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Abstract
With the ever-changing environment and climate, high salinity has become a major environmental issue that threatens crop quality and yield.

Alfalfa (Medicago sativa L.) is a perennial forage crop planted worldwide that has a well-developed root system and salt tolerance. Cytochrome

P450 monooxygenase (CYP450) genes play important roles in flavonoid synthesis, plant growth, and development. However, few studies have

focused on CYP450s in forage grass, especially the role of CYP450 genes in plant resistance to environmental stresses, such as drought and high

salinity. In this study, 376 menbers in MsCYP family genes were identified using hmmsearch and BLASTP in the alfalfa protein database using the

AtCYP450  protein  sequence.  Then  by  exploring  MsCYP  gene  structures,  tandem  and  segmental  duplication  events,  and  evolutionary

relationships  with  CYP450s  in  other  plants,  potential  MsCYPs  that  respond  to  salt  stress  were  screened.  Candidate  genes  were  selected  for

transient  expression  in  tobacco  and  heterologous  overexpression  in Arabidopsis for  salinity  response.  This  study  provides  a  foundation  for

verifying the function of MsCYPs in improving the quality of agricultural products.
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 Introduction

With the ever-changing environment and climate,  soil  salin-
ization  has  become a  major  environmental  issue.  High salinity
stress  expands  the  area  of  crop  damage  and  threatens  both
crop  quality  and  yield[1].  Salt  stress  is  a  limiting  factor  in  crop
growth  and  development.  Generally,  plants  under  salt  stress
have a  larger  proportion of  roots  and thus  favor  the  retention
of  toxic  ions[2].  Additionally,  salt-tolerant  species  accumulate
Pro  and  GB  for  osmotic  regulation[3],  but  accelerate  starch
consumption  to  cope  with  salt  stress[4].  It  is  also  well  known
that  salt  induces  oxidative  stress  in  plants;  in  response,  salt-
tolerant  plants  exhibit  an  upregulation  of  antioxidant
defences[5].

Alfalfa  (Medicago  sativa L.)  is  a  widely  planted  perennial
forage  crop  with  a  well-developed  root  system,  rich  nutrition,
and a certain level of stress resistance. Alfalfa can be used as a
raw  biological  material  for  ethanol  production  and  has  great
potential  for  the  future  energy  revolution.  It  is  also  a  soil  and
water conservation plant with important economic and ecolog-
ical  functions[6−8].  Although  alfalfa  is  rich  in  nutrients  and  has
high  ecological  adaptability,  it  has  some  limitations  with
respect to agricultural production. At this stage, it is important
to use molecular breeding technology to breed highly resistant
dominant varieties.

CYP450  monooxygenases  (CYP450s)  are  enzymes  that
contain  heme-thiolate  domains  and  play  important  roles  in

plant  growth,  flavonoid  synthesis,  and  other  metabolic  path-
ways[9].  CYP450s  in  plants  constitute  the  largest  family  of
enzymes related to plant metabolism, containing 127 subfami-
lies and accounting for approximately 1% of the total genes in
the  plant  genome[10,11].  CYP450s  have  a  conserved  heme
domain sequence, FxxGxRxCxG — usually located in the endo-
plasmic  reticulum,  mitochondria,  Golgi  apparatus,  and  other
organelle  membrane  systems  —  that  combines  with  different
substrates  to  catalyze  reactions.  Based  on  their  evolutionary
relationships,  plant  CYP450s  are  divided  into  11  clans  (CYP51,
CYP74,  CYP97,  CYP710,  CYP711,  CYP727,  CYP746,  CYP71,
CYP72, CYP85, and CYP86); however, new families are still being
discovered[9,10].  Since  the  discovery  of  CYP450s,  members  of
the CYP450 protein family of many plants,  including Arabidop-
sis,  rice,  corn,  and  thistle  alfalfa  (Medicago  truncatula),  have
been  isolated  and  identified[10,12].  Numerous  studies  have
shown  that  CYP450s  in  plants  participate  in  the  synthesis  of  a
variety  of  primary and secondary metabolites,  such as  phenyl-
propanes, terpenes, flavonoids, alkaloids, fatty acids, and plant
hormones. CYP450s also participate in the synthesis of cell wall
structural  components,  protection  against  pests  and  diseases,
and the decomposition of toxic substances, such as herbicides
and  pesticides[13].  CYP51G,  CYP85A,  CYP90B,  CYP710A,
CYP724B,  and  CYP736A  of  the  CYP450  family  are  relatively
conserved  in  the  plant  kingdom,  and  are  mainly  involved  in
primary  metabolism  related  to  the  biosynthesis  of  sterols,
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steroid  hormones,  saponins,  phenylpropanes,  and  auxins,  as
well as in terpene metabolism[14,15]. CYP716, CYP72, CYP88, and
other CYP450s play important roles in the structural diversifica-
tion and functionalization of terpenoids.

