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Abstract
Heat stress induces and accelerates leaf senescence in cool-season plant species but may be ameliorated by chemical priming. The objectives of

this  study  included  determining  whether  exogenous  application  of  chlorflurenol-methyl  (CM),  a  morphactin  with  senescence-inhibiting

properties,  could  suppress  leaf  senescence  in  creeping  bentgrass  (Agrostis  stolonifera)  exposed  to  heat  stress  and  to  examine  its  possible

regulatory effects on chlorophyll metabolism. Mature creeping bentgrass plants were subjected to heat stress (35/30 °C, day/night) or non-stress

control (22/18 °C, day/night) temperatures for 25 d in environment-controlled growth chambers and were foliar-treated with 10 µM CM or water

every 7 d. Under heat stress, CM-treated plants had significantly enhanced turf quality at 25 d and decreased electrolyte leakage from 21 through

25 d.  Under  heat  stress,  CM application significantly  elevated the content  of  chlorophyll a at  21  d,  chlorophyll b at  7,  14,  and 21 d,  and total

chlorophyll at 21 d. Activity of the chlorophyll synthesis enzyme, porphobilinogen deaminase, was significantly higher in CM-treated plants from

21 through 25 d of heat stress, while activities of the chlorophyll degradation enzymes, chlorophyllase and chlorophyll-degrading peroxidase,

were significantly lower from 14 through 25 d, and activity of pheophytinase was significantly lower in CM-treated plants at 7, 21, and 25 d. The

results of this study suggest that alleviation of heat-induced leaf senescence by foliar-applied CM could be mainly associated with its effects on

suppressing chlorophyll degradation, particularly by maintaining stability of chlorophyll b during prolonged periods of heat stress in this cool-

season grass species.
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 Introduction

Heat stress induces and accelerates leaf senescence by inter-
rupting chlorophyll  metabolism,  mainly  by  altering the  rate  at
which  chlorophyll  is  synthesized  or  degraded[1,2].  Previously,
heat stress-induced leaf senescence has been positively associ-
ated  with  enhanced  activity  of  key  chlorophyll-degrading
enzymes  in  Arabidopsis  (Arabidopsis  thaliana)  and  creeping
bentgrass (Agrostis stolonifera)[3−7].  More specifically, the activi-
ties  of  chlorophyllase  (CHLASE)  and pheophytinase  (PPH),  two
enzymes  involved  in  cleaving  the  hydrocarbon  tail  from  the
ring structure of chlorophyll and pheophytin, respectively, were
determined to have greater activity under heat stress[3−9]. When
hydrogen  peroxide  coexists  with  phenols  in  senescent  leaf
tissue,  chlorophyll-degrading  peroxidase  (CHL-PRX)  causes
oxidative  changes  to  the  structure  of  chlorophyll,  and  activity
of  this  enzyme  was  shown  to  be  increased  in  creeping  bent-
grass  under  heat  stress[4,6,7,10].  Chlorophyll  synthesis  is  also
metabolically  altered  during  heat  stress,  as  it  was  previously
exhibited that the enzymatic activity of porphobilinogen deam-
inase  (PBGD),  which  is  for  catalyzing  the  construction  of  the
tetrapyrrole  ring  of  chlorophyll,  was  suppressed  under  natural
senescence  in  pepper  (Capsicum  annuum)  and  poinsettia
(Euphorbia pulcherrima),  as well as under heat stress in cucum-
ber (Cucumis  sativus)[11−13].  Because plants  undergo premature
chlorophyll  loss  as  a  result  of  alterations  to  chlorophyll
metabolism  when  chronically  exposed  to  supra-optimal
temperatures,  developing  strategies  for  delaying  chlorophyll

loss  to  prolong  stay-green traits  in  leaves  is  important  for
improving  plant  tolerance  to  heat  stress.  Chemical  priming
with  various  small  molecules  is  a  viable  approach  for  alleviat-
ing  leaf  senescence  and  enhancing  plant  tolerance  to  abiotic
stresses, including heat stress[6,14−22].

