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Abstract
Knowledge of phenotypic and physiological traits associated with early responses to drought stress and the extent of stress damage is important

for  developing  efficient  irrigation  programs  and  the  selection  of  drought-tolerant  cultivars.  This  study  was  conducted  to  identify  major

vegetation and photosynthetic indices from imaging technologies that are correlated to visual turf quality and leaf water status and responsive to

drought stress by comparative analysis of different indices from multispectral, hyperspectral, and chlorophyll-fluorescence imaging for Kentucky

bluegrass  (Poa  pratensis L.)  exposed to drought  stress.  The progression of  stress  symptoms of  plants  was monitored using the three imaging

technologies in controlled-environment chambers. Regression analysis demonstrated that the integrated vegetation indices from hyperspectral-

imaging had better predictability for drought responses than those from multispectral or chlorophyll-fluorescence imaging. Among individual

vegetation  indices,  SIPI  and  SRI  from  hyperspectral-imaging  were  more  responsive  to  drought  than  other  indices  while  PSRI  and  PRI  from

hyperspectral- and multispectral-imaging were highly correlated to leaf relative water content (RWC) or visual turf quality (TQ) under drought

stress; NDVI or NDRE from hyperspectral and multispectral imaging were significantly correlated to TQ but were not as sensitive to drought stress

as other indices. For chlorophyll-fluorescence photosynthetic indices, NPQ and Fv/Fm were significantly correlated to RWC or TQ while NPQ was

most responsive to drought. Those vegetation or photosynthetic indices derived from the three imaging technologies that were responsive to

drought stress and correlated to the extent of drought damages could be particularly useful traits for detecting and monitoring water stress in

cool-season turfgrass.
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 Introduction

Drought  is  a  major  abiotic  stress  affecting  plant  growth
which  becomes  even  more  intensified  as  water  availability  for
irrigation  is  limited  with  current  climate  changes[1].  Timely
detection and identification of drought symptoms are critically
important  to  develop  efficient  and  water-saving  irrigation
programs  and  drought-tolerance  turfgrasses.  However,  turf-
grass  assessments  of  stress  damages  have  been  mainly  using
the visual rating of turf quality which is subjective in nature and
inclined to individual differences in light perception that drives
inconsistency in estimating color, texture, and pattern of stress
symptoms in grass species[2−4].  Remote sensing with appropri-
ate imaging technology provides an objective,  consistent,  and
rapid  method  of  detecting  and  monitoring  drought  stress  in
large-scale turfgrass areas,  which can be useful  for  developing
precision  irrigation  programs  and  high-throughput  phenotyp-
ing  of  drought-tolerance  species  and  cultivars  in  breeding
selection[5].

Spectral  reflectance  and  chlorophyll  fluorescence  imaging
are emerging tools for rapid and non-destructive monitoring of
drought  effects  in  crops.  These  tools  combine  imaging  and
spectroscopy modalities to rigorously dissect the structural and

physiological  status  of  plants[6,7].  Spectral  reflectance  imaging
captures reflected light  (one out  of  three fates  of  light:  reflect,
absorb  and  transmit  when  striking  leaf)  at  different  wave-
lengths ranging from visible to near-infrared regions to charac-
terize vegetation traits[8,9].  Within spectral reflectance imaging,
multispectral imaging on one hand measures reflected light in
three  to  ten  different  broad  spectral  bands  in  individual
pixels[10,11].  Hyperspectral  imaging on the other hand captures
reflected  light  in  narrow  and  more  than  200  contiguous  spec-
tral  bands.  Some  absorbed  light  by  leaf  is  re-radiated  back  in
the  form  of  fluorescence  and  fluorescence  imaging  utilizes
those lights in red and far-red regions to capture plant physio-
logical  status[12].  When  drought  progresses,  plants  start  to
develop various symptoms (physiological modifications) gradu-
ally  over  time[13].  Some  of  those  symptoms  include  stomata
closure,  impediment  in  gas  exchange,  change  in  pigment
composition and distribution which result in wilting and associ-
ated morphological alteration in leaf color (senescence), shape
(leaf  curling)  and  overall  plant  architecture.  As  different  plant
components  or  properties  reflect  light  differently  at  different
wavelengths  and  patterns  of  reflectance  and  fluorescence
change along with plant stress and related symptoms develop-
ment,  spectral  reflectance  and  fluorescence  imaging  provide
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accurate,  reliable  and  detailed  information  for  crop  drought
monitoring. Fluorescence imaging primarily based on fluoresc-
ing  plant  components  or  chlorophyll  complex  in  photosyn-
thetic  antenna  and  reaction  centers  and  therefore  it  mainly
monitors  stress  development  by  tracking  changes  in  overall
photosynthetic  performance  or  other  metabolism  that  inter-
fere  with  photosynthetic  operation[9,14].  Multispectral  imaging,
hyperspectral  imaging,  or  chlorophyll  fluorescence  has  been
used  in  different  studies  for  plant  responses  to  drought  stress
in  various  plant  species[10,15−17].  The  comparative  approach  of
multiple  imaging  technologies  could  help  to  find  the  efficient
methods for the evaluation of plant responses and tolerance to
drought[18].