In M.  truncatula,  CYP716A12  has  a  catalytic  effect  on β-
vanilla, converting it to oleanolic acid. CYP93B10 and CYP93B11
play  important  roles  in  flavonoid  synthesis,  Hansen  et  al.[16]

demonstrated  that  CYP716A47  regulates  ginsenoside  synthe-
sis. Arabidopsis AtCYP79B2 and AtCYP79B3 catalyze the trypto-
phan synthesis of indole acetaldoxime, an auxin precursor, and
Arabidopsis AtCYP85A2  participates  in  brassinosteroid  synthe-
sis.  Transgenic  plants  with  ectopic  AtCYP79B2  overexpression
exhibited  traits  such  as  dwarfing  and  sterility.  Plant  CYP71,
CYP72, CYP76, and other subfamily members exhibit enhanced
resistance to harmful foreign substances, while the overexpres-
sion of CYP71A10 in soybeans and heterologous expression of
ginseng CYP736A12 in Arabidopsis enhanced plant tolerance to
phenylurea herbicides. Under drought stress, the expression of
the  tobacco  ABA  hydroxylase  genes  CYP707A1,  CYP94C1,  and
CYP94B3 significantly increased.

Although  CYP450s  represent  a  large  gene  family  in  plants,
the  functions  of  most  CYP450s  remain  unidentified;  addition-
ally, few CYP450s have a high similarity in amino acid sequence.
There are few studies on the role of CYP450s in plant tolerance
to  abiotic  stresses,  such  as  high  temperatures,  drought,  and
salt. Previous studies have shown that most expressed CYP450s
contain  cis-acting  elements  —  such  as  the  MYB-binding  site,
ACGT  core  sequence,  or  TGA-box  —  involved  in  plant  resis-
tance. Despite previous research on the structure and function
of  CYP450s,  most  studies  on  CYP450s  have  focused  on  the
secondary  metabolites  of  models  and  medicinal  plants,  and
their  effects  on  pest  and  disease  resistance.  Few  studies  have
been conducted on the regulatory effects of CYP450s on plant
resistance,  especially  regarding  salt  tolerance  in  forage  plants.
In  a  previous  study,  using  transcriptomic  data  analysis,  we
found that many CYP450 genes in alfalfa responded positively
to  salt  stress.  It  was  thus  indicated  that  these  CYP450  genes
play important roles in salt stress and regulate plant adaptabil-
ity to coercion.

CYP450s  play  a  crucial  role  in  the  regulation  of  flavonoid
synthesis and plant growth; however,  members of the CYP450
family  in  alfalfa  have  not  been  analyzed  and  identified  at  the
genomic  level.  We  therefore  aimed  to  identify  the  MsCYP  (M.
sativa CYP450)  genes  involved  in  the  salt  stress  response  and
quality  of  alfalfa via genomic  sequencing,  as  well  as  analyze  a
CYP450  gene  model,  phylogenetic  relationships,  chromosome
locations, and other structural features. The expression patterns
of  key  CYP450  genes  were  analyzed  using  RNA-seq  (RNA
sequencing)  and  RT-qPCR  (Real  time  quantitative  PCR).  This
study  therefore  lays  the  foundation  for  the  exploration  of
CYP450  gene  function,  and  provides  valuable  information  for
improving alfalfa varieties under high stress.