Morphactins  are  plant  growth  regulators  synthetically
derived from fluorene-9-carboxylic acids that have been studied
for their ability to affect the growth habit of plants[23]. Dybing &
Yarrow[24] exhibited  that  applying  the  morphactin,  chlor-
flurenol-methyl  (CM),  to  soybean  plants  reduced  chlorophyll
loss  while  increasing  shoot  production,  tissue  biomass,  the
number  of  mesophyll  cells,  and  elongation  of  palisade  cells,
suggesting that CM allowed for the maintenance of chlorophyll
content  by  promoting  cell  growth  and  proliferation.  Another
study on soybean (Glycine max) demonstrated that application
of a morphactin stimulated branching and increased the width
of  the  mesophyll  layer  and  vascular  bundle[25].  Foliar  applica-
tion of the morphactin, 2-chloro-9-hydroxyfluoren-9-carboxylic
acid (CF125),  to fava bean (Vicia faba)  increased leaf  thickness,
palisade  layer  width,  number  of  mesophyll  cells,  and  stem
diameter[26].  Several  studies  have  found  that  CM  may  delay
natural  leaf  senescence  in  a  variety  of  species,  including
soybean, bitter dock (Rumex obtusifolius), and radish (Raphanus
sativus),  as  indicated  by  a  maintenance  of  higher  chlorophyll
content in treated plants[24,27,28]. Although the findings of these
studies  suggest  that  morphactins  play  a  role  in  the  regulation
of  leaf  senescence  and  plant  growth,  the  metabolic  factors
controlling  these  responses  have  not  been  elucidated,  and
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particularly,  the  mechanisms  underlying  how  morphactins
regulate  heat-induced  leaf  senescence  and  their  functions  in
regulating  chlorophyll  synthesis  and  degradation  in  plants
exposed to heat stress conditions remain largely unknown.

It  was  hypothesized  that  morphactins  may  suppress  heat-
induced  leaf  senescence  and  enhance  heat  tolerance  in  cool-
season  plant  species  exposed  to  prolonged  periods  of  heat
stress  by  maintaining  or  enhancing  chlorophyll  synthesis  or
inhibiting chlorophyll degradation. The objectives of this study
included  determining  whether  the  application  of  CM  can
control leaf senescence in creeping bentgrass under heat stress
and  examining  the  regulatory  effects  that  CM  may  have  on
chlorophyll metabolism. To accomplish this, the authors evalu-
ated  several  physiological  parameters  associated  with  leaf
senescence,  such  as  turf  quality,  electrolyte  leakage,  and
chlorophyll  content  and  quantified  the  rate  of  activity  of
chlorophyll-synthesizing  and  –degrading  enzymes.  Ascertain-
ing the specific  ways  in  which morphactins  may affect  chloro-
phyll synthesis or degradation in plants exposed to heat stress
will  advance our understanding of  the mechanisms regulating
heat-induced leaf senescence and allow us to develop effective
approaches for improving plant heat tolerance.

 Results

Turf  quality  (TQ),  chlorophyll  content,  and  electrolyte  leak-
age (EL) remained relatively unchanged during the experimen-
tal  period  under  non-stress  conditions.  Application  of  CM  had
no  significant  effects  on  TQ,  EL,  or  chlorophyll  content  under
non-stress conditions (Figs 1a, 2a, 3a, c & e). Under heat stress,
there was an overall decrease in TQ (Fig. 1b) and the content of
chlorophyll a, b, and total chlorophyll content (Fig. 3b, d & f), as
well  as  increases  in  EL  through  the  duration  of  heat  stress  in
untreated and CM-treated plants (Fig. 2b).

Heat-induced  leaf  senescence  was  suppressed  by  CM  appli-
cation  as  reflected  by  changes  in  TQ,  EL,  and  chlorophyll
content. Under prolonged periods (25 d) of heat stress, applica-
tion of CM significantly increased TQ (Fig. 1b).  Electrolyte leak-
age was significantly lower in CM-treated plants at 21 and 25 d
of  heat  stress  [by  22.59  and  45.06%,  respectively  (Fig.  2b)].
Application  of  CM  significantly  elevated  chlorophyll a content
at 21 d of heat stress (by 19.82%) compared with the untreated
control plants (Fig. 3b). Chlorflurenol-methyl application signifi-
cantly  increased  chlorophyll b content  by  47.35,  28.61,  and
66.63%  at  7,  14,  and  21  d,  respectively  (Fig.  3d).  Total  chloro-
phyll content was significantly elevated by CM treatment at 21
d of heat stress (by 28.56%) (Fig. 3f). The positive effects of CM
on  regulating  chlorophyll  content  occurred  earlier  during  the
stress period and were more pronounced for chlorophyll b rela-
tive  to  chlorophyll a in  creeping  bentgrass  exposed  to  heat
stress.