Vegetation indices derived from multispectral  or hyperspec-
tral  imaging and fluorescence parameters typically are ratio or
linear  combinations  of  reflectance  and  fluorescence  emissions
from  leaves  or  canopy  of  plants,  respectively[19,20].  Canopy
reflectance  at  different  wavelengths  and  chlorophyll  fluores-
cence  varies  with  canopy  color  and  density  and  changes  with
environmental  conditions  that  affect  plant  growth,  including
drought  stress[14,20,21].  These variations  in  reflectance and fluo-
rescence  are  captured  by  vegetation  indices,  such  as  normal-
ized  difference  vegetation  index  (NDVI)  and  fluorescence
parameters including the ratio of variable fluorescence to maxi-
mum fluorescence (Fv/m) which are  commonly used to evalu-
ate  environmental  impact  on  plant  growth.  Other  indices
reflect  physiological  health  of  plants,  such  as  photochemical
reflectance index (PRI) has recently been reported to be useful
for  drought  stress  assessment  in  crops[19].  Previous  research
identified  varying  sensitivity  of  PRI  and  NDVI  to  detect  water
stress;  for  example,  Sun  et  al.[22] found  PRI  to  be  a  prominent
indicator  of  drought  stress  whereas  Kim  et  al.[20] discovered
NDVI had greater correlation with drought stress development.
There  are  also  several  conflicting  findings  on  the  responsive-
ness of fluorescence parameters to drought stress. Photochem-
ical efficiency of PSII (Fv/Fm) was found to be greatly related to
drought  stress  by  Panigada  et  al.[23] but  Jansen  et  al.[24]

reported  Fv/Fm to  be  relatively  insensitive  to  drought  progres-
sion.  Lu  &  Zhang[25] identified  that  coefficient  of  photochemi-
cal  quenching  (qP)  was  insensitive  to  drought  stress  whereas
Moustakas et al.[26] reported that (qP) being the most sensitive
indicator  of  such  stress  conditions.  There  is  a  need  for  a
comprehensive  study  that  examines  multiple  vegetation
indices (both hyperspectral and multispectral indices) and fluo-
rescence  parameters,  and  parallelly  assess  their  sensitivities  to
reflect  plant  growth  and  physiological  status  during  drought
stress.

The  objectives  of  the  current  study  were:  (1)  to  perform
comparative  analysis  of  drought  responses  of  vegetation  and
photosynthetic  indices  using  multispectral,  hyperspectral  and
chlorophyll  fluorescence  imaging  for  Kentucky  bluegrass  (Poa
pratensis L.),  a cool-season perennial grass species widely used
as  turfgrass;  (2)  identify  major  vegetation  and  photosynthetic
indices from the imaging technologies and correlated to visual
turf quality and leaf relative water content from the destructive
measurement;  and  (3)  determine  the  major  vegetation  and
photosynthetic indices that are most responsive or sensitive to
the  progression  of  drought  stress  that  may  be  useful  to  early
detection  and  monitoring  the  level  of  drought  stress  causing
growth  and  physiological  damages  in  cool-season  grass
species.

 Materials and methods

 Plant materials and growth conditions
Sod  strips  of  Kentucky  bluegrass  cultivar  'Dauntless'  were

collected  from  established  field  plots  at  the  Rutgers  Plant
Science Research and Extension Farm, Adelphia,  NJ,  USA. Sods
were  planted  in  plastic  pots  of  18  cm  diameter  and  20  cm
length  filled  with  a  mixture  of  soil  (sandy  loam,  semi-active,
mesic  Typic  Hapludult;  pH  6.55;  260  kg·P·ha−1,  300  kg·K·ha−1)
and sand in the ratio of 2/1 (v/v). Plants were established for 50-
d  in  a  greenhouse  with  24/22  °C  day/night  average  tempera-
tures, 12-h average photoperiod and 750 µmol·m−2·s−1 average
photosynthetically  active  radiation  (PAR)  with  natural  sunlight
and supplemental lightings. Plants were well-watered, trimmed
weekly  to  100  mm  and  fertilized  weekly  with  a  24–3.5–10
(N–P–K) fertilizer (Scotts Miracle-Gro) at the rate of 2.6 g·N·m−2

during  the  establishment  period  in  the  greenhouse.  Once
plants  were  well-established,  they  were  moved  to  the
controlled environmental growth chamber (GC72, Environmen-
tal  Growth  Chambers,  Chagrin  Falls,  OH,  USA).  The  growth
chamber  was  controlled  at  22/18  °C  day/night  temperature,
60% relative humidity, 12-h photoperiod and 650 µmol·m−2·s−1

PAR at the canopy level. Plants were allowed to acclimate for a
week  within  the  growth  chamber  conditions  and  then  treat-
ments were initiated.

 Experimental treatments and design
There were two different treatments: well-watered control and

drought  stress.  For  the  well-watered  control,  plants  were  irri-
gated  once  every  two  days  with  sufficient  water  until  drainage
occurred  from  the  pot  bottom  or  when  soil  water  content
reached the field capacity. Drought stress was imposed by with-
holding  irrigation  from  each  pot  throughout  the  experiment
period.  Each  treatment  had  five  replicates.  The  experimental
treatments  were  arranged  as  a  complete  randomized  design
with plants of both treatments randomly placed and relocated in
the  chamber  twice  each  week  to  minimize  effects  of  potential
microenvironment variations in the growth chamber.

 Measurements

 Soil water content and plant growth and physiological traits
A  time-domain  reflectometry  system  (Model  6050  ×  1;  Soil

Moisture Equipment, Santa Barbara, CA, USA) installed with 20
cm  soil  moisture  probe  was  used  to  measure  soil  volumetric
water  content.  Volumetric  water  content  was  measured  every
two days in each pot to track soil moisture dynamics in control
and  drought  stress  treatments.  To  assess  plant  responses  at
different soil moisture levels, turfgrass quality (TQ) and leaf rela-
tive water content (RWC) were evaluated. Turfgrass quality was
visually  rated on a  scale  of  1-9  depending upon canopy color,
uniformity and density[27]. A rating of 1 indicates discolored and
completely dead plants, 9 indicates lush green colored healthy
plants and 6 indicates the minimum acceptable turfgrass qual-
ity.  Leaf  RWC  was  measured  by  soaking  0.2  g  fresh  leaves  in
distilled  water  overnight  at  4  °C[28].  Turgid  leaves  after
overnight  soaking  were  oven  dried  at  70  °C  to  a  constant  dry
weight.  Leaf  RWC  was  calculated  as  [(fresh  weight  –  dry
weight)/ (turgid weight – dry weight)] × 100.

