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Abstract
High  throughput  phenotyping  (HTP)  utilizing  both  remote  and  proximal  sensing  technologies  has  emerged  as  a  vital  tool  for  evaluating  the

biophysical  characteristics  of  turfgrass.  This  study  was  conducted  to  assess  the  genetic  diversity  of  hybrid  turf  bermudagrass  using  spectral

reflectance indices and use of  HTP for  germplasm enhancement.  A total  of  50 accessions of  the hybrid bermudagrass (Cynodon  dactylon × C.
transvaalensis)  were  grown in  the greenhouse in  three replications.  The spectral  data  were  gathered using a  height  independent  active  crop

canopy sensor, 'RapidScan CS-45', which measures canopy reflectance at the wavelengths of 670 nm, 730 nm, and 780 nm. The reflectance data

were used to derive three indices related to canopy photosynthetic area and other three related to chlorophyll content. All vegetation indices

showed significant genotype-to-genotype variation.  Ten superior genotypes were identified using the multi-trait  genotype-ideotype distance

index (MGIDI)  as a selection differential.  On 48 of the genotypes that were established in the field in two replications,  establishment rate and

winter color data were also gathered. The results of a linear regression analysis demonstrated the importance of spectral vegetation indices (SVI)

for the turfgrass quick establishment (percentage area coverage) and winter color retention. This study brings attention to the potential use of

the proximal sensing in turfgrass germplasm enhancement for establishment speed, aesthetic value, and mild-winter color retention.
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 Introduction

The  genus Cynodon (L.)  Rich.  is  typically  grown  in  tropical,
subtropical,  and  warm  temperate  regions[1] and  has  multiple
uses of high economic and ecological significance[2]. The genus
is  comprised  of  diploid,  triploid,  tetraploid,  pentaploid,  and
hexaploid  with  x  =  9[3].  The  interspecific  hybrid  bermudagrass
(C. dactylon × C. transvaalensis; 2n = 3x = 27 and 2n = 3x = 36) is
the most widely used warm season turfgrass[4] with a consider-
able  genetic  diversity  in  morphological,  developmental,  and
adaptation attributes.  Hybrid  bermudagrasses  are  widely  used
worldwide  because  of  their  ability  to  grow  in  different  soil
types,  good abiotic  stress  tolerance,  high traffic  tolerance,  low
growing stature, and aggressive sod-forming growth habits[5,6].

While  bermudagrass  germplasm  has  considerable  genetic
variability  for  turf  characteristics,  a  lack  of  cost-effective  high
throughput  phenotyping  (HTP)  systems  that  could  provide
layered trait information has restricted the ability to dissect the
genetics of turf quality characteristics[7]. Consequently, conven-
tional  bermudagrass  breeding  is  predominantly  based  on
selection for morphological traits, growth attributes, and agro-
nomic  characteristics  (including  biotic  and  abiotic  tolerance,
and sod harvestability, etc.)[8]. This conventional selection tech-
nique  based  on  visual  evaluation  or  physical  measurement  is
subjective  technique in  which genetic  variations  of  genotypes
are  often  concealed.  Furthermore,  significant  amount  of  time,
space  and  resources  are  required  in  the  identification  of
parental  genotypes  as  well  as  in  the  selection  of  the  hybrids.

Consequently,  a  superior  turfgrass  cultivar  can  take  over  ten
years to develop without a state-of-the-art germplasm enhance-
ment program[9].