For  the  majority  of  chlorophyll-synthesizing and -degrading
enzymes  and  treatment  dates,  the  application  of  CM  did  not
significantly  alter  their  activities  under  non-stress  conditions
(Figs  4a, 5a, 6a, 7a).  The  activity  of  the  chlorophyll  synthesis
enzyme,  PBGD,  declined  through  the  duration  of  heat  stress;
however,  the decrease was not as drastic  in CM-treated plants
in  comparison  to  untreated  controls  (Fig.  4b).  Plants  treated
with CM had significantly higher PBGD activity at 21 and 25 d of
heat stress (by 33.81 and 38.56%, respectively).

While  activities  of  the  chlorophyll  degradation  enzymes
increased  overall  in  response  to  heat  stress,  these  alterations

occurred  to  a  smaller  degree  in  CM-treated  plants  when
compared  with  untreated  controls  (Figs  5b, 6b, 7b).  At  14,  21,
and  25  d  of  heat  stress,  CM  treatment  caused  a  significant
reduction in CHLASE (by 21.07, 15.33, and 40.42%, respectively)
and CHL-PRX (by  5.66,  9,  and 9.35%,  respectively).  The activity
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Fig.  1    Turf  quality  evaluations  on a  scale  of  1  to  9  for  creeping
bentgrass  plants  treated  with  CM  or  untreated  control  plants
under  (a)  non-stress  optimal  temperature  or  (b)  heat  stress
conditions. Each vertical bar corresponds to a given LSD value (p ≤
0.05)  derived  from  Fisher’s  protected  least  significant  difference
(LSD)  test  for  comparison  between  treatments  on  each  day  of
treatment.
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Fig.  2    Leaf  electrolyte  leakage  for  creeping  bentgrass  plants
treated  with  CM  or  untreated  control  plants  under  (a)  non-stress
optimal temperature or (b) heat stress conditions. Each vertical bar
corresponds to a  given LSD value (p ≤ 0.05)  derived from Fisher’s
protected  least  significant  difference  (LSD)  test  for  comparison
between treatments on each day of treatment.
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Fig. 3    Chlorophyll a [(a – non-stress), (b – heat stress)], chlorophyll b [(c – non-stress), (d – heat stress)], and total chlorophyll [(e – non-stress),
(f – heat stress)] for creeping bentgrass plants treated with CM or untreated control plants under non-stress optimal temperature or heat stress
conditions. Each vertical bar corresponds to a given LSD value (p ≤ 0.05) derived from Fisher’s protected least significant difference (LSD) test
for comparison between treatments on each day of treatment.
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Fig. 4    Porphobilinogen deaminase enzyme activity for creeping
bentgrass  plants  treated  with  CM  or  untreated  control  plants
under  (a)  non-stress  optimal  temperature  or  (b)  heat  stress
conditions. Each vertical bar corresponds to a given LSD value (p ≤
0.05)  derived  from  Fisher’s  protected  least  significant  difference
(LSD)  test  for  comparison  between  treatments  on  each  day  of
treatment.
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Fig.  5    Chlorophyllase  enzyme  activity  for  creeping  bentgrass
plants treated with CM or untreated control plants under (a) non-
stress  optimal  temperature  or  (b)  heat  stress  conditions.  Each
vertical  bar  corresponds  to  a  given  LSD  value  (p ≤ 0.05)  derived
from  Fisher’s  protected  least  significant  difference  (LSD)  test  for
comparison between treatments on each day of treatment.
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of PPH significantly declined in response to CM treatment at 7,
21,  and  25  d  of  heat  stress  (39.47,  19.04,  and  49.14%,  respec-
tively)  when  compared  to  untreated  controls.  A  pathway  map