 Hyperspectral imaging of phenotypic responses to drought
stress

Control and drought stress pots were scanned using a close-
range  benchtop  hyperspectral  imaging  system  (Resonon  Inc.,
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Bozeman, MT, USA) containing Pika XC2 camera equipped with
23  mm  lens.  This  camera  took  images  in  spectral  range  of
400–1,000 nm with much detailed spectral resolution of 1.9 nm
in  447  different  spectral  channels.  The  camera  provided  1600
spatial  pixels  and  maximum  frame  rate  of  165  frames  per
second. It had 23.1° field of view and 0.52 milli-radians instanta-
neous  field  of  view.  Resonon  hyperspectral  imaging  systems
are line-scan imagers (also referred to as push-broom imagers)
that collect spectral data from each pixel on one line at a time.
Multiple  lines  are  imaged when an object  or  pot  kept  in  scan-
ning  stage  of  linear  stage  assembly  underneath  the  camera  is
moved  by  a  stage  motor.  Those  line  images  are  assembled  to
form  a  complete  image.  The  systems  had  regulated  lights
placed  above  the  linear  stage  assembly  to  create  optimal
conditions  for  performing  the  scans.  Lights  were  at  the  same
level as the lens on a parallel plane. Distance between lens and
the top of grass canopy was maintained at 0.4 m for capturing
the best representation of drought progression. All scans were
performed  using  spectronon  pro  (Resonon  Inc.,  Bozeman,  MT,
USA)  software  connected  to  the  camera  using  a  USB  cable.
Before  performing  a  scan,  the  lens  was  appropriately  focused,
dark current noise was removed and the system was calibrated
for reflectance measurement using a white tile provided by the
manufacturer. To ensure distortion-free hyperspectral datacube
with  a  unit-aspect-ratio  image,  benchtop  system's  swatch
settings were adjusted using pixel aspect ratio calibration sheet
also provided by the manufacturer. Once the system was ready,
controlled-  and  stressed-pots  were  scanned  individually  every
two days throughout the experiment.  As the lens was focused
centrally,  obtained  images  were  of  the  central  grass  area  and
were  processed  using  spectronon  pro  data  analysis  software.
The entire grass image was selected using a selection tool and
the spectrum was generated.  From each spectrum, vegetation
indices  were  calculated  either  using  built-in  plugins  or  by
manually  creating  algorithms.  The  list  of  vegetation  indices
calculated using image analysis is mentioned in Table 1.

 Multispectral imaging of phenotypic responses to drought
stress

Micasense Rededge-MX dual camera system (AgEagle Sensor
Systems  Inc.,  Wichita,  KS,  USA)  was  used  to  collect  multispec-
tral  images  of  controlled-  and  drought  stressed-pots  placed
within  a  light  box  (1.2  m  ×  0.6  m  ×  0.6  m).  The  multispectral
camera  system  had  1,280  ×  960  resolution,  47.2°  field  of  view
and  5.4  mm  focal  length.  The  camera  captured  ten  different
spectral  bands  simultaneously  on  a  command  (Table  2).  To
allow the multispectral camera system, which was designed for
aerial  operation,  to  work  in  the  light  box  settings,  a  down-
welling  light  sensor  (DLS)  module  provided  by  the  manufac-
turer was installed to the camera system. Images were captured

manually  through  WIFI  connection  from  mobile  devices  or
computer  to  the  multispectral  camera  system.  The  sensor
layout  of  the  dual  camera  system,  while  causing  negligible
error  in  aerial  condition,  led  to  mismatching between spectral
bands in  a  close distance,  therefore,  spectral  bands needed to
be overlapped during post-processing. The captured images of
individual  spectral  bands  were  stored  as  separate  .tiff  image
files  and  then  were  used  to  calculate  the  relevant  vegetation
indices.  Multispectral  image  analysis  was  executed  using
Python  (Version  3.10)  code  by  Rublee  et  al.[29].  Image  analysis
aligned  ten  spectral  bands  using  Oriented  FAST  and  Rotated
BRIEF algorithm to achieve complete overlap between spectral
band images. The reflectance correction panel provided by the
manufacturer  was  used  to  account  for  the  illumination  condi-
tion in light box environment and the correction was reflected
in pixel value adjustment for each band in python code; vege-
tation  indices  based  on  the  aligned  images  were  then  calcu-
lated  using  the  corresponding  formula  (Table  1).  Images  that
included background noise were excluded from analysis.

 Chlorophyll fluorescence imaging of physiological response to
drought stress

Chlorophyll  fluorescence  images  were  taken  using  a  pulse
amplitude  modulated  fluorescence  imaging  system  (FC  800-
O/1010, Photon System Instruments, Drasov, Czech Republic). A
high-speed charge-coupled device (CCD) camera was mounted
on a robotic arm placed in the middle of LED light panels. The
camera  had  720  ×  560  pixels  spatial  resolution,  50  frames  per
second  frame  rate  and  12-bit  depth.  Four  different  LED  light
panels  each  of  20  cm  ×  20  cm  size  were  equipped  with  64
orange-red  (617  nm)  LEDs  in  three  panels  and  64  cool-white
LEDs (6,500 k) in the rest of one panel. Before making measure-
ments,  plants were dark-adapted for 25 min in a dark room to
open  all  PSII  reaction  centers.  The  distance  between  camera
and the top of the grass canopy was maintained at 0.3 m while
taking  images  to  ensure  optimum  quality.  Images  were
acquired  following  the  Kautsky  effect  measured  in  a  pulse
amplitude  modulated  mode[30,31].  Briefly,  dark-adapted  plants
were  first  exposed  to  non-actinic  measuring  light  for  5  s  to
measure minimum fluorescence at the dark-adapted state (Fo).
Plants were immediately exposed to 800 ms saturation pulse of
3,350 µmol·m−2·s−1 to  measure  maximum  fluorescence  after
dark adaptation (Fm). They were kept under dark relaxation for
17 s and then exposed to actinic light 750 µmol·m−2·s−1 for 70 s.
Plants were exposed to a series of saturating pulses at 8 s, 18 s,
28 s, 48 s and 68 s during their exposure to actinic light condi-
tions  and  maximum  fluorescence  at  different  light  levels  and
steady state were measured. They were kept under dark relax-
ation again for 100 s and irradiated with saturating pulses at 28
s, 58 s and 88 s during dark relaxation for measuring maximum

Table 1.    List of vegetation indices calculated using hyperspectral and multispectral image analysis for drought stress monitoring in Kentucky bluegrass.
Name and number in subscript following the letter R in each formula represent the reflectance at individual light and particular wavelength.