To better understand crop responses to various environmen-
tal  conditions  or  to  select  genotypes  in  plant  breeding  activi-
ties, spectral sensors are used to collect vegetation reflectance
or  image  data.  Depending  upon  the  wavelength  of  the  radia-
tion  as  well  as  the  characteristic  features  of  the  plant  canopy,
the electromagnetic spectrum that strikes the plant surface can
either  be  absorbed,  transmitted  through  the  plant  tissue,  or
reflected into the atmosphere[10−13]. Leaves absorb, scatter, and
transmit  sunlight  at  all  wavelengths  across  the  visible,  near-
infrared,  and  shortwave-infrared  spectrum[14].  Electromagnetic
radiation reflected from vegetation can be sensed from the visi-
ble  (400−700  nm),  near-infrared  (700−1,300  nm),  and  short-
wavelength  infrared  (1,400−3,000  nm)  regions  using  ground-
based  or  air-borne  platforms  to  diagnose  plant  physiological
status,  including  pigments,  structural  constituents,  and  water
content[15−17].  Green  plants  absorb  photosynthetically  active
radiation (PAR) (400−700 nm) as the most important source of
energy[18] and harness part of that energy in photosynthesis to
reduce CO2 into simple sugar.

Remote or proximal sensing using different optical sensors is
a  non-destructive  technique  that  has  opened  a  new  horizon
and greatly aided in identifying plant genotypes with superior
traits,  for  increased  selection  efficiency,  and  shortening  the
time  period  required  for  cultivar  development[19].  Spectral
reflectance  from  plant  leaves  and  canopies  can  be  used  to
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quickly  estimate  a  variety  of  plant  morpho-physiological,  and
biochemical  traits[20,21].  This  non-destructive  HTP  technology
allows  for  the  quick,  accurate,  and  economical  screening  of  a
large number of germplasm by identifying inherent differences
between  genotypes  or  treatments.  Numerous  traits,  including
chlorophyll content[22], mineral nutrient contents[23,24], proteins
and  amino  acids[25] have  been  estimated  in  various  plant
species.

Spectral reflectance has been used as an objective measure-
ment  of  turfgrass  visual  appearance[26] and  precision  turfgrass
management[27].  Normalized  difference  vegetation  index
(NDVI)  has been used in turfgrass for  its  good correlation with
visual  quality  ratings[28−30] and  water  stress  index[31].  Further-
more, a range of prediction models such as partial least square
regression  (PLSR)[32,33] and  regression  shrinkage  and  selection
via lasso[34] were implemented. Using PLSR, various studies esti-
mated  physiological  traits  with  a  reputable  level  of  accuracy,
including  genetic  variation  in  photosynthesis,  leaf  mass  per
area, stomatal conductance, early stress symptoms and growth
dynamics in plants[35−37].

With a  steadfast  demand to develop turfgrass  varieties  with
improved  abiotic  and  biotic  stress  tolerances[38],  there  is  a
renewed  interest  in  rapid  and in  situ phenotyping  of  turf-
grasses.  Both  ground-  and  aerial-based  platforms  that  are
equipped  with  advanced  remote  sensor  technologies  are
employed in systematic collection of multispectral images. The
implementation  of  these  remote  and  proximal  sensing  tech-
nologies  enables  to  characterize  large  numbers  of  germplasm
and  improve  cultivar  development  efficiency  to  meet  current
and future demands of the turfgrass industry.

Numerous  spectral  vegetation  indices  representing  statisti-
cal  transformations  of  canopy  spectral  reflectance  have  been
formulated  to  characterize  vegetation  canopy  status[39,40] for
optimum  crop  management  practices  or  assess  genetic  diver-
sity  within  and  among  species.  These  spectral  vegetation
indices  derived  from  plant  canopy  reflectance  image  have
become  robust  proxies  for  traditional  agronomic  traits[41].  In
addition  to  documenting  genetic  variation  for  efficient  selec-
tion  in  the  breeding  process,  these  vegetation  indices  may
accelerate  the  study  of  genes  controlling  natural  variation  in
turfgrass  biochemical  and  physiological  traits.  To  simplify  this
process,  a  universal  index  has  been  proposed  to  estimate  leaf
foliar  traits  such  as  chlorophyll  content,  nitrogen  (N)  content,
and  photosynthetic  radiation  use  efficiency  from  reflectance
data[42,43].