showing  the  response  of  chlorophyll  synthesis  and  degrada-
tion  enzymes  to  CM  treatment  in  creeping  bentgrass  under
heat stress is provided in Fig. 8.
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Fig.  6    Chlorophyll-degrading  peroxidase  enzyme  activity  for
creeping  bentgrass  plants  treated  with  CM  or  untreated  control
plants under (a) non-stress optimal temperature or (b) heat stress
conditions. Each vertical bar corresponds to a given LSD value (p ≤
0.05)  derived  from  Fisher’s  protected  least  significant  difference
(LSD)  test  for  comparison  between  treatments  on  each  day  of
treatment.
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Fig.  7    Pheophytinase  enzyme  activity  for  creeping  bentgrass
plants treated with CM or untreated control plants under (a) non-
stress  optimal  temperature  or  (b)  heat  stress  conditions.  Each
vertical  bar  corresponds  to  a  given  LSD  value  (p ≤ 0.05)  derived
from  Fisher’s  protected  least  significant  difference  (LSD)  test  for
comparison between treatments on each day of treatment.
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Fig. 8    Pathway map for chlorophyll synthesis and degradation in creeping bentgrass treated with CM under heat stress, showing chlorophyll
enzymes  enhanced  or  suppressed  by  CM  treatment.  Abbreviations:  CHL-PRX:  chlorophyll-degrading  peroxidase;  CHLASE:  chlorophyllase;
PBGD: porphobilinogen deaminase; PPH: pheophytinase.
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 Discussion

Morphactins  have  mainly  been  reported  to  have  plant
growth-regulating  properties  on  leaf  chlorophyll  content  and
shoot  growth  characteristics,  as  previously  discussed  in  the
Introduction. This study is the first to demonstrate the positive
effects of morphactin on the improvement of heat tolerance in
a cool-season grass species, as manifested by an increase in turf
quality,  chlorophyll  content,  and  cellular  membrane  stability
(expressed as the reduction of EL) in response to foliar applica-
tion of CM in creeping bentgrass subjected to long-term stress.
The  CM-enhanced  heat  tolerance  was  associated  with  a
suppression  of  heat-induced  leaf  senescence  that  may  be
attributed  to  the  roles  of  CM  in  regulating  chlorophyll
metabolism.

Loss  of  leaf  chlorophyll  under  stress  can occur  as  a  result  of
inhibited  synthesis  or  stimulated  degradation  of  chlorophyll.
The  activities  of  chlorophyll-synthesizing  and  -degrading
enzymes  are  sensitive  and  responsive  to  abiotic  stresses,
including  heat  stress.  For  example,  activity  of  the  chlorophyll-
synthesizing enzyme, PBGD, decreased within 2 d of heat stress
in seedlings of cucumber[13] as well as in response to water and
salt  stress  in  rice  (Oryza  sativa)  seedlings[29,30].  The  activity  of
CHLASE and PPH was elevated by water submergence stress in
perennial  ryegrass  (Lolium  perenne)[31].  The  loss  of  chlorophyll
has been associated with an elevation in the activities  of  CHL-
PRX  and  PPH,  respectively,  during  natural  leaf  senescence  in
tobacco  (Nicotiana  tabacum)  and  broccoli  (Brassica
oleracea)[32,33].  Under heat stress, CHLASE activity was elevated
concomitant  with  a  reduction  in  leaf  chlorophyll  content  in
barley  (Hordeum  vulgare)  and  creeping  bentgrass[4,34].  The
present study found that the activity of the chlorophyll synthe-
sis enzyme, PBGD, declined overall while those of the degrada-
tion  enzymes,  CHLASE,  CHL-PRX,  and  PPH,  increased  in
response  to  heat  stress;  however,  foliar  application  of  the
morphactin,  CM,  promoted  PBGD  activity  and  reduced  the
activities  of  CHLASE,  CHL-PRX,  and PPH.  Morphactin-mediated
attenuation  of  the  senescence  process  in  leaf  discs  of  radish
under  low  light  conditions  was  attributed  to  a  suppression  of
chlorophyll breakdown[35]. The results in this study suggest that
the ability of morphactin-treated plants to maintain higher leaf
chlorophyll content could be attributed to the maintenance or
enhancement of chlorophyll synthesis and inhibition of chloro-
phyll degradation under heat stress.

