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Abstract
The study of sexual and evolutionary differences has long been imperative in the field of biology. Unlike animals, dioecious angiosperms account

for only about 6% of the total. Buffalograss (Buchloe dactyloides) plays a vital role in environmental restoration, creating economic benefits and

promoting the high-quality development of the grassland and turf industries. Its natural populations contain differing ratios of male, female, and

monoecious plants. The value of buffalograss for studying the sex differentiation mechanism in plants cannot be ignored. However, few studies

have  investigated  transcript  annotation  and  complete  mRNA  structure  in B.  dactyloides,  and  the  pathways  of  species-specific  factors  in  sex

differentiation  remain  unknown.  We  integrated  the  full-length  transcriptome,  second-generation  transcriptome,  and  metabolome  to  specify

candidate  factors  influencing  sex  differentiation.  We  identified  110,870  full-length  transcripts  and  obtained  100,362  (90.52%)  transcript  and

annotation  information.  Then  we  identified  49,448  differentially  expressed  genes  (DEGs)  and  3,070  differentially  accumulated  metabolites

(DAMs)  in  female,  male,  and  monoecious  leaf  samples.  The  co-enrichment  analysis  indicated  that  sexual  differentiation  was  regulated  by

glutathione  metabolism,  photosynthesis,  plant  hormone  biosynthesis,  catabolism,  and  signaling.  The  identification  of  DEGs  and  DAMs  that

participate in glutathione metabolism,  photosynthesis,  abscisic  acid (ABA),  cytokinin (CTK),  and gibberellin (GA) biosynthesis,  catabolism,  and

signaling has helped illuminate the roles of plant hormones in the sex differentiation of B. dactyloides.  The full-length transcriptomic data will

facilitate  additional  studies  on  functional  genes.  Integration  of  transcriptomic  and  metabolomic  data  advances  knowledge  of  the  molecular

mechanism of sex differentiation and provides information for B. dactyloides breeding programs.
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 Introduction

Unlike  animals,  dioecious  angiosperms  account  for  only
about  6%  of  the  total.[1].  In  many  cases,  dioecious  plants
provide  better  tools  for  understanding  the  genetics  of  sex
determination  than  dioecious  animals[2].  Buffalograss  (Buchloe
dactyloides (Nutt.)  Engelm.)  is  a  perennial,  stoloniferous,  low
herbaceous,  and low-input ecological  grass[3].  Buffalograss  is  a
dioecious  plant,  and  a  few  are  hermaphroditic.  Buffalograss
comprises  polyploid  polymorphisms  (x  =  n  =  10),  including
diploid, tetraploid, pentaploid, and hexaploid individuals[4]. The
turf  quality  of  the  female  plant  in B.  dactyloides is  better  than
that  of  the  male  as  when  the  male  plant  enters  the  flowering
stage,  there  is  a  distinct  yellow  color  due  to  the  flower  shaft
being  higher  than  the  bush,  and  the  female  plant  does  not
have  such  a  problem[5].  It  was  reported  that  there  are  no  sex-
determining heteromorphic chromosomes, and sex determina-
tion  is  linked  to  gene  expression  and  gibberellin-induced
morphological alterations in buffalograss[4]. Studies on B. dacty-
loides have  focused  on  variety  breeding  and  improvement[6,7],
physiological  differentiation  in  response  to  biotic  and  abiotic
stress,  and  phenotypic  identification.  However,  the  transcrip-
tional  information  of B.  dactyloides,  especially  in  complete

mRNA  sequences,  alternative  splicing  (AS)  events,  and  long
non-encoding  RNAs  (lncRNAs),  is  still  largely  unknown.  More-
over,  the  large  number  of  unannotated  transcripts  limits  the
research  on  the  mechanisms  of  sex  differentiation  of B.  dacty-
loides.