 Materials and methods

 Identification of CYP450 genes in alfalfa
The  genome  sequence  was  downloaded  from  the  Alfalfa

Genome Project website (https://Figureshare.com/articles/data
set/Medicago_sativa_genome)[17].  The  HMM  (Hidden  Markov
Model)  of  the  CYP450  domain  (PF00067)  was  obtained  from
Pfam (http://pfam.xfam.org/family/PF00067#curationBlock) and

used to search for homologous sequences in the alfalfa protein
sequence  file  using  hmmer-3.0-windows.  Furthermore,  the
CYP450 sequences of Arabidopsis were used to blast the alfalfa
protein  file  (e-value  1e−5).  The  total  protein  sequences  were
obtained by combining these two methods. To confirm the reli-
ability  of  the  search,  all  candidate  sequences  obtained  were
checked  using  Pfam  (http://pfam.xfam.org/search#tabview=
tab1)  and  NCBI-CDD  (https://www.ncbi.nlm.nih.gov/Structure/
bwrpsb/bwrpsb.cgi)  for  conserved  domain  identification.  Re-
dundant sequences were removed, and nonredundant CYP450
sequences  were  used  for  sequence  alignment  and  further
analyses,  including  the  determination  of  chromosomal  loca-
tion, isoelectric point, and subcellular localization.

 Phylogenetic analysis and gene structure
CYP450  protein  sequences  were  extracted  from Arabidopsis

thaliana and alfalfa. The sequences of CYP450 proteins from all
plant  species  were  compared  using  the  MAFFT  software.  The
FastTree  software  was  used  to  construct  a  phylogenetic  tree
using  the  largest  natural  control  with  a  bootstrap  value  of
1,000.  The  gene  and  coding  sequences  of  MsCYP  genes  were
used to analyze the gene structure using TBtools[18].

 Chromosomal localization and gene replication
Duplicate  genes  in  the  MsCYP  gene  family  were  identified

using  one-step  MCScanX  in  TBtools  v1.098746.  Simple  Ka/Ks
calculators  (NG)  were  employed  to  calculate  Ka  and  Ks  using
TBtools  v1.098746.  The Arabidopsis genome  sequence  was
downloaded  from https://www.ncbi.nlm.nih.gov/genome/?
term=Arabidopsis+thaliana;  the  rice  genome  sequence  was
downloaded  from https://data.jgi.doe.gov/refine-download/
phytozome?organism=Osativa&expanded=Phytozome-323;
the Glycine  max genome  sequence  was  downloaded  from
https://ngdc.cncb.ac.cn/search/?dbId=gwh&q=GWHAAEV0000
0000&page=1;  and  the M.  truncatula genome  sequence  was
downloaded  from https://www.ncbi.nlm.nih.gov/genome/?
term=Medicago+truncatula+.  Pairs  of  duplicated  genes  in M.
sativa, Arabidopsis, Oryza sativa, G. max, and M. truncatula were
analyzed  in  the  same  way  as  described  above.  The  relation-
ships between duplicates in the MsCYP gene family were plot-
ted  using  Advanced  Circo  in  TBtools  v1.098746,  and  the  rela-
tionships  between  duplicates  among  these  species  were  plot-
ted using multiple synteny plots in TBtools v1.098746.

 Prediction of cis-acting elements in the upstream
promoter of MsCYP genes

Promoter  sequences  (2,000  bp  upstream  of  the  MsCYP
genes)  were  obtained  from  the  alfalfa  genome  using  Gtf/Gff3
Sequence  Extract  and  Fasta  Extract  in  TBtools  v1.098746.  The
upstream  1,500  bp  sequences  were  prefetched  as  promoters
and  submitted  to  PlantCARE  (https://bioinformatics.psb.ugent.
be/webtools/plantcare/html/) to identify cis-acting elements.

 Plant materials and salt treatment
M.  sativa (Zhong  Mu  No.  1)  seeds  were  sown  in  soil  and

grown  for  10  d,  then  hydroponically  cultivated  for  12  d.
Tobacco  (Nicotiana  benthamiana),  and A.  thaliana were  culti-
vated  using  nutrient  soil  in  the  Plant  Growth  Laboratory  of
Ningxia University  (China).  The culture temperature was 25 °C,
and the photoperiod was 16 h light and 8 h dark.  The roots of
22-day-old alfalfa seedlings were exposed to 200 mM NaCl for 2
h  and  recovered  using  hydroponic  experiments.  The  samples
were  collected  at  three  time  points  —  before  salt  treatment
(N0), after salt treatment for 2 h (N2), and after rehydration for
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3 d (NH) — from three different plants and immediately stored
at −80 °C until further use.