The mechanisms regulating how morphactin may directly or
indirectly  affect  chlorophyll  metabolism  are  largely  unknown.
During  leaf  senescence,  the  degradation  of  all  pigments,
including chlorophyll a and chlorophyll b, occurs, but they may
degrade  at  different  rates,  as  the  ratio  of  chlorophyll a to
chlorophyll b is altered under various senescence conditions in
different plant species[36−38]. Morphactin was found to be more
effective  in  suppressing  the  loss  of  chlorophyll a relative  to
chlorophyll b during low light-induced senescence in leaf discs
of  radish[35].  It  is  known  that  during  chlorophyll  breakdown,
which  is  accelerated  by  stress,  chlorophyll b is  degraded  into
chlorophyll a, consequently causing the content of chlorophyll
a to  increase[39,40].  In  the  current  study,  morphactin  treatment
of  heat-stressed creeping bentgrass caused plants  to maintain
a greater level of chlorophyll b in comparison to chlorophyll a,
and the results suggest that untreated control plants may have
converted chlorophyll b to chlorophyll a more rapidly, which is

indicative of an accelerated rate of leaf senescence under heat
stress. After chlorophyll b is degraded into chlorophyll a by the
enzyme,  7-hydroxymethyl  chlorophyll a reductase,  CHLASE
subsequently  opens  the  porphyrin  macrocycle  ring  of  chloro-
phyll a and  is  the  rate-limiting  enzyme  responsible  for  the
degradation  of  chlorophyll  into  chlorophyllide[41].  The  reduc-
tion of the activities of CHLASE by morphactin in this study may
at  least  partially  explain  the  roles  of  this  growth  regulator  in
controlling  the  loss  of  chlorophyll  under  heat-induced  leaf
senescence in creeping bentgrass, due to its apparent delay in
the  conversion  of  chlorophyll b to  chlorophyll a,  as  well  as  its
control of the successive chlorophyll a catabolism mediated by
CHLASE.

In  summary,  foliar  application  of  morphactin  successfully
alleviated  heat-induced  leaf  senescence  and  enhanced  the
overall  health  of  creeping  bentgrass  exposed  to  prolonged
heat  stress,  as  suggested  by  an  improvement  in  TQ,  cellular
membrane stability, and chlorophyll content. More specifically,
morphactin treatment promoted the maintenance of a greater
proportion  of  chlorophyll b to  chlorophyll a under  heat  stress
and  delayed  the  subsequent  activity  of  CHLASE,  which  ulti-
mately  suggests  that  morphactins  may  suppress  chlorophyll
breakdown during heat stress in cool-season plants. This study
is  the  first  to  report  the  ameliorative  effects  of  a  morphactin
regarding the conferral of heat tolerance and repression of leaf
senescence  in  a  cool-season  grass  species  under  heat  stress.
Further research may investigate the biochemical and molecu-
lar mechanisms determining how morphactin may regulate the
chlorophyll-degrading process in order to develop stress-toler-
ant cool-season grass species.

 Materials and methods

 Plant materials and growth conditions
To  obtain  plant  materials,  20  sod  plugs  of  creeping  bent-

grass  (cv.  Penncross)  measuring  10.16  cm  in  diameter  were
collected  from  a  field  within  the  Rutgers  Turfgrass  Science
Research and Extension Farm (North Brunswick, NJ, USA). Plants
were individually transplanted into pots (14 cm height, 15.2 cm
width) consisting of fine (310-grit), sterile silica sand, produced
according  to  USGA  requirements  (Mitchell  Products,  Millville,
NJ, USA). Plants underwent an establishment period of 21 d in a
greenhouse maintained at an average daily temperature of 24/
20 °C (day/night) and photoperiod of 14-h at 750 µmol·m−2·s−1

photosynthetically  active  radiation  (PAR),  provided  by  natural
light in addition to high-pressure sodium gas-discharge lamps.
Plants  were  irrigated  daily  to  canopy  saturation,  trimmed
weekly  to  a  canopy  height  of  3.0  cm,  and  fertilized  biweekly
with  three-quarter-strength  Hoagland’s  nutrient  solution[42],
after  which  they  were  moved  to  environmentally  controlled
growth  chambers  (Environmental  Growth  Chambers,  Chagrin
Falls,  OH,  USA)  for  7  d  to  acclimate  to  optimal  conditions  of
22/17  °C  (day/night)  at  a  relative  humidity  of  60%  and  a  14-h
photoperiod of 750 µmol·m−2·s−1 PAR.