Vegetation index
Index abbreviation and formula

Hyperspectral analysis Multispectral analysis

Structure Independent Pigment Index SIPI = (R800 – R445) / (R800 + R680) SIPIm = (RNIR840 – RBlue444) / (RNIR840 + RRed668)

Simple Ratio Index SRI = R800 / R675 SRIm = RNIR840 / RRed668

Plant Senescence Reflectance Index PSRI = (R680 –R500) / R750 PSRIm = (RRed668 – RBlue475) / RRededge740

Photochemical Reflectance Index PRI = (R570 – R531) / (R570 + R531) PRI = (RGreen560 – RGreen531) / (RGreen560 + RGreen531)

Normalized Difference Vegetation Index NDVI = (R800 – R680) / (R800 + R680) NDVIm = (RNIR840 – RRed668) / (RNIR840 + RRed668)

Normalized Difference Red Edge NDRE = (R750 – R705) / (R750 + R705) NDREm = (RRededge717 – RRed668) / (RRededge717 + RRed668)

Phenotypic and photosynthetic indices for water stress
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fluorescence during the relaxation. Selected durations for each
light  and  dark  relaxation  state  were  preset  in  default  quench-
ing-act2 protocol of the fluorescence imaging system. Fluores-
cence  at  different  light  levels  and  steady  states  were  used  to
calculate several fluorescence parameters (Table 3).

 Statistical analysis
The  two-way  repeated  measure  analysis  of  variance  was

performed  to  determine  treatment  effects  and t-test  was
performed  to  compare  control  and  drought  stress  treatments
at  a  given  day  of  measurement.  Correlation  analysis  using  all
individual  observations  (five  replications  for  each  control  and
drought  stress  treatments)  was  performed  to  determine  the
relationship among all  measured traits,  vegetation indices and
fluorescence parameters.  Partial  least  square  regression (PLSR)
models were developed in SAS JMP (version 13.2; SAS Institute,
Cary,  NC,  USA)  for  comparing hyperspectral,  multispectral  and
chlorophyll  fluorescence  imaging  in  their  overall  associations
with  physiological  assessments  of  drought  stress.  Vegetation
indices  and  fluorescence  parameters  from  individual  imaging
technologies were predictor variables, and turfgrass quality and
leaf relative water content were response variables. A leave one
out  cross  validation  approach  was  used  to  develop  the  best
performing  partial  least  square  model  for  each  imaging  tech-
nology.  A  model  was  first  established  with  all  predictor  vari-
ables  and  the  variable  with  the  lowest  importance  was
removed from the dataset and the model was rebuilt  with the
remaining  variables.  The  rebuilt  model  was  re-validated  using
leave  one  out  cross  validation  and  assessed  checking  root
mean  PRESS  and  percent  variation  explained  for  cumulative  Y
values.  From  each  loop  of  operation,  one  variable  was
removed, and a new model was developed. The whole process
ended when the  last  variable  was  removed and thus  no more

models  could  be  developed.  Finally,  a  series  of  models  was
obtained, and they were compared to identify a model with the
highest accuracy for individual imaging technologies. The best
performing model from each imaging technology was used to
estimate turfgrass quality and leaf relative water content.

 Results

 Changes in soil water content, leaf relative water
content, and visual turf quality during drought stress

The  initial  soil  water  content  prior  to  drought  stress  was
maintained  at  the  field  capacity  of  29%  and  remained  at  this
level  in  the  well-watered  control  treatment  during  the  entire
experimental  period (20 d) (Fig.  1a).  SWC in the drought treat-
ment  significantly  decreased  to  below  the  well-watered  treat-
ment, beginning at 4 d, and declined to 5.8% by 20 d.

Leaf RWC was ≥ 93% in all plants prior to drought stress and
declined  to  a  significantly  lower  level  than  that  of  the  control
plants,  beginning  at  10  d  of  treatment  when  SWC  declined  to
16%  (Fig.  1b).  TQ  began  to  decrease  to  a  significantly  lower
level than the that of the well-watered plants at 10 d of drought
stress at RWC of 87% and SWC of 16%, and further declined to
the minimally  acceptable level  of  6.0 at  16 d of  drought stress

a
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Fig.  1    Drought  stress  affected  turf  quality,  leaf  relative  water
content  and  soil  volumetric  water  content  during  20  d  of  stress
period  in  Kentucky  bluegrass.  *  indicates  significant  difference
between control and drought stress treatments (p ≤ 0.05) at each
day  of  measurement.  Presented  values  represent  average  of  five
data points.

Table 2.    Spectral  band details  (center wavelength and band width) for
Micasense Rededge-MX dual camera system.

Band name Central wavelength (nm) Band width (nm)

Blue444 444 28
Blue475 475 32
Green531 531 14
Green560 560 27
Red650 650 16
Red668 668 14
RE705 705 10
RE717 717 12
RE740 740 18
NIR840 842 57

Table  3.    Chlorophyll  fluorescence  parameters  calculated  from  pulse
amplitude modulated fluorescence imaging system.

Chlorophyll fluorescence parameter Formula

Maximum photochemical efficiency of PSII (Fv /
Fm)

(Fm-Fo) / Fm

Photochemical efficiency of open PSII centers
(F'v / F'm)

(F'm – F'o) / F'm

Actual photochemical quantum yield of PSII
centers Y(PSII)

(F'm – Fs) / F'm

Photochemical quenching coefficient (Puddle
model; qP)

(F'm – Fs) / (F'm – F'o)

Photochemical quenching coefficient (Lake
model; qL)

qP × F'o / Fs

Non-photochemical quenching coefficient (qN) (Fm-F'm) / Fm

Non-photochemical quenching (NPQ) (Fm-F'm) / F'm
Chlorophyll fluorescence decrease ratio (Rfd) (Fm-Fs) / Fs
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when RWC decreased to 66% and SWC dropped to 8% during
drought stress (Fig. 1c).