Plants  have  complex  transcriptional  processes;  transcrip-
tome research is critical to understanding plant life processes[8].
The  RNA-seq  technology,  based  on  Illumina  sequencing  plat-
forms, has significantly higher sequencing depth and a reduced
error rate, resulting in substantially higher genome coverage[9],
allowing  us  to  better  comprehend  critical  gene  expression
levels  and  regulatory  mechanisms[10].  However,  RNA-seq  data
cannot  systematically  and  accurately  collect  or  assemble
complete transcripts or identify transcripts of isoform, homolo-
gous, superfamily, or allele expression, making it insufficient to
understand  the  transcriptome  and  underlying  biological
processes.  Instead  of  interrupting  RNA  fragments,  full-length
transcriptomes  employing  PacBio  single-molecule  real-time
(SMRT)  sequencing  platforms  can  directly  reverse  full-length
cDNA.  Ultra-long  reads  (median  10  kb)  from  the  platform
contain a single complete transcript sequence[11,12]. Assembly is
not  required  for  post-analysis,  and  what  is  measured  is[13].
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Moreover, the response to metabolites is more specific than the
general  response  seen  at  the  transcript  level[14].  At  present,
comprehensive  investigations  of  alterations  in  metabolite
levels remain rare. It is particularly true for the joint and parallel
analysis of sex differentiation at two levels of genome informa-
tion  processing:  the  transcriptomic  and  the  metabolomic.
However,  the  integrative  analysis  of  metabolites  and  tran-
scripts  helps  identify  genes  and  small  molecules  involved  in
critical biological processes[15,16].  We completed the full-length
transcriptome  sequencing  analysis  using  the  transcriptome
analysis  methods.  We  explored  the  complete  mRNA  structure
features  of B.  dactyloides and  completed  the  identified  tran-
script function annotation. We further investigated the underly-
ing transcriptional  mechanism of B.  dactyloides sex differentia-
tion  by  integrating  Illumina  RNA-seq  data  and  metabolomic
data.  This  work  will  effectively  provide  helpful  information
about the transcriptome of B. dactyloides. We expect it will offer
essential  resources  for  further  research  on  sex  differentiation,
functional  gene  identification,  and  variety  breeding  studies  in
B. dactyloides.

 Materials and methods

 Plant materials and RNA sample preparation
Buchloe  dactyloides (cv.  Texoka)  were  vegetatively  propa-

gated  in  an  intelligent  greenhouse  at  the  Beijing  Academy  of
Agricultural and Forestry Sciences (Beijing, China). In April 2022,
we  harvested  female,  male,  and  monoecious  plants'  roots,
stolon, flowers, and leaves as materials. All samples were frozen
in  liquid  nitrogen  and  stored  at  −80  °C  for  further  investiga-
tions.  To identify as many transcripts as possible,  we extracted
the total RNA from all organ materials of buffalograss for SMRT
sequencing.  However,  in  practical  application,  we  completed
sex identification before blooms. We selected leaves of female,
male,  and  monoecious  plants  for  Illumina  and  metabolite
sequencing.  First,  we extracted total  RNA using the  plant  RNA
kit  (Omega,  GA,  USA).  Second,  the  purity,  concentration,  and
integrity  of  total  RNA  were  assessed  using  ND-1000  spec-
trophotometer  (NanoDrop  Technologies,  DE,  USA)  and  2100
bioanalyzer (Agilent Technologies, CA, USA).

 Full-length library construction and PacBio SMRT
sequencing

We  mixed  RNA  from  female,  male,  and  monoecious  plants'
roots,  stolons,  flowers,  and  leaves  into  one  sample.  Following
the  qualification  of  the  sample,  a  full-length  library  was
constructed  with  no  size  selection.  After  the  full-length  library
passed quality control, we performed full-length transcriptome
sequencing  based  on  the  PB  PacBio  Sequel  II  platform.  Then
full-length transcriptome sequencing data were analyzed from
raw  reads  in  three  steps[17].  First,  we  extracted  and  polished
circular  consensus  (CCS)  sequences  using  full  passes  ≥ three
and sequence accuracy > 0.9. Next, we classified the full-length
transcripts  by  detecting  whether  5'  and  3'  cDNA  primers  and
poly(A)  tails  in  CCS sequences.  Finally,  we classified full-length
non-chimeric  (FLNC)  transcripts  to  recognize  consensus  iso-
forms,  high-quality  isoforms (accuracy > 0.99),  and low-quality
isoforms  using  the  SMRTLink  software.  We  used  CD-HIT  v4.6.1
software[18] to  merge  highly  similar  sequences  and  remove
redundancy. The low-quality consensus isoforms were polished
based  on  the  corresponding  Illumina  sequencing  data  using
proovread software[19].

 Full-length transcriptome structure analysis
We  conducted  the  structure  analysis  with  non-redundant

FLNC  transcripts  identified  by  the  full-length  transcriptome,
including CDS prediction, AS events, and SSR identification and
analysis.  We  used  TransDecoder  (v5.0.0)  software[20] to  predict
the reliable CDS and their corresponding protein sequences of
the transcript. The AS events prediction method referred to the
report  following  the  three  alignments[21].  We  screened  tran-
scripts  with  a  length  >  1,000  bp  and  completed  SSR  analysis
utilizing MISA software[22].