 RNA extraction and qPCR
RNA  was  extracted  from  frozen  samples  using  a  MiniBEST

Plant  RNA  Extraction  Kit  (Takara  Bio  Inc.,  Shiga,  Japan).  cDNA
was  generated  with  PrimeScript™  RT  Master  Mix  (Takara  Bio
Inc.),  and  RT-qPCR  was  performed  in  triplicate  using  a  Roche
Light  Cycler  480  (Roche,  Basel,  Switzerland)  with  TB  Green®
Premix Ex Taq™ II (Tli RNaseH Plus; Takara Bio Inc.) according to
the manufacturer’s instructions. Gene-specific primers (Supple-
mental  Table  S1)  were  designed  to  amplify  the  nine  MsCYP
genes  using  Primer  Premier5.0.  Actin  was  used  as  an  internal
control  gene,  and  the  relative  expression  levels  of  these
MsCYPs were estimated via the 2−ΔΔCᴛ method.

 RNA-Seq sequencing
A  library  was  sequenced  on  an  Illumina  Novaseg  6000  plat-

form. Fastp was used to remove adapter and low quality reads
from raw data. The clean reads were then mapped to the alfalfa
genome  using  Hisat2.  Reads  counts  was  obtained  with  Htseq-
count, and differential expression analysis was performed using
the  DESeq  R  package.  Reads  counts  were  transformed  into
FPKM with R.

 Plasmid construction and genetic transformation
The full-length coding sequence of MsCYP273 was amplified

from  the  cDNA  of  alfalfa,  and  was  inserted  upstream  of  GFP
harbored by the pGreen0029 vector via homologous recombi-
nation. Relevant negative and positive controls were produced
simultaneously.  The  resulting  constructs  were  then  transiently
transformed  into  tobacco  leaves.  Fluorescence  was  detected
using  an  SP8  confocal  microscope  (Leica)  at  excitation  wave-
lengths  of  488  nm,  and  emission  wavelengths  of  495–545  nm
for  GFP,  590–670  nm  for  chloroplasts.  To  generate  MsCYP273
overexpression  lines,  the  coding  sequence  of  the  MsCYP273
protein  was  inserted  into  the  pCAMBIA1300  plasmid,  which
was  stably  transformed  into Arabidopsis using A.  tumefaciens
(GV3101) via the Arabidopsis floral  dip  method,  as  previously
described[19].

 Results

 Identification of CYP450 genes in alfalfa
To  identify  CYP450  genes  in  the  alfalfa  genome,  an  HMM

search  was  performed  against  the  alfalfa  protein  database
using BLASTP. A total of 376 MsCYP genes were identified and
named  MsCYP1–MsCYP376  according  to  their  chromosomal
locations. The number of MsCYP amino acid sequences ranged
from 120–984. The molecular weight of MsCYP proteins ranged
from  13.62–110.08  kDa,  and  the  isoelectric  point  ranged  from
4.53–10.17.  The  WoLF  PSORT  tool  predicted  that  approxi-
mately 192 (51.06%) and 100 (26.60%) MsCYPs were located in
the chloroplast and cytosol, respectively; the remaining MsCYPs
were  located  in  the  nucleus,  mitochondria,  and  peroxisomes
(Supplemental Table S2).