The amount of  canopy chlorophyll  is  a  valuable indicator  of
plant  health  and  performance  in  turfgrass  and  it  can  be  esti-
mated  using  vegetation  indices  calculated  from  reflectance  in
red-edge  and  near  infrared  (NIR)[44,45].  Considering  photosyn-
thetic  area  and  chlorophyll  content,  genetic  variability  is  par-
ticularly  important  in  turfgrass  for  fast  establishment  and
aesthetic  appeal.  This  study  was  conducted  with  the  aim  to
assess  genetic  variation  among  bermudagrass  hybrids  based
on  several  spectral  vegetation  indices  (SVI)  that  are  related  to
photosynthetic area and chlorophyll content.

 Materials and methods

 Plant materials and growth condition
In this study, a total of 50 genotypes of hybrid bermudagrass

(C.  dactylon ×  C. transvaalensis)  were  used  in  the  greenhouse,

out  of  which  48  were  planted  in  the  field  experiment.  The
hybrids  were  developed  at  Oklahoma  State  University  by
mating  various  genotypes  of  common  (tetraploid)  bermuda-
grass with African (diploid) bermudagrass.

 Greenhouse study
The plants were grown in a greenhouse at the US Arid-Land

Agricultural Research Center in Maricopa, Arizona (USA). Stolon
cuttings  from  the  genotypes  were  taken  and  planted  in  27.95
cm × 55.88 cm watertight plastic trays with 36 square cell pack
insert  filled  with  optimal  porosity  growth  mix  (coarse  sphag-
num  peat  moss  (80%−90%),  perlite  (Berger,  Saint-Modeste,
Canada). The planting of the cuttings was conducted mid April
2021. The greenhouse's growing temperature was set to 32/27
°C  (day/night)  for  the  experiment  with  the  natural  summer
season  day  light  duration.  The  plants  were  kept  in  a  well-
watered state by watering every other day with one drip emit-
ter per flat. After establishment, the plants were equally divided
into three, 12 plugs each and arranged in replications. Then the
experiment  was  laid  out  in  a  randomized  complete  block
design  with  three  replications.  To  simulate  the  same  age  and
canopy height, all the plants were mowed to approximately 7.5
cm  height  using  Makita  cordless  grass  shears  a  week  before
data collection.

Crop Circle  RapidScan CS-45 (Holland Scientific,  Lincoln,  NE,
USA),  a  height-independent  active  crop  canopy  sensor,  was
used  to  collect  the  canopy  reflectance  data  at  bands  of  670,
730, and 780 nm. Each flat was scanned for about two seconds
while the device was held steady at a height of 0.7 m above the
canopy. The data were collected twice from all  the three repli-
cates the same day and the average was considered for analy-
sis. From the reflectance data recorded at 670, 730, and 780 nm
bands,  six  SVI  known  to  estimate  photosynthetic  area  and
chlorophyll content were calculated (Table 1).

 Field study
The field experiment was established with 48 genotypes in a

randomized complete block design with two replications. Field
plots  were  planted  late-August  2021  at  Maricopa  Agricultural
Center  near  Maricopa,  Arizona,  USA  (33.079  °N,  111.977  °W).
Four plugs were planted at  a  square of  0.5  m in the middle of
1.5 m × 1.5 m plot. The canopy reflectance data were collected
following the method described above from the center of each
plot  twice  in  mid-July  2022.  The  establishment  rate  was  visu-
ally  estimated every  month and recorded in  percentages  until
at  least  90% of  the  1.5  m × 1.5  m square  plot  area  is  covered.
Winter color data were recorded mid December 2021 and mid
January 2022 using 1−9 scale (1 = brown, 9 = fully green).

Table  1.    Published  formulae  for  different  spectral  vegetation  indices
used in the study.