 Identification of regulatory proteins, lncRNAs and
lncRNA target

We used iTAK software[23] with default parameters to predict
regulatory  proteins,  including  transcription  factors  (TFs),  tran-
scriptional  regulators  (TRs),  and  protein  kinases  (PKs)  in B.
dactyloides.  We  filtered  out  the  putative  protein-coding  RNAs
before  lncRNAs  prediction.  We  used  CPC[24],  CNCI[25],  CPAT[26],
and  Pfam[27],  to  screen  >  200  bp  transcripts  in  length  that
contain  two  or  more  exons.  The  intersection  of  the  four  sets
was applied in the following lncRNA analysis.  In  addition,  RNA
targets of lncRNAs were predicted using LncTar software[28].

 Function annotation of transcripts
To  acquire  function  annotation  information,  we  compared

the  non-redundant  transcripts  to  non-redundant  protein
sequences  (NR),  Swissprot[29],  Gene  Ontology  (GO)[30],  Clusters
of  Orthologous  proteins  Groups  (COG)[31],  Eukaryotic  Ortholog
Groups  (KOG)[32],  Pfam,  Kyoto  Encyclopedia  of  Genes  and
Genomes  (KEGG)[33],  and  eggNOG[34] databases  utilizing
DIAMOND  software.  Moreover,  the  protein  sequences  of  tran-
scripts  were blasted (p-value < 1E-5)  against  the TrEMBL data-
base based on the Swissprot database to obtain the annotation
information.

 Illumina cDNA library construction and sequencing
Nine  cDNA  libraries  (three  biological  replicates  for  female,

male,  and  monoecious  plants)  were  constructed  for  Illumina
sequencing. After verifying the quality of nine libraries, we used
the  Illumina  NovaSeq6000  platform  (San  Diego,  CA,  USA)  to
perform  Illumina  sequencing.  The  specific  sequencing  data
quality  controls  were:  cut  the  sequencing  adapter  and  the
primer  sequence  in  reads;  filtrate  the  low-quality  reads  to
ensure the read quality.  Finally,  we obtained clean data that is
sufficient  for  subsequent  accurate  analysis.  We  further  calcu-
lated GC content, Q30, and sequence duplication levels of clean
data.

 Quantification of transcript expression and analysis of
differential expression transcripts

We used non-redundant transcript sequences identified from
PacBio SMRT as a reference and applied NGS reads to them to
acquire transcript position information using STAR[35] software.
The  method  of  quantification  of  transcript  expression  levels
was  as  follows:  first,  we  used  Kallisto[36] software  to  compare
NGS  reads  with  transcripts  generated  from  PacBio  SMRT  and
count  directly;  then,  we calculated transcript  expression levels
using  fragments  per  kilobase  of  transcript  per  million  frag-
ments  mapped  (FPKM).  To  evaluate  the  reproducibility  of
biological replicates, we set the Pearson Correlation Coefficient
(R2) as the correlation index of samples.

Then  we  used  DESeq2[37] software  to  identify  differential
expressions  with  replicates.  We  detected  DEGs  using  the
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threshold:  fold  change  (FC)  of  not  less  than  two  and  a  false
discovery rate (FDR) of less than 0.01. We adjusted the p-value
using  the  Benjamini-Hochberg  method.  Volcano  Plot  assessed
the  differences  in  transcript  expression  between  two  samples
and their  corresponding significance.  Moreover,  GO and KEGG
functional  annotation  and  enrichment  analysis  on  DEGs  we
performed.

 qRT-PCR analysis
DEGs involved in abscisic acid (ABA) metabolic and signaling

pathways  (BdABA1, BdAOG,  and BdSAPK8),  gibberellin  (GA)
metabolic  and  signaling  pathways  (BdKAO, BdGID1,  and
BdDWARF8),  cytokinin  (CTK)  related  pathways  gene  (BdORR9),
photosynthesis-related  pathways  (BdPsbP which  encodes  PSII
reaction  center  subunit  and PetC which  encodes  cytochrome
b6/f  complex  subunits),  and  one  bHLH  transcription  factor
bHLH137 related  to  sex  differentiation  were  subjected  to  qRT-
PCR analysis.  We reverse-transcribe RNA to cDNA using Prime-
ScriptTM  Reverse  Transcriptase  (TaKaRa,  Dalian,  China).  The
primers used in the study were designed using Primer Premier
5  and  listed  in Supplemental  Table  S1.  qRT-PCR  analysis  was
performed on a Bio-Rad CFX Connect™ RealTime System using
SYBR® Premix Ex Taq™ II (TaKaRa, Dalian, China). Three biologi-
cal  replicates  were  used  for  all  gene  expression  analyses.  We
calculated  the  relative  expression  level  of  genes  using  the
2−ΔΔCᴛ method.