 Experimental design and morphactin treatment
Plant  canopies  were  treated  with  40  mL  of  10 µM  chlor-

flurenol-methyl  (CM)  or  water  only  as  a  fine-mist  foliar  spray,
once  canopies  completely  covered  the  sand  surface.  Treat-
ments were applied beginning at the initiation of the trial  and
repeated  every  7  d.  The  concentration  of  10 µM  CM  was
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selected  as  optimal  for  plant  growth  regulation  under  heat
stress based on foundational experimentation. Heat stress was
imposed by subjecting 10 pots  of  plants  to  elevated tempera-
tures of 35/30 °C (day/night) for a 25 d treatment period, while
the  remaining  10  pots  of  plants  were  maintained  at  22/17  °C
(day/night).  The  experimental  design  was  split-plot,  with
temperature  conditions  serving  as  the  main  plots  and  foliar
chemical  treatment  as  the  sub-plots.  Each  chemical  treatment
was  replicated  in  five  pots,  and  plants  were  exposed  to  either
non-stress  control  or  heat  stress  temperatures  in  four  growth
chambers  set  to  each  temperature  regiment.  Replicate  pots
were  randomly  allocated  to  four  growth  chambers,  with  rear-
rangement  occurring  every  3  d  to  avoid  the  potential
confounding  effects  of  variations  in  chamber  environmental
conditions on treatment effects.

 Physiological parameters for assessing leaf senescence
Turf  quality,  leaf  EL,  and  leaf  chlorophyll  content  are  three

physiological  parameters  often  examined  to  quantify  leaf
senescence,  and  they  were  measured  every  7  d  through  the
duration of the study.

Visual  evaluations  of  TQ  were  made  by  assigning  values
ranging from 1 to 9 to turf  based on canopy color,  uniformity,
texture,  and  density,  with  a  1  describing  turf  that  is  dead  and
brown  and  a  9  signifying  turf  that  has  an  even  canopy  of  a
homogenous, deep green color[43].

Leaf chlorophyll content was determined through the proce-
dure of Hiscox & Israelstam[44],  with slight alterations.  Approxi-
mately  0.1  g  of  leaf  tissue  was  harvested  from  each  sample
plant,  placed  into  tubes  containing  10  mL  dimethyl  sulfoxide,
and  incubated  at  room  temperature  in  total  darkness  for  3  d.
The  absorbance  values  of  chlorophyll  extracts  were  individu-
ally read via spectrophotometer (Evolution 201 model; Thermo
Fisher Scientific, Waltham, MA, USA) at wavelengths of 663 and
645 nm. Extract from each sample was subsequently discarded,
and leaf tissue was stored at 80 °C in a gravity convection oven
(model 52412-85; Cole-Parmer, Vernon Hills,  IL,  USA) for 3 d so
that  dry  weights  could  be  taken  on  a  mass  balance  (model
ME204E; Mettler-Toledo Rainin, Oakland, CA, USA). Total chloro-
phyll  content  was  calculated  by  substituting  the  obtained
absorbance values and dry masses into the equations given in
Arnon[45].

Electrolyte  leakage  of  leaves  was  determined  as  an  assess-
ment  of  membrane  integrity.  Approximately,  0.2  g  of  leaves
were  taken  from  each  sample,  and  tissue  was  sectioned  into
equal  parts,  submerged in  35 mL deionized water,  and placed
on a horizontal shaker at room temperature for a duration of 8
h.  Initial  conductance  (Ci)  was  measured  using  a  conductance
meter  (model  32;  YSI,  Yellow Springs,  OH,  USA).  Samples  were
subsequently  killed  in  an  autoclave  set  to  121  °C  for  30  min,
shaken  for  8  h,  and  maximal  conductance  (Cmax)  was  read.  To
calculate EL, Ci, and Cmax were substituted into the calculations
presented  in  Blum  &  Ebercon[46],  whereby  Ci was  divided  by
Cmax,  and the value was multiplied by 100 to express EL in the
form of a percentage.