 Phylogenetic classification of members of the MsCYP
gene family

To investigate the evolutionary relationships of the CYP gene
family  in  alfalfa,  the  CYP450  sequences  of A.  thaliana, M.  trun-
catula, and M. sativa were used to construct a phylogenetic tree
using  FastTree  (Fig.  1).  The  MsCYP  proteins  are  divided  into

nine  major  clans:  CYP71,  CYP51,  CYP72,  CYP74,  CYP85,  CYP86,
CYP97, CYP710, and CYP711. The CYP71 clan was of the A-type,
while  the  other  clans  were  of  the  non-A-type.  CYP71,  CYP86,
CYP85,  CYP72,  CYP97,  and  CYP74  contained  236,  48,  35,  39,
three,  and  two  MsCYP  proteins,  respectively.  The  CYP51,
CYP710,  and  CYP711  clans  contained  only  one  MsCYP  protein
(Fig. 1). Many clans, including CYP71, CYP86, CYP72, and CYP74,
were  significantly  more  abundant  in M.  sativa than A.  thaliana
or M.  truncatula.  In  the  CYP711,  CYP97,  and  CYP51  clans,  the
gene phylogeny roughly followed the species phylogeny, with
the  genes  of M.  sativa displaying  a  sister-group  relationship
with M. truncatula, and one CYP450 gene in Arabidopsis closely
related to alfalfa homologs.  In particular,  the phylogeny of the
CYP85  clan  was  more  complex,  suggesting  multiple  duplica-
tion  events  during  the  evolution  of  the  dicot  CYP450  gene
family.

 Sequence analysis of the MsCYP gene family
To  understand  their  functional  regions,  conserved  motifs  of

the  MsCYPs  were  analyzed.  The  motif  distribution  of  each
MsCYP protein was analyzed using MEME,  and most  members
of  the MsCYP gene family contained motifs  5,  3,  7,  10,  and 11.
Additionally,  the  arrangement  and  composition  of  the  motifs
were  consistent  with  the  phylogenetic  tree  results.  For  exam-
ple, most CYP71 clan members contain motifs 8, 9, 2, 5, 3, 7, 4,
10,  1,  and  6;  however,  these  motifs  were  not  identified  in
CYP76, CYP200, CYP208, or CYP259. All MsCYP proteins contain
conserved  CYP450  or  P450  superfamily  domains,  and  each
MsCYP  coding  sequence  is  separated  by  introns  ranging  from
0–16.  Most  MsCYP  proteins  in  each  sample  contained  similar
numbers  of  introns;  most  members  of  the  CYP97,  CYP72,  and
CYP85 clans have more introns, whereas members of the other
clans have fewer introns (Fig. 2).  Generally, the motif composi-
tion  of  the  members  within  each  clan  was  similar,  indicating
that  the  protein  structure  was  highly  conserved  and  further
validating the reliability of the phylogenetic tree (Fig. 2).

All MsCYP proteins contained either the P450 superfamily or
CYP450  domain,  indicating  that  they  had  a  similar  nature  or
function.  The  MsCYP  sequence  contained  introns  1–13,  and
both  the  number  and  phase  of  MsCYP  genes  were  well
conserved in the same clan. For example, each MsCYP gene in
CYP706A contained two phase 0 introns. The number of introns
in the MsCYP gene of CYP724A ranged from 9–10 (Fig. 2).

 Chromosomal mapping and gene duplication of the
MsCYP gene family

Based  on  newly  published  genome-wide  data  from  alfalfa,
the distribution of MsCYPs on chromosomes was analyzed. The
376  MsCYP  genes  were  not  evenly  distributed  on  the  eight
chromosomes,  with more genes identified on chromosomes 1
and  8  (59  and  58  genes,  respectively).  A  total  of  56  MsCYP
genes  were  located  on  chromosomes  3  and  4,  44  on  chromo-
some 5, 31 on chromosomes 2 and 6, and 33 on chromosome 7
(Fig. 3).

To explore the relationship between the evolutionary expan-
sion of the MsCYP gene family and whole-genome duplication
events in alfalfa, tandem duplication and segmental replication
events  in  MsCYP  genes  were  analyzed  using  the  one-step
MCScanX  method.  A  total  of  112  MsCYP  genes  in  the  MsCYP
family  were  involved  in  tandem  duplication,  accounting  for
29.8%  of  all  MsCYP  genes.  A  total  of  64  tandem  duplication
pairs  were  obtained,  which  were  distributed  on  eight
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chromosomes; most occurred on chromosomes 3 and 4 (Fig. 3).
Only 37 genes (approximately 10%) were involved in segment
duplication,  and  19  pairs  of  segment  duplication  genes  were
obtained; these were distributed on chromosomes 1, 3, 4,  5,  6,
7, and 8. Chromosome 2 was not involved in segment duplica-
tion  (Fig.  4).  Tandem  duplication  events  are  thought  to  be  a
major driver of the expansion of the MsCYP family. Notably, six
genes (CYP30,  CYP106,  CYP121,  CYP165,  CYP191,  and CYP203)
were involved in both segment and tandem duplications.