 Hyperspectral and multispectral imaging of
phenotypic responses to drought stress

Most  hyperspectral  imaging  indices,  including  SIPI  (Fig.  2a),
SRI  (Fig.  2b),  PRI  (Fig.  2d),  NDVI  (Fig.  2e)  and  NDRE  (Fig.  2f)
exhibited  a  declining  trend  during  20-d  drought  stress  while
PSRI  (Fig.  2C)  showed  increases  during  drought  stress.  The

index  value  of  drought-stressed  plants  became  significantly

lower  than  that  of  the  well-watered  plants,  beginning  at  14  d

for  SIPI  and  SRI,  16  d  for  PRI  and  PSRI,  and  18  d  for  NDVI  and

NDRE. The multispectral  SIPIm and SRIm did not differ between

drought-stressed  plants  from  the  control  plants  until  18  d  of

treatment  (Fig.  3a, b)  while  NDVIm,  NDREm ,  PRIm ,  and  PSRIm

values  were  significantly  lower  than  those  of  well-watered

control plants at 16 d of drought stress (Fig. 3c−f).

a b c
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Fig. 2    Vegetation indices generated by hyperspectral sensing and sensitivity of these indices in monitoring drought in Kentucky bluegrass
exposed to 20 d of drought stress.  * indicates significant difference between control and drought stress treatments (p ≤ 0.05) at each day of
measurement. Presented values represent average of five data points.
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Fig.  3    Vegetation  indices  generated  by  multispectral  image  analysis  and  sensitivity  of  these  indices  in  monitoring  drought  in  Kentucky
bluegrass exposed to 20 d of drought tress. * indicates significant difference between control and drought stress treatments (p ≤ 0.05) at each
day of measurement. Presented values represent average of five data points.
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 Chlorophyll fluorescence imaging of photosynthetic
responses to drought stress

Chlorophyll fluorescence indices detected drought damages
in leaf  photosynthesis  systems,  as  shown by declines  in  differ-
ent  indices  during  drought  stress  (Fig.  4).  Drought-stressed
plants  exhibited  significant  lower  chlorophyll  fluorescence
levels  than  that  of  the  well-watered  plants,  beginning  at  12  d
for  NPQ (Fig.  4a),  16  d  for  Fv/Fm (Fig.  4b),  and 18 d  for  F'V/F'm
(Fig.  4c),  Y(PSII)  (Fig.  4d),  qP  (Fig.  4e),  and  qL  (Fig.  4f).  Separa-
tion  between  drought-stressed  and  well-watered  plants  were
also evident in index- or parameter- generated images (Fig. 5).

 Correlation among individual imaging indices
associated with phenotypic and photosynthetic
responses to drought stress

Leaf  RWC  and  TQ  had  significant  correlation  with  most  of
indices  and  parameters  calculated  using  three  different  imag-
ing  sensors  (hyperspectral,  multispectral  and  chlorophyll

fluorescence)  (Table  4).  Among  the  indices,  RWC  had  the
strongest  correlations  with  chlorophyll  fluorescence  NPQ  (r  =
0.88)  and qL  (r  =  0.89),  hyperspectral  PRI  (r  =  0.94),  and multi-
spectral  PSRIm  (−0.92).  TQ  was  most  correlated  to  chlorophyll
fluorescence NPQ (r = 0.89), hyperspectral PSRI (r = −0.90), and
multispectral PSRIm (r = −0.85).

Correlations among different vegetation indices and param-
eters were also significant in many cases. Hyperspectral indices
such as PSRI and PRI were significantly correlated with all multi-
spectral  indices  except  PRIm.  Multispectral  NDVIm and  NDREm

were  significantly  correlated  with  all  hyperspectral  indices.
When  hyperspectral  and  multispectral  indices  were  correlated
with  chlorophyll  fluorescence  parameters,  majorities  of  these
indices  significantly  associated  with  fluorescence  parameters
with  exceptions  of  multispectral  PRIm which  had  weak  and
positive  (r  ranges  0.06  to  0.31)  associations  with  fluorescence
parameters.

a b c
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Fig. 4    Chlorophyll fluorescence parameters measured by pulse amplitude modulated fluorescence imaging system and detection of drought
by these parameters in Kentucky bluegrass exposed to 20 d of drought stress. * indicates significant difference between control and drought
stress  treatments  (p ≤ 0.05)  at  each  day  of  measurement.  Presented  values  represent  average  of  five  data  points.  NPQ,  Non-photochemical
quenching;  Fv /Fm,  Maximum  photochemical  efficiency  of  PSII;  F'v/F'm, Photochemical  efficiency  of  open  PSII  centers;  Y(PSII),  Actual
photochemical  quantum  yield  of  PSII  centers;  qP,  Photochemical  quenching  coefficient  (Puddle  model);  qL,  Photochemical  quenching
coefficient (Lake model); qN, Non-photochemical quenching coefficient; Rfd, Chlorophyll fluorescence decrease ratio.
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 Prediction of turf quality and leaf relative water
content using integrated indices from hyperspectral
imaging, multispectral imaging, and chlorophyll
fluorescence

Partial  least  square  regression  models  were  developed  by
integrating  all  indices  from  individual  imaging  technologies
which  identified  the  most  reliable  imaging  systems  to  detect
and monitor plant responses to drought stress. The PLSR model
developed  using  hyperspectral  imaging  indices  had  improved
predictability  (root  mean  PRESS  ≤ 0.38  and  percent  variation
explained  ≥ 87)  compared  to  such  models  developed  using
other  imaging  systems  and  associated  indices  (Table  5).
Comparing  multispectral  imaging  with  chlorophyll  fluores-
cence  imaging,  multispectral  imaging  had  slightly  better
predictability [root mean PRESS = 0.40 (RWC) and 0.44 (TQ) and
percent variation explained = 86 (RWC) and 83 (TQ)]  consider-
ing  similar  number  of  predictor  variables  used  for  estimating
TQ and RWC in all imaging systems.