 Measurement of the activities of chlorophyll synthesis
and degradation enzymes

Activities  of  the  chlorophyll  synthesis  enzyme,  PBGD,  and
chlorophyll  degradation enzymes,  CHLASE,  PPH,  and CHL-PRX,
were quantified for each sample at 7 d intervals. To quantify the
activities of chlorophyll-synthesizing and –degrading enzymes,

400 mg leaf tissue was excised from sample plants at 7 d inter-
vals, flash-frozen in liquid nitrogen, and immediately stored at a
temperature  of  −80  °C  in  an  upright  low-temperature  freezer
(model UXF60086A; Thermo Fisher Scientific) in preparation for
subsequent measurements.

Prior  to  the  initiation  of  heat  stress,  healthy  leaf  tissue  was
excised  from  plants  to  be  used  in  the  extraction  and  purifica-
tion of chlorophyll necessary for subsequent enzyme measure-
ments.  To  purify  chlorophyll  from  the  unrefined  extract,  the
procedure  outlined  in  Iriyama  et  al.[47] was  followed.  Approxi-
mately 10 g of leaves were ground in liquid nitrogen and 50 mL
of iced acetone. The slurry rested for 2 h at 4 °C in dark condi-
tions to initiate extraction, and following the incubation period,
the  solution  was  centrifuged  for  5  min  at  1000 gn.  The  super-
natant was combined with 1,4-dioxane (1:7 v/v), and deionized
water  was  added  dropwise  to  the  mixture  until  it  became
cloudy. The solution was maintained in darkness at 4 °C for 1 h,
after which it was centrifuged for 5 min at 10,000 gn. The pellet
derived  was  resuspended  in  1,4-dioxane  (1:7,  v/v),  and  deion-
ized water was added drop-wise to the solution until it became
cloudy. The mixture was incubated for an additional 1 h in dark-
ness at 4 °C, centrifuged at 10,000 gn for 5 min., and the super-
natant  was  decanted.  The  resultant  pellet  was  dissolved  to  a
500 µg·ml−1 concentration  of  chlorophyll  using  50  ml  of
acetone.

Crude  chlorophyll  enzyme  extract  was  derived  from  each
sample  and  concocted  into  a  buffer  to  be  used  in  the  subse-
quent enzyme assays by excising 0.4 g of leaf tissue from each
plant,  grinding  it  in  liquid  nitrogen,  and  combining  it  with
deionized  water,  0.1  M  phenylmethanesulfonyl  fluoride,  1.0%
Triton X-100,  and 0.5  M KH2PO4 buffer  (pH 7.0).  After  grinding
the  sample  an  additional  time  with  3.0%  polyvinylpyrrolidone
and centrifuging at 9,000 gn for 20 min at 4 °C, the solution was
maintained at −80 °C in a low-temperature freezer for use in the
enzyme bioassays. The Bradford Assay was utilized to generate
a standard curve[48].

Using  the  methods  of  Jones  &  Jordan[12] with  some  alter-
ations, PBGD activity was measured. Crude enzyme extract (0.1
mL) was added to 0.5 mL 0.1 M Tris-HCl buffer (pH 7.5) contain-
ing  0.1%  bovine  serum  albumin  (BSA),  15  mM  MgCl2,  2.5  mM
ethylenediaminetetraacetic acid, and 2 mM porphobilinogen to
make the reaction mixture.  After  heating the reaction at  37 °C
for 1 h, 0.1% p-benzoquinone and 5 M HCl were added to stop
the reactions. The absorbance of each test solution was read at
a wavelength of 405 nm on a spectrophotometer.

Using the procedure outlined in Fang et al.[40], CHLASE activ-
ity was measured. To initiate the enzymatic reaction, a mixture
of  200 µL  pure  chlorophyll,  100 µL  crude  enzyme  extract,  300
µL  acetone,  20 µL  0.1  M  ascorbic  acid,  and  700 µL  Tris-HCl
buffer (pH 7) was incubated at 35 °C for 1 h. The CHLASE reac-
tion  was  stopped  by  adding  2  mL  hexane  and  1  mL  acetone,
and each solution was vortexed and then centrifuged for 15 s at
10,000 gn so  that  chlorophyllide  and  chlorophyll  would  be
separated  into  the  lower  aqueous  and  upper  hexane  phases,
respectively.  Using  a  spectrophotometer,  the  absorbance  of
chlorophyllide was determined at 665 nm.