 Metabolites extraction and LC-MS/MS analysis
Three  experimental  groups  (male,  female,  and  monoecious

plants) contained six samples per group harvested for sequenc-
ing and separate analyses. We performed metabolomics experi-
ments using the Waters UPLC Acquity Ⅰ-Class PLUS and UPLC
Xevo G2-XS QTOF. Then we analyzed samples using the Waters
Acquity  UPLC  HSS  T3  column  (1.8  um,  2.1  mm  ×  100  mm)  in
positive  and  negative  codes[38].  The  mobile  phases  were  0.1%
formic acid aqueous solution (A) and 0.1% formic acid acetoni-
trile  (B),  and  the  injection  volume  was  1.0 µL.  We  acquired
primary  and  secondary  mass  spectrometry  data  in  MSe  mode
using  MassLynx  V4.2  software  (Waters).  Dual-channel  data
acquisition,  including  low  and  high  collision  energies,  can  be
simultaneously  accomplished  during  each  data  acquisition
cycle.  The low and high collision energies were 2 V and 10–40
V, respectively, and the scanning frequency was 0.2 s for a mass
spectrum. The parameters of the ESI ion source were according
to a previously described report[38].  We processed raw data for
peak  extraction  and  alignment  and  completed  identification
based on the online METLIN and Biomark's self-built databases
using  Progenesis  QI  software.  In  addition,  we  identified  the
theoretical fragment; the mass deviation of the parent ion and
fragment ion is less than 100 ppm and 50 ppm, respectively[38].

 Quantification of metabolites and analysis of
differential metabolites

We used the R package (ropls) to perform orthogonal projec-
tions  to  latent  structures-discriminant  analysis  (OPLS-DA)
modeling  between  groups,  and  we  completed  200  permuta-
tion  tests  to  ensure  the  reliability  of  the  model[39].  We  deter-
mined the model's variable importance in projection (VIP) value
using  multiple  cross-validations.  We  compared  the  difference
multiples based on the grouping and used the T-test to calcu-
late  the  difference  significance p-value  of  metabolites.  We
further  identified  DAMs  using  the  threshold: p-value  less  than
0.05  and  VIP  value  greater  than  one.  The  hypergeometric

distribution test was used to calculate the DAMs of KEGG path-
way enrichment significance[40].

 Data preprocessing and annotation, and correlation
analysis between DEGs and DAMs

After normalizing the original peak area information with the
total peak area, we evaluate the overall quality of the data. We
evaluated  the  overall  data  quality  using  principal  component
analysis (PCA) and Spearman correlation analysis. We searched
the  classification  and  pathway  information  of  identified
compounds utilizing the KEGG[33] database.

To calculate the correlation between all DEGs and DAMs, we
preprocessed  the  data  using  the  z-value  transformation
method  and  screened  according  to  the  correlation  coefficient
(CC)  and p-value  of  correlation.  The  screening  threshold  was
|CC| greater than 0.80 and CCP less than 0.05. We mapped DEGs
and  DAMs  simultaneously  to  related  pathways  using  MapMan
software[41].

 Results

 SMRT sequencing analysis and function annotation of
transcripts

We  accomplished  the  PacBio  SMRT  sequencing  of B.  dacty-
loides and  obtained  45.10  Gb  of  clean  data.  The  PacBio  SMRT
reads generated in this study were submitted to the BioProject
database of the National Center for Biotechnology Information
(accession  numbers  PRJNA991319).  The  cDNA  size  of  the  full-
length  library  was  1–6  kb.  First,  675,685  CCS  sequences  were
acquired from raw reads.  The  average read length of  CCS was
1,691 bp, and the mean number of passes was 31. Next, 83.26%
(562,568) of CCS sequences were identified as FLNC sequences.
Moreover, FLNC sequences were clustered using the SMRTLink
software,  and  179,367  consensus  isoforms  were  identified.  To
improve  the  accuracy  of  the  sequences,  we  used  proovread
software  to  correct  the  low-quality  consensus  isoforms  corre-
sponding to  Illumina  sequencing data.  179,248 polished high-
quality  isoforms  were  identified,  and  the  percentage  of
polished  high-quality  isoforms  was  99.93%.  The  mean  read
length  of  consensus  isoform  was  1,667  bp.  The  read  length
distributions of the CCS sequence, FLNC sequence, and consen-
sus  isoform  are  shown  in Supplemental  Fig.  S1.  Finally,  we
obtained  110,870  non-redundant  transcripts  generated  using
CD-HIT software.