To  further  explore  the  evolutionary  processes  of  the  MsCYP
family, four comparative syntenies of alfalfa with rice, Arabidop-
sis,  soybean,  and  thistle  alfalfa  were  constructed.  Alfalfa  and
thistle alfalfa shared the most orthologous pairs with up to 173
pairs of orthologous CYP450s,  followed by alfalfa and soybean
with  163  pairs.  We  also  identified  44  pairs  of  orthologous
CYP450s between alfalfa and Arabidopsis, and 15 pairs between
alfalfa  and  rice.  A  closer  relationship  has  been  suggested
between  alfalfa  and  thistle  alfalfa/soybean  than  between
Arabidopsis and rice (Supplemental Fig. S1).

To  explore  the  selection  pressures  acting  on  the  CYP450
gene family, Ka, Ks, and Ka/Ks values were calculated for these
gene  pairs.  All  Ka/Ks  values  of  the  duplicated  gene  pairs  from
the  alfalfa  CYP450  gene  family  were  <  0.8,  excluding
MsCYP2/MsCYP256.  Some  orthologous  gene  pairs  had  Ka/Ks
values  <  0.7;  however,  the  remaining  orthologous  gene  pairs
were highly divergent between alfalfa and Arabidopsis/soybean/
thistle alfalfa. All orthologous gene pairs were highly divergent
between  alfalfa  and  rice  (Supplemental  Fig.  S2).  These  results
suggest  that  the MsCYP gene family  underwent  strong purify-
ing selection.

 Analysis of key MsCYP genes
Using  RNA-seq  and  RT-qPCR  analyses  before  and  after  salt

stress and rehydration (N0, N2, and NH, respectively), we identi-
fied  nine  MsCYP  genes  (MsCYP273,  MsCYP272,  MsCYP275,
MsCYP266,  MsCYP271,  MsCYP267,  MsCYP268,  MsCYP89,  and
MsCYP274)  believed  to  play  vital  roles  in  the  response  to  salt
stress. These genes were highly expressed in the N2 group and
exhibited reduced expression in the N0 and NH groups (Fig. 5).

 
Fig. 1    Phylogenetic analysis of CYP genes from alfalfa, thistle alfalfa, and Arabidopsis. Different colors represent different groups.
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Fig. 2    Phylogeny, conserved motifs, and exon–intron structure of MsCYP genes.
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To  further  predict  the  function  of  these  nine  MsCYP  genes,
cis-elements in the promoters were analyzed, and 72 elements
were  identified  (Supplemental  Fig.  S3).  Most  elements  were
associated  with  development,  especially  the  light  response,
including the 3-AF1 binding site, AAAC motif, ACE, and AE box.
CAAT and TATA boxes  were  found in  the  promoter  regions  of
all MsCYP genes. The MYB-binding site, known for its role in the
drought  response,  was  identified  in  MsCYP273,  MsCYP272,
MsCYP275, MsCYP266, MsCYP268, and MsCYP89. Among these,
MsCYP273 was selected for transient expression in tobacco and
heterologous  overexpression  in Arabidopsis.  MsCYP273  was
mainly located in the chloroplasts, with some distribution in the
cell  membrane  and  cytoplasm  (Fig.  6b).  In  addition,  five
MsCYP273 overexpression lines were obtained, all of which had
an  expression  of  MsCYP273  (Fig.  6a).  Compared  to  the  wild
type, MsCYP273 overexpression  lines  demonstrated  stronger
resistance to 75 mM NaCl stress (Fig. 6c, d).

