to  the  strength  of  the  RE  (and
thus,  the  distinction  of  the  new  microbiome  and  rhizospheric
physical  properties  from  the  bulk  soil),  the  seed  microbiome
and its  genotype have been observed to have a  greater  effect
than the soil existing microbial community[77,78].

 Domestication effects on plant microbiome
recruitment

Although  not  all  plants  have  been  observed  to  maintain  a
distinct  rhizobiome  from  the  bulk  soil,  like  in  the  case  of  rice
and Arabidopsis[79,80],  among those that  do,  it  has  been found
that  the  rhizobiomes  of  domesticated  crops  have  shown  to
differ significantly from their wild relatives[81,82].

Shifts  in  bacterial  abundance  and  community  composition
are  common  in  many  domesticated  interactions  across
evolutionary  kingdoms.  For  example,  a  higher  abundance  of
Bacteroidetes  were  found  in  the  gut  of  hunter-gatherers'
individuals  of  rural  regions than in their  modern,  'westernized'
counterparts[83].  In  plants,  a  general  negative  effect  on  the
capacity  for  the  formation  of  new  symbiotic  associations  with
PGPRs  and  mycorrhiza  has  been  observed[29] in  addition  to
decreased  ability  to  benefit  from  existing  mycorrhizal
presence[84] in  domesticated  cultivars  in  comparison  to  their
wild  counterparts.  Meta-analysis  of  root  microbiome composi-
tions consistently shows an enrichment in Bacteroidetes in wild
relatives,  while  the  predominant  families  in  domesticated
varieties  are  mainly  Proteobacteria  and  Actinobacteria[11,85,86].
The exact mode of interaction between Bacteroidetes and roots
is still unknown, but a cautious assumption on the dependency
on  root  exudates  can  be  argued  based  on  the  phylum's  reco-
gnized capacity to degrade complex organic polymers[87].

It is also relevant to observe that in addition to the exudates'
direct effects on the rhizobiome, there is also the indirect effect
of  the  complexity  and  extent  of  root's  presence  effects  on
physical  soil  properties  like  pH[88],  carbon  content[89] and
compaction[90],  which  cannot  be  ignored  and  has  yet  to  be
further studied and fully understood.

Root  architecture,  as  it  reflects  closely  the  rhizospheric
microbial architecture[65] must also be considered in addition to
their exudates profile when comparing domesticated and wild
plant  varieties.  Wild  bean  for  example,  which  is  known  for  its
higher  drought  tolerance  in  comparison  to  its  domesticated
relative[91] demonstrates  higher  specific  root  length  (SRL,  i.e.,
root length per unit of root dry mass) and lower root density[92].
High  SRL  has  been  associated  with  higher  efficiency  of  water
search and uptake of nutrients in low water and nutrients soils,
but  the  specific  biochemistry  of  this  correlation  has  not  been
clarified  up  to  now.  In  wheat  we  see  that  wild  relatives  like
Agropyron  elongatum and T.  turgidum spp. Dicoccoides
demonstrate  improved  water  stress  adaptation  in  comparison
to  modern  cultivars,  seemingly  through  increased  root
biomass[93,94] and that in general, modern cultivars consistently
demonstrate  smaller  shoot  systems  than  their  wild  and  older
counterparts[95].

As  a  possible  result  of  both  architecture,  exudates  and
probably  other  unknown  parameters  (such  as  carbon  parti-
tioning in the plant) differing between modern and wild wheat,
we  see  also  that  in  general,  modern  domesticated  tetraploid
and  hexaploid  (durum  and  bread  accordingly)  genotypes
demonstrate  a  lower  MD  (mycorrhizal  dependence  –  the
degree of dependence on mycorrhizal symbiosis for maximum
growth and yield) than their wild ancestors counterparts like T.
tauschii[96].  Likewise,  it  is  relevant  to  mention  that
domestication  effects  are  still  in  development  as  observed  by
Hetrick  et  al.,  where  it  is  described  how  varieties  developed
after 1975 had lower MD than those developed earlier[97].

 Identification and characterization of specific
natural communities from wild ancestors for the
creation of synthetic communities for
domesticated varieties

A correlation can then be suggested, between the observed
loss of genetic variability in domesticated plants in general and
grasses  in  particular,  and  the  limited  capacity  for  interaction
and  recruitment  of  beneficial  microorganisms,  along  other
morphological  and  physiological  domestication  syndrome
traits.  Indeed,  as  wild  crops  are  consistently  more  tolerant  to
stresses  than  their  domesticated  counterparts[98−100],  and  the
extensive  observed  benefits  of  microorganisms'  presence  in
tolerance  of  biotic  and  abiotic  stresses[40,101,102],  we  can  care-
fully assume that a part of the wild cultivar's durability to biotic
and  abiotic  stresses  is  due  to  the  biome  it  has  recruited  from
the  soil  and  inherited  through  maternal  tissues  in  the  seed.
Indeed,  wild  genotypes  microbiomes  are  proven  to  be
consistently  more  diverse  than  their  domesticated
counterparts[92,103,104].

While  a  number  of  successfully  developed  commercial  field
crops inoculant  exist  based on popular  and well-characterized
species  and  strains  of  both  fungi  and  bacteria,  these  products
usually have unpredictable and unexpected lower performance
in the field, due to the complexity of parameters in vivo and in
situ between  the  product  microbes,  host  and
environment[99,105].  The  gap  between  the  expected  positive
effect of an inoculant, and its efficacy in the field, highlights the
possibility that the use of microbial  products,  should be tailor-
made for specific crops, climates, soils and geography, most of
which would be solved by searching for specific microbes from
the crop's wild relative's rhizobiome.

Latest studies elucidating specific differences in seed biomes
between  domesticated  and  wild  genotypes,  have  shown
various Pseudomonas ssp.  (known  to  include  several  species
beneficial  in  regard  to  general  health,  productivity,  and  even
bio-control  in  plants)[27],  and  some Enterobacteria (known  to
include  common  PGPR  species)  species  to  appear  in  higher
abundance in wild species seed metagenomes than in domes-
ticated  ones[106].  Also  in  rice,  studies  have  found  that  despite
the  fact  that  both  domesticated  and  wild  species  contained
methylotropic and methanogenic archaea, some specific bene-
ficial  methanotrophs  (Methylococcaceae  and  Methylocys-
taceae)  had  a  higher  affinity  for  the  wild  rice  species[107] and
could  be  further  studied  for  their  possible  potential  in
domesticated crops.

These  differences  between  various  domesticated  and  wild
genotypes  represent  a  significant  untapped  potential  for  dis-

 
Domestication in wheat affects its rhizobiome

Page 4 of 7   Blaschkauer & Rachmilevitch Grass Research 2023, 3:5



covery  of  novel  beneficial  strains  for  agricultural  crops,  in  a
world  focusing  on  the  challenges  of  feeding  a  growing  world
population under changing climates.

Moreover,  as  domesticated  cultivars  have  lost  their  com-
munication  and  recruitment  capacity,  it  is  up  to  agriculture's
human  caretakers  to  take  up  the  call  and  reestablish  the
beneficial dynamics between plants and its original biome.
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