Spectral reflectance indices Formula References

Normalized difference vegetation index
(NDVI)

(R780 − R670)/
(R780 + R670)

[46]

Normalized difference red edge index
(NDRE)

(R780 − R730)/
(R780 + R730)

[47]

The chlorophyll index using red edge
(CIRE)

(R780/R730) −1 [48]

Normalized difference vegetation
index-Red-Red edge (NDRRE)

(R730 − R670)/
(R730 + R670)

[49]

The MERIS terrestrial chlorophyll index
(MTCI)

(R780 − R730)/
(R730 − R670)

[50]

Canopy chlorophyll content index
(CCCI)

NDRE/NDVIR [51]
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 Statistical data analysis
The  data  were  tested  for  normal  distribution  and  the  abso-

lute values of skewness and kurtosis was less than 1.0, suggest-
ing  underlying  assumption  in  parametric  testing  is  fulfilled.
Analysis of variance was conducted using the aov() function in
R [52].  It  was  thought  that  the  genotype  had  a  random  effect.
For mean separation, the least significant difference (LSD) at p ≤
0.05 probability was utilized.

Scatter  plot,  frequency  distribution,  and  correlation  analysis
among the indices was conducted using the PerformanceAna-
lytics  package  in  R[52].  The  range  of  indices  among  the  acces-
sions was depicted using box plots.

To identify superior genotypes among the 50 bermudagrass
genotypes evaluated based on their performance for all the in-
dices, a multi-trait selection index analysis was performed using
the multi-trait genotype-ideotype distance index (MGIDI)[53]. To
illustrate  the  correlations  between  the  six  indices,  principal
component analysis was computed using genotype means.

y = Xb+Zu+ e

To  select  superior  genotypes  based  on  multiple  spectral
indices,  each  index  was  analyzed  following  the  mixed-effect
model: , where y is an n[ = ∑r

j = 1(gr)] × 1 vector of
response variable, i.e. the response of the ith genotype in the jth

block; b is an 1 × r vector of unknown and unobservable fixed
effects  of  block  b;  u  is  an  m[  =  1  ×  g]  vector  of  unknown  and
unobservable  random  effects  of  genotype  u;  X  is  an  n  ×  r
design matrix of 0 s and 1 s relating y to b; Z is an n × m design
matrix of 0 s and 1 s relating y to u; and e is an n × 1 vector of
random errors[53].

MGIDIi = [
∑ f

j = 1(γi j−γ j)
Estimation  of  the  multi-trait  genotype-ideotype  distance  in-

dex (MGIDI) was calculated using 2]0.5,

where  MGIDIi  is  the  multi-trait  genotype–ideotype  distance

index for the ith genotype; γij is the score of the ith genotype in
the jth factor; and γj is the jth score of the ideotype.

 Results

 Data distribution and genetic variation
Each  of  the  indices'  data  distribution  and  density  heatmap

are shown using a modified box and whisker plot (Fig. 1).  As a
result, the MTCI has a wide range, ranging from 0.7 to 1.2 with a
mean value of 0.9. The average chlorophyll index (CIRE) was 0.5,
with a range of 0.29 to 0.75. NDVI and NDRRE had intermediate
ranges,  while  NDRE  and  CCCI  exhibited  narrower  ranges,
distributed quite near to the mean than the others.

The  analysis  of  variance  revealed  significant  differences
among  the  genotypes  for  all  the  estimated  indices  from  the
reflectance  data  taken  at  670,  730,  and  780  nm,  despite  vari-
ances in the ranges of indices (Table 2). These variations among
genotypes  call  for  additional  investigation  to  determine  the
role of various SVI in identifying superior genotypes among turf
bermudagrass experimental hybrids.

Data  from  the  performance  analysis  of  50  genotypes  of
hybrid bermudagrass were displayed as scatter plots, frequency
distributions, and relationships between the six indices (Fig. 2).
A  histogram  with  a  data  distribution  curve  traced  diagonally
showed  that  the  data  were  distributed  normally  or  nearly  so.
The scatter plots and regression lines used to trace them high-
light  the  correlation  between  the  indices.  A  linear  regression
model can account for most of the relationship. MTCI and CCCI,
however,  displayed  a  non-linear  relationship  with  the  other
indices.