The  integrated  indices  from  each  of  the  three  imaging
systems were highly correlated to TQ, with R2 of 0.90, 0.85, and
0.83  for  hyperspectral  imaging,  multispectral  imaging,  and
chlorophyll  fluorescence,  respectively  (Fig.  6).  For  RWC,  the
correlation R2 was 0.88, 0.84, and 0.80, respectively with hyper-
spectral  imaging,  multispectral  imaging,  and  chlorophyll  fluo-
rescence.  The  hyperspectral  imaging  was  better  be  able  to
predict  TQ  and  RWC  compared  to  other  imaging  systems
(Fig. 6).

 Discussion

Leaf  RWC and TQ are the two most widely used parameters
or  traits  to  evaluate  turfgrass  responses  to  drought
stress[28,32,33]. In this study, RWC detected water deficit in leaves
at  10  d  of  drought  stress  when  SWC  declined  to  16%  and  TQ
declined to below the minimal acceptable level of 6.0 at 16 d of

 
Fig.  5    Maps  generated  by  the  three  most  drought  sensitive  indices  and  parameters  [hyperspectral  structure  independent  pigment  index
(SIPI), multispectral normalized difference vegetation index (NDVIm) and chlorophyll fluorescence NPQ]. These maps clearly separated control
and drought stress after 18 d of treatment when majorities of indices and parameters detected drought stress.
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drought stress when RWC decreased to 66% and SWC dropped
to 8% during drought stress. These results suggested that RWC
was a sensitive trait to detect water stress in plants, which is in
agreement with previous research[34,35]. However, leaf RWC is a
destructive  measurement  and  TQ  is  a  subjective  estimate.
Nondestructive and quantitative detection of stress symptoms
in plants through assessing changes in phenotypic and physio-
logical responses of plants to drought stress is critical for devel-
oping water-saving irrigation programs and breeding selection
traits  to increase water  use efficiency and improve plant toler-
ance  to  drought  stress.  In  this  study,  some  of  the  phenotypic
traits  assessed  by  hyperspectral  and  multispectral  imaging
analysis  and  photosynthetic  parameters  measured  by  chloro-
phyll fluorescence were highly correlated to leaf RWC or visual
TQ,  as  discussed in  detail  below,  which could be used as  non-
destructive  indicators  or  predictors  for  the  level  of  drought
stress  in  Kentucky  bluegrass  and  other  cool-season  turfgrass
species.

The strong correlation of integrated indices from each of the
three  imaging  systems  with  TQ  (R2 of  0.90,  0.85,  and  0.83,
respectively)  and  RWC  (R2 of  0.88,  0.84,  and  0.80,  respectively)
for  hyperspectral  imaging,  multispectral  imaging,  and  chloro-
phyll  fluorescence  suggested  that  all  three  non-destructive

imaging systems could be used as a non-destructive technique
to  detect  and  monitor  water  stress  in  Kentucky  bluegrass.
However,  the  hyperspectral  imaging  indices  had  higher
predictability  to  RWC  and  visual  TQ  compared  to  the  indices
from multispectral imaging and chlorophyll fluorescence based
on the PLSR models.  Hyperspectral  imaging used in this  study
captured images in  447 different  spectral  bands and gathered
much  more  details  about  individual  components  of  entire
vegetation as  each component  has  its  own spectral  signature.
Multispectral imaging captures images with ten spectral bands
and  chlorophyll  fluorescence  imaging  used  only  emitted  red
and  far-red  lights  to  snap  images.  Nevertheless,  our  results
suggested that the PLSR models by integrating all indices from
each  individual  imaging  technologies  identified  the  most  reli-
able imaging systems to detect and monitor plant responses to
drought stress in this study.

The indices derived from the three imaging systems varied in
their  correlation  to  RWC  or  TQ  in  Kentucky  bluegrass  in  this
study.  Among the indices,  RWC had the strongest  correlations
with chlorophyll  fluorescence NPQ (r  = 0.88)  and qL (r  = 0.89),
hyperspectral PRI (r = 0.94), and multispectral PSRIm (r = −0.92).
TQ  was  most  correlated  to  chlorophyll  fluorescence  NPQ  (r  =
0.89),  hyperspectral  PSRI  (r  =  −0.90),  and  multispectral  PSRIm

Table 4.    Correlations among several physiological traits, vegetation indices and chlorophyll fluorescence parameters.

RWC TQ FV/Fm F'v/F'm Y(PSII) NPQ qN qP qL Rfd SIPI SRI PSRI PRI NDVI NDRE WBI SIPIm PSRIm PRIm NDVIm NDREm

RWC 1.00

TQ 0.95* 1.00

FV/Fm 0.87* 0.85* 1.00

F'v/F'm 0.81* 0.77* 0.95* 1.00

Y(PSII) 0.85* 0.74* 0.80* 0.74* 1.00

NPQ 0.88* 0.89* 0.95* 0.84* 0.75* 1.00

qN 0.84* 0.83* 0.96* 0.84* 0.77* 0.96* 1.00

qP 0.82* 0.70* 0.73* 0.66* 0.99* 0.69* 0.72* 1.00

qL 0.89* 0.81* 0.90* 0.86* 0.97* 0.83* 0.86* 0.95* 1.00

Rfd 0.84* 0.82* 0.89* 0.83* 0.77* 0.92* 0.86* 0.72* 0.83* 1.00

SIPI 0.84* 0.71* 0.63* 0.58* 0.51* 0.57* 0.69* 0.48* 0.60* 0.46* 1.00

SRI 0.57* 0.62* 0.44* 0.45* 0.33 0.41* 0.45* 0.30 0.40 0.33 0.83* 1.00

PSRI −0.83* −0.90* −0.90* −0.86* −0.76* −0.83* −0.87* −0.71* −0.86* −0.76* −0.75* −0.57* 1.00

PRI 0.94* 0.82* 0.80* 0.76* 0.71* 0.79* 0.71* 0.66* 0.77* 0.78* 0.26 0.17 −0.78* 1.00

NDVI 0.53* 0.65* 0.41* 0.43* 0.41* 0.42* 0.40 0.38 0.43* 0.42* 0.50* 0.42* −0.54* 0.31 1.00

NDRE 0.64* 0.73* 0.64* 0.63* 0.45* 0.54* 0.64* 0.40 0.56* 0.44* 0.92* 0.85* −0.75* 0.33 0.50* 1.00

SIPIm 0.52* 0.50* 0.56* 0.58* 0.47* 0.52* 0.49* 0.43* 0.52* 0.51* 0.33 0.28 −0.58* 0.61* 0.27 0.39 −0.28 1.00