Using DIAMOND software, we compared 110,870 non-redun-
dant  transcript  sequences  with  all  databases  and  obtained
100,362  (90.52%)  transcript  annotation  information  (Fig.  1a).
We  compared  the  transcript  sequences  with  the  NR  database.
We  identified  99,534  homologous  transcripts  (Fig.  1b).  NR
homologous  species  result  showed  that  the  most  abundant
transcripts  (49,236)  were  distributed  in Eragrostis  curvula,
accounting  for  49.47%.  GO  annotation  and  enrichment  analy-
sis  divided  82,896  transcripts  into  three  categories  (Fig.  1c).
First,  the  most  abundant  transcripts  were  involved  in  the
'biological process' term. Transcripts involved in the 'biological
process'  were  associated  with  the  cellular  process  (41,643),
metabolic  process  (38,118),  and  biological  regulation  (13,703).
Then,  transcripts  involved  in  the  'cellular  component'  were
related  to  cellular  anatomical  entity  (45,140)  and  intracellular
(24,922).  Finally,  for  'molecular  function',  transcripts  were
mainly  involved  in  binding  (42,921)  and  catalytic  activity

Full-length transcriptomics and metabolomics
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Fig. 1    Function annotation of non-redundant transcripts. (a) Function annotation of transcripts in all databases. (b) Nr homologous species
distribution  diagram  of  transcripts.  (c)  Distribution  of  GO  terms  for  all  annotated  transcripts.  Transcripts  (82,896)  were  classified  into  three
groups: 'biological process', cellular component', and 'molecular function'. (d) Thirteen KEGG pathways involving more than 1,000 transcripts.
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(38,620).  We identified 136 KEGG pathways  involved in  69,000
transcripts  using the  KEGG database.  We listed 13  KEGG path-
ways  involving  more  than  1,000  transcripts  in Fig.  1d.  The
results  showed  that  plant-pathogen  interaction  (3,058),  plant
hormone  signal  transduction  (2,349),  carbon  metabolism
(2,096), biosynthesis of amino acids (1,537), starch and sucrose
metabolism (1,535), and MAPK signaling pathway-plant (1,501)
were the six abundant pathways for transcripts.

 Full-length transcriptome structure analysis
A  total  of  101,909  ORFs  and  56,478  carried  complete  ORFs.

One  hundred  to  200  amino  acid  transcripts  were  the  most
abundant,  accounting  for  23.92%.  94.98%  of  the  transcript
length was more than 800 bp. The length distribution of amino
acid sequences in the coding region of ORFs is shown in Fig. 2a.
We analyzed the over 1,000 bp transcripts to predict SSR using
MISA  software.  Six  types  of  SSRs,  totaling  32,942  SSRs,  were
identified  (Supplemental  Table  S2).  Most  of  these  SSRs  were
mono-  and  tri-nucleotide  repeats,  accounting  for  47.1%  and
31.1%,  respectively.  The  least  abundant  SSRs  were  hexa-  and
penta-nucleotide  repeats,  accounting  for  0.2%  and  0.3%,
respectively.