The correlation coefficients among the indices indicated that
NDVI  was  highly  correlated  with  NDRRE  (r  =  0.98),  CIRE  (r  =
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Fig. 1    Density heatmap of the range of indices used to evaluate 50 turf type bermudagrass genotypes.
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0.76),  and NDRE (r  = 0.76).  NDRE was perfectly  correlated with
CIRE  (r  =  1.00).  It  was  also  highly  positively  correlated  with
NDRRE (r = 0.62) and MTCI (r = 0.47). CIRE was highly correlated
with  NDRRE  (r  =  0.62).  Similarly,  MTCI  and  CCCI  were  highly
correlated  (r  =  0.95)  but  were  weakly  or  negatively  correlated
with the rest of the indices used in this study. As such CCCI was
negatively  correlated  with  NDRRE  (r  =  −0.64)  and  NDVI  (r  =
−048).

 Multi-indices selection
Principal component analysis using MGIDI revealed two prin-

cipal components accounting for a total of 99.8% (PC1 = 67.3%
and  PC2 =  32.5%)  of  the  variations  in  spectral  reflectance
among the genotypes.

Factor  analysis  using  indices  as  selection  differentials
selected  OSU2102,  OSU2120,  OSU2053,  OSU2108,  OSU2039,

OSU2123,  OSU2075,  OSU2015,  OSU2118,  and  OSU2124  as
superior over the others (Fig.  3).  On the other hand, OSU2106,
OSU2109,  and  OSU2037  were  very  close  to  the  threshold  line.
Tifway,  which was included as a check was very close to these
three. The other cultivar used as a check, TifTuf was not close to
the  selected  lines  and  had  average  MGIDI.  According  to  the
selection index analysis, OSU2115 and OSU2114 were the least
in MGID index and forms the base of the index.

Factors  analysis  to  the  MGIDI  indicated  that  genotypes
OSU2102  and  OSU2039  have  strong  contribution  in  factor  1
(FA1)  (Fig.  4).  OSU2053,  OSU2075,  OSU2123,  OSU2015,
OSU2118,  and  OSU2124  have  strong  contribution  to  factor  2
(FA2)  (MTCI  and  CCCI).  The  smallest  contribution  of  FA1  on
OSU2053  and  OSU2075  suggests  that  these  genotypes  have
high measure in SVI related to chlorophyll content but weak in
SVI  related  to  photosynthetic  area.  On  the  other  hand,

Table 2.    Analysis of variance for hybrid bermudagrass spectral reflectance indices calculated using published formulae.

Source DF
Mean squares

NDVI NDRE CIRE NDRRE MTCI CCCI

Replication 2 0.0023 0.0003 0.0024 0.0035* 0.0341* 0.0025*
Genotype 49 0.0107*** 0.0011*** 0.0111*** 0.0105*** 0.0208*** 0.0018***
Error 98 0.0009 0.0002 0.0017 0.0010 0.0091 0.0006

DF = Degree of freedom; NDVI = Normalized difference vegetation index; NDRE = Normalized difference red edge index; CIRE = Chlorophyll index using red
edge;  NDRRE  =  Normalized  difference  vegetation  index  red-red  edge;  MTCI  =  MERIS  terrestrial  chlorophyll  index;  and  CCCI  =  Canopy  chlorophyll  content
index; *, **, *** = significant at p = 0.05, 0.01, or 0.001, respectively.
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Fig.  2    Scatter  plots,  frequency  distributions,  and  correlations  among  the  six  spectral  reflectance  indices  used  to  evaluate  50  hybrid
bermudagrass genotypes for genetic variation based on canopy reflectance at different wavelengths.
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OSU2102  has  the  smallest  contribution  of  FA2  indicating  its
good  photosynthetic  area  but  weak  in  chlorophyll  content.
Genotypes OSU2039 and OSU2015 were selected based on the
modest  contribution  of  both  factors  (FA1  and  FA2)  implying
their good photosynthetic area and chlorophyll content.