PSRIm −0.92* −0.85* −0.85* −0.85* −0.83* −0.80* −0.77* −0.79* −0.88* −0.77* −0.40 −0.23 0.77* −0.82* −0.41 −0.40 0.32 −0.52* 1.00
PRIm 0.20 −0.03 0.06 −0.01 0.28 0.14 0.11 0.31 0.20 0.18 0.05 0.10 0.01 −0.04 0.00 0.09 0.06 0.09 −0.04 1.00

NDVIm 0.75* 0.74* 0.77* 0.78* 0.67* 0.72* 0.68* 0.62* 0.73* 0.70* 0.43* 0.33 −0.76* 0.81* 0.37 0.47* −0.35 0.93* −0.76* −0.05 1.00

NDREm 0.90* 0.89* 0.89* 0.89* 0.81* 0.83* 0.81* 0.76* 0.88* 0.81* 0.52* 0.41* −0.87* 0.87* 0.45* 0.53* −0.32 0.62* −0.87* −0.04 0.85* 1.00

Details for individual abbreviations of vegetation indices and fluorescence parameters used in this table were previously mentioned in Tables 1 & 3. Some other abbreviations are:
RWC, leaf relative water content; and TQ, turfgrass quality. Values followed by * indicate significant correlation at p ≤ 0.05. Correlation analysis was performed using all individual data
points (five replications for each control and drought stress treatments).

Table 5.    Summary of partial least square model showing predictability of individual models using specific numbers of predictor variables (identified by
leave one out cross validation) generated by different sensing technologies. Details of individual abbreviations are mentioned in previous tables. Partial
least square was performed using all individual data points (five replications for each control and drought stress treatments).

Sensing technology
used for prediction

Predicted
variable

No. of predictors
used Predictor variables Root mean

PRESS

Percent variation
explained

for cumulative Y
Cumulative Q2

Hyperspectral TQ 4 PRI, PSRI, NDRE, SIPI 0.36 87 0.99
RWC 4 PRI, PSRI, NDRE, SIPI 0.38 89 0.99

Multispectral TQ 3 PSRIm, NDVIm, NDREm 0.44 85 0.97
RWC 3 PSRIm, NDVIm, NDREm 0.40 86 0.97

Chlorophyll
fluorescence

TQ 4 Fv/Fm, NPQ, qN, qL 0.46 83 0.95
RWC 3 Fv/Fm, NPQ, qL 0.59 84 0.93
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(r = −0.85). The indices also varied in their sensitivity to drought
stress  for  Kentucky  bluegrass,  and  therefore  they  detected
drought  stress  in  plants  at  different  times  of  treatment.  The
hyperspectral SIPI and SRI were the most responsive to drought
stress with significant decline at 14 d followed by PRI and PSRI
at 16 d while NDVI and NDRE were slowest showing decline (18
d)  in  response  to  drought.  Multispectral  indices  exhibited
decline  later  during  drought  at  16  d  of  drought  stress  for
NDVIm, NDREm ,  PRIm ,  and PSRIm and 18 d for  SIPIm and SRIm.
Indices SIPI  and SRI  are related to leaf  carotenoid composition
and  vegetation  density  and  high  spectral  resolution  of  hyper-
spectral system was able to capture subtle changes in pigment
concentration  and  canopy  (slight  leaf  shrinking  and  rolling)  at
early  phase  of  drought  progression[36,37].  Index  PSRI  is  indica-
tive  of  the  ratio  of  bulk  carotenoids  including α-  and β-
carotenes  to  chlorophylls  and  PRI  is  sensitive  to  xanthophyll

cycle  particularly  de-epoxidation  of  zeaxanthin  that  releases
excess energy as heat in order to photoprotection[38−40]. Activa-
tion  of  photoprotective  mechanisms  including  xanthophyl
cycle  require  a  certain  level  of  stress  severity  depending  on
type of  abiotic  stress  and plant  species[41].  The PSRI  calculated
using  both  hyperspectral  and  multispectral  imaging  systems
exhibited similar trends,  and PSRI and PRI from either imaging
system  detected  drought  stress  after  16  days  of  treatment
applications.  In  agreement  with  our  results,  Das  &  Seshasai[42]

found  that  PSRI  showed  similar  trends  when  its  value  >  −0.2
regardless  of  whether  measured  using  hyperspectral  or  multi-
spectral imaging. Both PSRI and PRI were also highly correlated
to  leaf  RWC  or  TQ  in  Kentucky  bluegrass  exposed  to  drought
stress in this study, suggesting that these two indices could be
useful  parameters  to  detect  and  monitor  plant  responses  to
drought stress.