For lncRNA prediction,  we used the method of filtering step
by step: first, the intersection of CPAT and CPC prediction, then
CNCI  prediction,  and  finally,  Pfam  to  predict  CNCI  results.  We
predicted 7,682 lncRNAs; the Venn diagram is shown in Fig. 2b.
We  predicted  the  targets  of  6,474  lncRNAs  using  LncTar
(Supplemental  Table  S3),  accounting  for  84.27%.  Using  BLAST
software, we identified 4,091 AS events involved in 6,188 tran-
scripts (Supplemental Table S4). To discover the critical biologi-
cal  processes  and  functions  of  transcripts  in B.  dactyloides,  we
completed  GO  and  KEGG  annotation  and  enrichment  analysis
of the transcripts presented in AS events. A total of 2,557 tran-
scripts  were classified into three groups:  'biological  processes',
'cellular components', and 'molecular function'. We satisfied the
top  20  enriched  pathways  (Fig.  2c),  and  the  top  five  most  en-
riched  pathways  were  'pyruvate,  phosphate  dikinase  activity',
'pyruvate metabolic process, regulation of proteolysis',  'ubiqui-
tin-like  protein  ligase  binding',  and  'regulation  of  photoperi-
odism,  flowering'.  Using  the  KEGG  database,  we  identified
5,833  transcript  annotations,  including  128  KEGG  pathways.
KEGG pathway enrichment analysis showed that the three most
enriched  pathways  were  'glycosaminoglycan  degradation',
'Glycosphingolipid  biosynthesis  –  ganglio  series',  and  'Spliceo-
some' (Fig. 2d).

 Acquisition and mining of transcriptome data
The Illumina NGS reads generated in this study were submit-

ted  to  the  BioProject  database  of  the  National  Center  for
Biotechnology  Information  (accession  number  PRJNA991464).
Leaf  samples  of  female,  male,  and  monoecious  plants  were
determined  for  transcriptome  analysis  to  clarify  the  sex  differ-
entiation mechanism in B. dactyloides (Fig. 3a−c). Using the Illu-
mina NovaSeq6000 platform, we obtained 191.62 million clean
reads  and  53.44  GB  of  clean  data  from  nine  samples.  The  GC
content  was  more  than  53.36%,  and  the  Q30  value  was  more
than  94.05%  (Supplemental  Table  S5).  We  identified  110,870
transcript expression profiles. We evaluated the quality of tran-
scriptomic  data  using  PCA  and  Spearman  rank  correlation.
110,870 transcripts  were divided into three groups,  with good
repeatability  within each group based on PCA results  (Supple-
mental  Fig.  S2a).  The  correlation  diagram  showed  that  the

correlation values in the female group are > 0.918; these values
are > 0.977 in  the male  group and > 0.975 in  the monoecious
group (Supplemental Fig. S2b). The above results indicated that
the sequencing data was sufficient for DEG analysis. We identi-
fied  49,448  DEGs  using  DESeq2  software  (Fig.  3d).  There  were
31,174 DEGs (15,670 up-regulated and 15,504 down-regulated),
30,789 DEGs (15,992 up-regulated and 14,797 down-regulated),
and 31,882 DEGs (16,265 up-regulated and 15,617 down-regu-
lated) identified in the groups 'male vs female', 'monoecious vs
female',  and 'monoecious vs male',  respectively (Supplemental
Table S6).

We measured the expression levels of ten DEGs by qRT-PCR,
including  three  ABA-related  pathway  genes  (ABA1, AOG,  and
SnRK2),  three  GA-related  pathways  genes  (KAO, GID1,  and
DELLA), two photosynthesis-related genes (PsbP and PetC), one
CTK-related pathways  gene (ARR),  and one bHLH transcription
factor. The qRT-PCR results validated the RNA-seq data (Fig. 3f).

We  performed  KEGG  enrichment  analysis  of  up-and  down-
regulated DEGs to reveal further the sex differentiation mecha-
nism  in B.  dactyloides (Supplemental  Fig.  S3).  For  the  group
'male vs female',  'synthesis and degradation of ketone bodies',
'photosynthesis  –  antenna  proteins',  and  'circadian  rhythm  –
plant'  were  activated,  while  'biosynthesis  of  various  secondary
metabolites  –  part  2',  'circadian  rhythm  –  plant',  and  spliceo-
some  were  inhibited.  For  the  group  'monoecious  vs  female',
'photosynthesis  –  antenna  proteins',  'porphyrin  and  chloro-
phyll  metabolism',  'circadian  rhythm  –  plant'  were  activated,
while  diterpenoid  biosynthesis,  glutathione  metabolism,  argi-
nine  and  proline  metabolism  were  inhibited.  For  the  group
'monoecious vs male',  photosynthesis – antenna proteins, por-
phyrin  and  chlorophyll  metabolism,  and  photosynthesis  were
activated,  while  isoflavonoid  biosynthesis,  monoterpenoid
biosynthesis, and linoleic acid metabolism were inhibited.