 Discussion

 Plant CYP450 gene family expansion during evolution
Cyclophilins  are  involved  in  several  physiological  processes,

including  protein  transport,  transcriptional  regulation,  signal
transduction,  mRNA  splicing,  cell  apoptosis,  and  stress  res-
ponse.  The  total  number  of  CYP450  genes  in  a  single  plant
species  is  usually  higher  than  in  animals[16].  Comprehensive
analyses  of  CYP450  gene  families  in  several  plants  have  been
published,  and gene duplication has  played an important  role

in the expansion of the gene family. A total of 62 CYP450 genes
were identified in soybeans (G. max); 54 were clustered in pairs
(27  pairs)  in  the  phylogenetic  tree[20].  In  the  apple  (Malus
domestica)  genome,  30  CYP450  genes  were  identified;  there
were  no  tandem  duplicated  gene  pairs,  and  10  segmental
duplicated  gene  pairs.  There  are  188  CYP450  genes  in Panax
notoginseng,  with eight tandem and 11 segmental  duplication
events[21].  In  the  Tartary  buckwheat  (Fagopyrum  tataricum)
genome, 285 CYP450 genes have been identified, with 62 pairs
of tandemly duplicated and 18 pairs of segmentally duplicated
genes.  A  total  of  355  CYP450  genes  were  identified  in  rice  (O.
sativa); more than half of these genes were found in 53 tandem
duplicated gene clusters, while 55 OsCYP450s were distributed
in  segmental  duplication  blocks[22].  In  this  study,  376  MsCYP
genes  were  identified  in  alfalfa;  144  genes  were  involved  in
gene  duplication,  resulting  in  64  tandemly  duplicated  gene
clusters and 19 segmentally duplicated gene pairs (Figs 3 & 4).
Thus,  gene  duplication  has  played  a  significant  role  in  the
evolution  of  the  plant  CYP450  gene  family.  In  particular,  the
Tartary  buckwheat,  alfalfa,  and  rice  CYP450  gene  families  are
prone  to  differential  expansion  due  to  tandem  duplication
during evolution.

 Many alfalfa CYP450 genes have evolutionarily
conserved functions

Gene duplication is the main source of redundancy and func-
tional  specialization  in  the  evolution  of  plant  genomes.  For
example,  the  duplication  and  neofunctionalization  of  CYP98
subfamily genes have enabled hydroxylation during rosmarinic

 
Fig. 3    Chromosomal locations of MsCYP genes. Tandem duplicates are marked with curved lines.
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acid  biosynthesis  in  some  lamiid  plants[23].  The  CYP450  KLUH/
CYP78A5  and  its  homolog,  CYP78A7,  promote  organ  growth
via  a  noncell-autonomous  signaling  pathway.  TaCYP81D5,  a
tandemly arranged CYP81D gene, confers salinity tolerance by
scavenging  reactive  oxygen  species  (ROS)  in  bread  wheat.  In
the  present  study,  we  identified  nine  key  MsCYP  genes
(MsCYP273,  MsCYP272,  MsCYP275,  MsCYP266,  MsCYP271,
MsCYP267,  MsCYP268,  MsCYP89,  and  MsCYP274),  all  of  which
were clustered in the CYP71 clan and may play vital roles in the
response  to  salt  stress  (Fig.  1).  Furthermore,  MsCYP266,
MsCYP273,  and  MsCYP275  clustered  closely  in  the  CYP736A
subfamily,  whereas  MsCYP268,  MsCYP272,  MsCYP274,  MsCYP
271, and MsCYP267 clustered closely in the CYP71D subfamily.
In  particular,  MsCYP266/MsCYP273  and  MsCYP267/MsCYP274
were segmentally duplicated gene pairs, both of which showed
similar  expression  patterns  under  salt  stress  conditions.  Thus,
further  studies are needed to explore the functional  relevance
of similar  duplicated genes to confirm whether neofunctional-
ization  and  subfunctionalization  of  alfalfa  CYP450  genes  influ-
ence the adaptation of alfalfa to diverse conditions.