 
Fig. 6    Comparison of predicted turfgrass quality (TQ) and leaf relative water content (RWC) versus their measured values using partial least
square  regression  model.  Turfgrass  quality  and  relative  water  contents  were  predicted  using  various  indices  generated  by  hyperspectral,
multispectral  and  chlorophyll  fluorescence  sensing  technologies.  The  dashed  line  represents  the  I:I  line.  Regression  analysis  was  performed
using all individual data points (five replications for each control and drought stress treatments).
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Vegetation  index  of  NDVI  has  been  the  most  widely  used
vegetation  index  in  several  crops  such  as  wheat  (Triticum
aestivum L.)[43], cool- and warm-season turfgrass species includ-
ing  perennial  ryegrass  (Lolium  perenne L.),  tall  fescue  (Festuca
arundinacea Schreb.),  seashore  paspalum  (Paspalum  vagina-
tum Sw.) and hybrid bermudagrass [Cynodon dactylon (L.) Pers.
× C.  transvaalensis Burtt-Davy][2,44,45].  For  example,  Bhandari  et
al.[43] and Badzmierowski et al.[14] found NDVI was correlated to
overall  turfgrass  quality  and  chlorophyll  content  under  nitro-
gen  and  drought  stresses  in  tall  fescue  and  citrus  (Citrus spp.)
plants. In this study, NDVI and NDRE were also correlated to leaf
RWC and TQ, both NDVI and NDRE calculated from hyperspec-
tral  or  multispectral  imaging were least  responsive to drought
stress or detected drought stress later than other indices. Hong
et al.[46] reported that NDVI being a better indicator than NDRE
for  early  drought  stress  detection  in  turfgrasses  when  these
indices were measured by handheld multispectral  sensor.  Eitel
et  al.[47] utilized  broadband  satellite  images  to  estimate  NDVI
and NDRE and identified NDRE being a  better  option for  early
detection of  stress  condition in  woodland area.  Either  NDVI  or
NDRE could be used as indices for  vegetation density,  but not
sensitive indicators for plant responses to drought stress or for
detecting drought damages in plants.

Chlorophyll  fluorescence  reflects  the  integrity  and  function-
ality  of  photosystems  in  the  light  reactions  of  photosynthesis
and  serves  as  a  good  indicator  for  photochemical  activity  and
efficiency[48]. The Y(PSII) is an effective quantum yield of photo-
chemical  energy  conversion  and  estimates  the  actual  propor-
tion of absorbed light that is used for electron transport[49]. The
ratio  of  F'v/F'm  is  maximum  proportion  of  absorbed  light  that
can be used for  electron transport  when all  possible  PSII  reac-
tion centers are open under light adapted state. Parameters qP
and  qL  estimate  the  fraction  of  open  PSII  centers  based  on
'puddle' and 'lake or connected unit' models of photosynthetic
antenna complex, respectively[50]. Rfd is an indicator for photo-
synthetic  quantum conversion associated with functionality  of
the photosynthetic core unit. Overall, these parameters revolve
around  the  operation  status  and  functioning  of  PSII  reaction
centers or the core unit  that possesses chlorophyll  a-P680 in a
matrix  of  proteins[51].  Parameter  NPQ  indicates  non-photo-
chemical quenching of fluorescence via heat dissipation involv-
ing  xanthophyll  cycle  and  state  transition  of  photosystems[52].
This  parameter  is  mostly  associated  with  xanthophylls  and
other pigments in light harvesting antenna complex of photo-
systems  but  not  with  the  PSII  core  unit[53].  Li  et  al.[9] reported
that  chlorophyll  fluorescence  imaging  parameters  including
F'V/F'm have  a  limitation  of  late  drought  detection  in  plants.
Shin et al.[54] reported F'V/F'm, Y(PSII), qP, and qL detected stress
effects  under  severe  drought  when  leaves  were  completely
wilted and fresh weights  declined in  lettuce (Lactuca  sativa L.)
seedings.  In  this  study,  NPQ  and  Fv/Fm  exhibited  significant
decline earlier (12−16 d of stress treatment) when drought was
in mild to moderate level (> 60% leaf water content) compared
to  other  chlorophyll  fluorescence  indices.  The  NPQ  was
strongly correlated to leaf  RWC (r  = 0.88)  and TQ (r  = 0.89)  for
Kentucky  bluegrass  exposed  to  drought  stress.  These  results
suggested  that  NPQ  is  a  sensitive  indicator  of  photosynthetic
responses  to  drought  stress  and  could  be  a  useful  parameter
for  evaluating  plant  tolerance  to  drought  stress  and  monitor-
ing drought responses.

 Conclusions

The comparative analysis  of  phenotypic and photosynthetic
responses  to  drought  stress  using  three  imaging  technologies
(hyperspectral,  multispectral  and  chlorophyll  fluorescence)
using the partial least square modeling demonstrated that the
integrated vegetation indices  from hyperspectral  imaging had
higher  predictability  for  detecting  turfgrass  responses  to
drought stress relative to those from multispectral imaging and
chlorophyll  fluorescence.  Among  individual  indices,  SIPI  and
SRI  from  hyperspectral  imaging  were  able  to  detect  drought
stress sooner than others while PSRI and PRI from both hyper-
spectral  and multispectral  imaging were also highly correlated
to  leaf  RWC  or  TQ  responses  to  drought  stress,  suggesting
these  indices  could  be  useful  parameters  to  detect  and  moni-
tor drought stress in cool-season turfgrass. While NDVI or NDRE
from  both  hyperspectral  and  multispectral  imaging  could  be
used as indices for vegetation density, but not sensitive indica-
tors  for  plant  responses  to  drought  stress.  Among  chlorophyll
fluorescence indices,  NPQ and Fv/Fm were more closely corre-
lated to RWC or TQ while NPQ was most responsive to drought
stress, and therefore NPQ could be a useful indicator for detect-
ing and monitoring cool-season turfgrass response to drought
stress. The sensitivity and effectiveness of these indices associ-
ated  with  drought  responses  in  this  study  could  be  further
testified  in  other  cool-season  and  warm-season  turfgrass
species  under  field  conditions.  As  each  imaging  technology
used  in  this  experiment  comes  with  bulky  accessories  such  as
LED  panels,  mounting  tower  and  support  system,  capturing
images within limited space of controlled environmental cham-
bers  are  challenging.  Future  research should be in  developing
multimodal  imaging  integrating  major  features  of  all  three
technologies  and  reducing  size  and  space  requirement  that
would deliver improved decision support for drought monitor-
ing and irrigation management in turfgrasses. Development of
advanced  algorithms  that  could  incorporate  broader  spectral
details  or  band  reflectance  for  calculating  novel  vegetation
indices are warranted.
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