 Regulatory proteins dynamics during B. dactyloides sex
differentiation

We  predicted  9,916  regulatory  proteins  from  212  families
using  the  iTAK  prediction  tool,  including  4,331  TFs,  1,469  TRs,
and 4,116 PKs.  The top ten most  numerous regulatory protein
families are shown in Supplemental Fig. S4a. The top five regu-
latory  protein  families  were  RLK-Pelle_DLSV (520),  bHLH (388),
Others  (309),  MYB-related  (300),  and  bZIP  (252).  Further,  we
analyzed  the  overlapping  differentially  expressed  regulatory
proteins  between  male  vs  female,  monoecious  vs  female,  and
monoecious  vs  male.  The  result  showed  688  differentially
expressed regulatory proteins from 129 families in three groups
(Supplemental  Fig.  S4b).  The  top  ten  most  numerous  regula-
tory protein families  are shown in Supplemental  Fig.  S4c.  RLK-
Pelle_DLSV  (62),  others  (31),  NAC  (26),  bHLH  (25),  and  MYB-
related (19) were the top five regulatory protein families.

Furthermore, we concentrated on the expression patterns of
regulatory  protein  of  sex  differentiation  in B.  dactyloides.  For
the group 'male vs female', 3,224 differentially expressed regu-
latory proteins were from 177 families (Supplemental Fig. S4d),
including  1,719  up-regulated  regulatory  proteins  from  166
families  and  1,505  down-regulated  regulatory  proteins  from
162 families. For the group 'monoecious vs female', there were
3,473  differentially  expressed  regulatory  proteins  from  179
families  (Supplemental  Fig.  S4e),  including  1,647  up-regulated
regulatory  proteins  from  165  families  and  1,826  down-regu-
lated  regulatory  proteins  from  158  families.  For  the  abundant
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Fig.  2    Structure  analysis  of  full-length transcripts.  (a)  Length distribution of  amino acid  sequences  in  the  coding region of  ORFs.  (b)  Venn
diagram of lncRNAs predicted by CPC, CPAT, CNCI, and Pfam methods. (c) GO and (d) KEGG enrichment of the transcripts possessed AS events.
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RLK-Pelle_DLSV  regulatory  protein  family,  there  were  198
down-regulated  regulatory  proteins,  whereas  80  up-regulated
regulatory proteins. The number of down-regulated regulatory
proteins in the WRKY family was more than seven times that of
the  up-regulated  regulatory  proteins.  There  were  3,515  differ-
entially expressed regulatory proteins from 180 families for the
group 'monoecious vs male'  (Supplemental  Fig.  S4f),  including
1,575  up-regulated  regulatory  proteins  from  161  families  and
1,940  down-regulated  regulatory  proteins  from  160  families.
For  the  abundant  RLK-Pelle_DLSV  regulatory  protein  family,
there  were  193  down-regulated  regulatory  proteins,  whereas
57  up-regulated  regulatory  proteins.  The  number  of  down-
regulated  regulatory  proteins  in  the  WRKY  family  was  more
than ten times that of up-regulated regulatory proteins.

 Sex-specific genes analysis
We  found  variations  in  gene  expression  among  the  sexes.

Female plants had 588 genes relative to male and monoecious
plants that deleted 2,020 genes.  In addition,  1,961 genes were