 Regression analysis of indices for establishment and
winter color

Simple  linear  regression  was  conducted  to  test  the  predic-
tive  ability  of  two  vegetation  indices  (NDVI  and  CIRE)  that  are
related  to  photosynthetic  area  and  chlorophyll  content  for
spreading (establishment rate) and two others (MTCI and CCCI)
that  are  related  to  chlorophyll  content  for  winter  color  reten-
tion (Fig. 5). There was significant (p < 0.10) positive correlation
of  NDVI  and  CIRE  with  establishment  rate.  Similarly,  MTCI  and
CCCI showed significant (p <0.05) correlation with winter color.
The  extent  of  spreading  regressed  with  two  spectral  indices
revealed  the  important  relationship  of  photosynthetic  area
with  shoot  growth  rate.  The  likely  importance  of  chlorophyll
content for fall and winter color retention as measured by CCCI,
MTCI, and CIRE was also high.

 Discussion

From spectral reflectance data of hybrid bermudagrass selec-
tions  captured  at  670  nm,  730  nm,  and  780  nm  bands,  we
calculated six different vegetation indices related to photosyn-
thetic  area  (NDVI,  NDRE,  and  NDRRE)  and  chlorophyll  content
(CIRE,  MTCI,  and  CCCI).  These  six  indices  were  calculated  to
capture  physiological  properties  of  the  plants  such  as  chloro-
phyll  content  and  photosynthetic  area  at  the  leaf  and  canopy
scales[54]. Chlorophyll is the most important plant pigment that
largely  influences  photosynthetic  capacity  for  normal  plant
growth  and  survival[55−57].  As  photochemical  reflectance  index
serves  as  an  indicator  of  photosynthetic  radiation  use  effi-
ciency[58],  inherent  genetic  differences  among  the  bermuda-
grass  hybrids  investigated  evidently  contributed  to  the  varia-
tion in vegetation indices.

Analysis of spectral reflectance data in bermudagrass variety
trials  demonstrated  it  is  a  promising  tool  to  reduce  time  and
improve  precision  of  selection[59].  Spectral  reflectance  in  the
red edge spectrum (680 nm to  780 nm)  is  valuable  for  assess-
ment of vegetative chlorophyll status and leaf area index inde-
pendently of ground cover variations[60,61]. Bell et al.[62] reported
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Fig. 3    Genotype rankings for multi-trait genotype-ideotype distance index (MGIDI). The selected genotypes based on MGIDI index are shown
in red.
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the effectiveness of optical sensing as a quantitative and rapid
field  estimates  of  turfgrass  shoot  growth  rate.  This  indicates
that  spectral  reflectance  could  be  used  for  detection  of  geno-
typic differences.

The  analysis  of  variance  revealed  highly  significant  differ-
ences  among  the  studied  genotypes  for  all  the  six  vegetation
indices.  Since  spectral  vegetation  indices  such  as  NDVI  are
highly  correlated  with  turfgrass  visual  assessment  rates,  shoot
density,  and  turf  chlorophyll  content[27,28],  the  statistically
significant  difference  among  the  genotypes  for  the  indices
reflect  their  inherent  genetic  variation.  As  the experiment  was
conducted  under  controlled  environment,  confounding  effect
of environmental factors in the result is minimal.

The  correlation  analysis  among  the  six  indices  showed
mostly  positive association except CCCI  with NDVI  and NDRRE
as well as MTCI with NDRRE. The correlation coefficients among
the  indices  revealed  a  general  tendency  that  genotypes  with
high  photosynthetic  area  are  low  in  chlorophyll  content.
Although different  formulae are  used for  NDRE and CIRE,  they
had perfect correlation. Furthermore, indices estimating chloro-
phyll  content  such  as  MTCI  and  CCCI  were  correlated  with
green  color  retention  in  chilling  temperature.  It  has  been
known  that  chlorophyll  content  decreases  under  cold  stress,
probably  because  of  low  temperature  suppressed  chlorophyll
biosynthesis enzyme activity[63,64]. The observed positive corre-
lation of MTCI and CCCI is attributed to the chlorophyll content
synthesized during normal growth period.