 Some alfalfa CYP450 genes play an important role in
the plant response to salt stress

Salt stress is a major environmental factor that can adversely
alter  plant  growth  and  development  and  reduce  global  crop
production.  CYP450  enzymes  play  significant  roles  in  the  salt
stress  response  of  plants.  In  this  study,  we  identified  nine
MsCYP  genes  that  exhibited  increased  expression  during  salt
stress,  and  decreased  expression  during  recovery  (Fig.  5);  this
was  consistent  with  the  results  of  previous  studies.  For  exam-
ple, AtCYP709B3 is markedly induced by salt stress and remains
highly expressed, while mutant Arabidopsis plants are sensitive
to  ABA  and  salt  during  germination[24].  The  overexpression  of
PgCYP736B  in Arabidopsis confers  enhanced  resistance  to  salt
stress by decreasing hydrogen peroxide accumulation, thereby
increasing  carotenoid  levels  and  abscisic  acid  biosynthesis
gene  expression[25].  The  heterologous  expression  of  AoCY
P94B1  in Arabidopsis and  rice  seedlings  confers  salt  tolerance
by  enhancing  root  suberin  deposition[26].  PagWOX11/12a
induces  the  expression  of  PagCYP736A12  to  modulate  ROS
scavenging, thus enhancing salt tolerance in 84 K poplar (Popu-
lus alba × P. glandulosa)[27]. PtCYP714A3 is markedly induced by

 
Fig. 4    Synteny analysis of alfalfa CYP genes. Different segmental duplicate pairs are linked with different colors.
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salt  stress,  and  transgenic  rice  plants  exhibit  reduced  shoot
growth  and  enhanced  salt  tolerance[28].  OsCyP20-2,  located  in
the  thylakoid,  is  thought  to  be  involved  in  photosynthetic
acclimation  to  help  plants  cope  with  environmental  stress[29].
OsCyP2-P, localized in both the cytosol and nucleus, is upregu-
lated  in  response  to  salt  stress,  and  the  ectopic  expression  of
OsCyP2-P imparts salt stress tolerance via ROS scavenging and
ion homeostasis[30]. GhCyp1 expression was higher in the roots
and  stems,  and  overexpression  of  GhCyp1  conferred  higher
tolerance to salt stress in Pseudomonas syringae pv. tabaci infec-
tion[31].  CcCYP  is  predominantly  localized  in  the  nucleus,  and
transgenic  plants  exhibit  high  tolerance  to  major  abiotic
stresses, as evidenced by increased chlorophyll levels, biomass,
and  plant  survival[32].  In  particular,  transgenic  plants  display
higher Na (+) ion accumulation to maintain ion homeostasis in
the roots under salt stress[32].

 Conclusions

Alfalfa (M. sativa L.) is a perennial forage crop planted world-
wide that has a well-developed root system and salt tolerance.
In  this  study,  we identified nine MsCYP genes thought  to  play
vital  roles  in  the  response  to  salt  stress  that  were  highly
expressed  during  salt  stress  and  decreased  during  recovery.

Additionally,  MsCYP273  overexpression  plants  showed  stron-
ger resistance to NaCl stress than wild-type plants. In summary,
the  identification  of  these  MsCYPs  provides  a  vital  foundation
for their possible functions in stress breeding of alfalfa. Further
studies  are  needed  to  explore  the  functional  relevance  of
similar genes and confirm their functional characteristics under
diverse conditions.
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Fig. 5    Expression pattern of nine key MsCYP genes. The column indicates RNA-seq data, the red line indicates RT-qPCR data, and the error bar
indicates the standard error of the mean (three biological replicates and three technical replicates). **, p < 0.01. ns, not significant. N0 refers to
gene  expression  before  salt  treatment;  N2  refers  to  gene  expression  after  salt  treatment  for  2  h;  and  NH  refers  to  gene  expression  after
rehydration for 3 d.
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Fig. 6    Analysis of the MsCYP273 protein. (a) RT-PCR results of five MsCYP273 overexpressing lines.  (b) Subcellular localization of MsCYP273
protein. Bar = 20 µm. Bright: Bright field; GFP: green fluorescent protein of 495-545 nm; CHF: chloroplast autofluorescence of 590–670 nm. (c)
Phenotype of MsCYP273 overexpressing lines (MsCYP273-line2 and MsCYP273-line10) under salt  stress.  (d)  Root length analysis  of MsCYP273
overexpressing lines (MsCYP273-line2 and MsCYP273-line10) under salt stress. Bar = 1 cm. ***, p < 0.001.
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