CHL-PRX  activity  was  quantified  using  the  procedure  given
by  Aiamla-or  et  al.[49] with  some  modifications.  A  solution
containing  50 µL  crude  enzyme  extract,  0.1  mL  pure  chloro-
phyll,  0.1  mL  25  mM p-coumaric  acid,  1  mL  0.1  M  potassium
phosphate buffer (pH 7), and 0.1 mL 1% Triton X100 was mixed.
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To allow the rate reaction to commence,  0.1  mL 1% hydrogen
peroxide was added to the reaction, and the rate of chlorophyll
degradation  was  measured via spectrophotometer  every  20  s
for a total of 10 min at 668 nm. One CHL-PRX activity unit was
defined as a change in absorbance by 0.1 mg−1·protein·min−1.

The  procedure  of  Kaewsuksaeng  et  al.[50] was  used,  with
some  modifications,  to  quantify  PPH  activity.  To  obtain  pheo-
phytin, the substrate of PPH, 1 mL pure chlorophyll was mixed
with 60 µL 0.1 M HCl and left to react for 5 min. To initiate the
reaction, 0.1 mL pheophytin, 0.6 mL 20 mM 4-(2-hydroxyethyl)-
1-piperazineethanesulfonic  acid  (HEPES)  buffer  (pH  7.75),  and
0.1  mL  1%  Triton  X-100  were  added  to  0.2  mL  crude  enzyme
extract, and the reaction commenced under dark conditions at
30 °C for  a  duration of  30 min.  To halt  the enzymatic  reaction,
0.1 mL 0.5 M Tris-HCl buffer (pH 9), 1 mL acetone, 2 mL hexane,
and 1 mL deionized water were added to each tube. In order to
separate  the  pheophytin  and  pheophorbide  into  upper  and
lower  phases,  respectively,  tubes  were  vortexed.  The  absor-
bance  of  pheophorbide  was  determined  using  a  spectropho-
tometer set to 665 nm.

To  determine  the  soluble  protein  content  of  each  sample,
20%  trichloroacetic  acid  was  added  to  crude  enzyme  extract
and  the  mixture  was  maintained  at  4  °C  for  1  h  to  allow  the
protein  to  precipitate  out  of  the  solution.  To  create  stronger
separation, solutions were centrifuged at 11,500 gn for 15 min.
The  supernatant  was  decanted,  and  the  resulting  pellet  was
exposed to the air to dry and subsequently resuspended in 1 M
sodium  hydroxide.  Soluble  protein  content  was  calculated
using the Bradford Assay,  where a standard curve was created
by serially diluting defined concentrations of the standard, BSA,
with  different  volumes  of  Coomassie  Brilliant  Blue  G-250  Dye
(Bio-Rad Laboratories, Hercules, CA, USA)[48]. The absorbance of
each soluble protein sample was read on a spectrophotometer
set to 595 nm, and the values derived were substituted into the
standard curve equation to calculate soluble protein content.

 Statistical analysis
Physiological  and  enzymatic  data  were  evaluated  through

two-way analysis  of  variance (ANOVA) using the general  linear
model (PROC GLM) procedure in SAS (version 9.2; SAS Institute,
Cary,  NC,  USA)  to  define  significant  differences  between  the
chemical  treatment  and  untreated  chemical  control  for  each
temperature  treatment.  Means  between  the  chemical  treat-
ment  and  untreated  control  for  each  temperature  treatment
were  separated  by  Fisher’s  protected  least  significant  differ-
ence (LSD) test at a level of p < 0.05. Only the significant differ-
ences  between  chemical  treatments  under  non-stress  control
or heat stress conditions defined by the LSD test are presented
in  figures  and results  based on the  focus  of  objectives  for  this
experiment.  The  LSD  bars  in  each  figure  indicate  significant
differences between chemical treatments at a given day of heat
stress.
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