A  previous  application  of  spectral  reflectance  for  quantita-
tive  measures  of  turfgrass  performance  in  hybrid  bermuda-
grass  variety  trial  demonstrated  reasonable  relationship
between  vegetation  indices  and  turfgrass  quality  and  percent

green  cover  under  field  condition[59].  A  study  conducted  on
different species of turfgrass quality aspects under different soil
types and irrigation treatments reported variation in sensitivity
to  a  deficit  irrigation  on  turfgrass  quality[65].  In  this  particular
study,  NDVI,  soil  adjusted  vegetation  index  (SAVI)[66],  and  the
visible  atmospherically  resistant  index  (VARI)[67];  and  the  grass
water  stress  index  consistently  showed  a  non-linear  relation-
ship with the irrigation rate. Bartlet et al.[68] also reported near-
linear correlation of NDVI to the proportion of PAR intercepted
and net carbon dioxide exchange rates in grasses.

The  result  of  our  study  suggested  that  the  spectral  vegeta-
tion indices are applicable for the assessment of genetic varia-
tion and turf performance of different turfgrass germplasm. The
application of optical sensors in turfgrass germplasm character-
ization  using  these  set  of  indices  is  vital  as  vegetation  indices
were  highly  heritable  and  phenotypic  selection  based  on  the
indices would be effective[69]. As variation in foliar reflectance at
different  wavelengths  of  the  electromagnetic  spectrum  is
specific  to  different  chemical  and  structural  components  of
leaves[15,54],  differences  in  canopy  reflectance  among  crop
genotypes is imminent. The reflectance spectrum of a leaf and
difference in this reflectance spectrum can be a useful source of
biochemical  and  physiological  information  as  a  function  of
genetic variation[12].

We  applied  a  recently  developed  selection  index  that
account  for  multiple  indices  to  identify  superior  genotypes.
Based  on  a  powerful  tool  to  analyze  plant  multivariate  data
(MGIDI)[53], we could stratify the genotypes based on their rank
for  the  indices.  With  the  twenty  percent  selection  set,  we
identified ten genotypes that were superior for the indices. The
selection  of  plants  based  on  multi-trait  selection  indices  has

 
Fig. 4    The strength and weakness view of the selected genotypes with the proportion of the contributing factors to the computed multi-trait
genotype-ideotype distance index (MGIDI). The dashed line represents the average of the two factors (FA1 and FA2).
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been  practiced  as  the  best  strategy  since  the  development  of
discriminant  function  for  plant  selection[70].  Regularized  selec-
tion indices that integrate techniques commonly used in high-
dimensional  phenotypic  regressions  and  vegetation  indices
commonly  used  to  predict  agronomic  traits  offer  consistently
higher  accuracy  than  those  achieved  by  standard  selection
indices[71]. This implies that multi-trait selection index that inte-
grates all the six reflectance indices is better than an individual
vegetation  reflectance  index  to  identify  a  better  performing
genotype.

Breeder-friendly  HTP  technologies  based  on  spectral  vege-
tation  reflectance  can  produce  data  on  different  phenotypes.
Prediction  of  breeding  values  of  genotypes  based  on  these
data  can  accelerate  genetic  gains  and  boost  translational
research[72].  As  spectral  reflectance  of  plants  is  closely  associ-
ated  with  inherent  plant  characteristics  or  growing
conditions[19], selection based on spectral indices is expected to
improve genetic gains for different important traits. A potential
limitation  of  the  study  is  that,  we  replicated  the  experiment
three times in the greenhouse and two times in the field due to
space limitations in the greenhouse and irrigation treatment in
the field.
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