absent from female and monoecious plants vs male plants, and
526 genes were present only in male plants. Monoecious plants
had 344 genes relative to female and male plants that deleted
1,629  genes.  To  identify  the  gene  function  related  to  plant
sexual differentiation, we performed GO and KEGG enrichment
of  sex-specific  genes  (Supplemental  Figs  S5 & S6).  Genes
present only in female plants play significant roles in ADP bind-
ing  (47)  and  defense  response  (41).  Genes  absent  in  female
plants  mainly  participate  in  ADP  binding  (87)  and  defense
response (76). Genes present only in male plants mainly partici-
pate  in  ADP  binding  (20).  Genes  absent  in  male  plants  are
primarily  involved  in  ADP  binding  (90),  defense  response  (75),
polysaccharide  binding  (18),  rDNA  binding  (6),  and  5S  rDNA
binding  (6).  Genes  present  only  in  monoecious  plants  mainly
participate  in  ADP  binding  (19)  and  defense  response  (17).
Genes absent in monoecious plants are the main participants in
ADP  binding  (43),  defense  response  (23),  modification-depen-
dent  protein  catabolic  process  (16),  and  dioxygenase  activity
(11).
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Fig. 3    (a)–(c) Differences in the appearance and the number of (d) DEGs and (e) DAMs between female, male, and monoecious sample groups
in B. dactyloides. Red boxes indicate the flower of B. dactyloides. (f) Association analysis between RPKM ratio and relative expression levels of the
qRT-PCR. Data represent the mean ± SD (n = 3). Bars represent RNA-seq data, and lines represent qRT-PCR data. The lower-case letters above
the bars indicate a significant difference between the sample groups at p < 0.05.
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In  addition,  for  genes present only in female plants,  the top
three  enriched  pathways  were  plant-pathogen  interaction,
fatty  acid  elongation,  and  pentose  phosphate.  The  top  three
enriched  pathways  for  genes  absent  in  female  plants  were
phenylalanine,  tyrosine  and  tryptophan  biosynthesis,  fructose
and mannose metabolism, and tyrosine metabolism. Sesquiter-
penoid and triterpenoid biosynthesis,  ribosome, and isoquino-
line  alkaloid  biosynthesis  were  the  top  three  enriched  path-
ways  for  genes  present  only  in  female  plants.  The  top  three
enriched  pathways  for  genes  absent  in  male  plants  were
glutathione metabolism, alpha-Linolenic acid metabolism, and
peroxisome.  Citrate  cycle  (TCA  cycle),  Riboflavin  metabolism,
and  alpha-Linolenic  acid  metabolism  were  the  top  three
enriched  pathways  for  genes  present  only  in  monoecious
plants.  Alpha-Linolenic  acid  metabolism,  fatty  acid  biosynthe-
sis,  and  carbon  fixation  in  photosynthetic  organisms  were  the
top  three  enriched  pathways  for  genes  absent  in  monoecious
plants.

 Acquisition and mining of metabolomic data
The metabolomics data generated in this study were submit-

ted to MetaboLights database (accession number MTBLS8147).
We  scanned  10,011  peaks  and  1,966  metabolites  in  positive
code,  11,130 peaks,  and 1,787 metabolites  through qualitative
and quantitative metabolome analysis of 18 samples using the
LC-QTOF platform (Fig.  3e).  We evaluated the quality  of  meta-
bolomic data using PCA and Spearman rank correlation. A total
of 3,753 metabolites were divided into three groups, with good
repeatability  within each group based on PCA results  (Supple-
mental  Fig.  S2c).  In  addition,  the  correlation  diagram  showed
that  the  correlation  values  in  the  female  group  are  >  0.945;
these values are > 0.922 in the male group and > 0.953 in the
monoecious  group  (Supplemental  Fig.  S2d).  We  scanned  485
and 516 (positive and negative) up-regulated DAMs, as well as
369  and  339  down-regulated  DAMs  in  the  male  vs  female
comparison. We observed 727 and 670 (positive and negative,
the  same  below)  up-regulated  DAMs  and  558  and  488  down-
regulated  DAMs  in  the  monoecious  vs  female  comparison.  In
the monoecious vs male comparison, we identified 691 and 626
up-regulated  DAMs  and  559  and  515  down-regulated  DAMs
(Supplemental  Table  S7).  We  performed  KEGG  enrichment
pathway  analysis  based  on  identified  DAMs.  The  top  20  en-
riched  metabolic  pathways  in  different  groups  are  shown  in
Supplemental  Fig.  S7.  For  the  group  male  vs  female,  the  top
four  enriched  pathways  of  DAMs  (positive)  were  'one  carbon
pool  by  folate',  'glutathione  metabolism',  'pyrimidine  meta-
bolism',  and  'anthocyanin  biosynthesis'.  The  top  two  enriched
pathways  (negative)  were  flavone  and  flavonol  biosynthesis
and monobactam biosynthesis (Supplemental Fig. S7a). For the
group 'monoecious vs female, the top four pathways (positive)
were  terpenoid  backbone  biosynthesis,  glycerophospholipid
metabolism,  arachidonic  acid  metabolism,  and  carotenoid
biosynthesis,  while  arachidonic  acid  metabolism  was  most
enriched pathways (negative)  (Supplemental  Fig.  S7b).  For the
group 'monoecious vs male', 'arginine and proline metabolism'
was the top enriched pathways (positive),  whereas  'phenylala-
nine,  tyrosine  and  tryptophan  biosynthesis',  'aflatoxin  biosyn-
thesis', and 'tyrosine metabolism' were the top three pathways
(negative) (Supplemental Fig. S7c).

To  further  clarify  the  metabolic  changes  in  response  to  sex
differentiation,  we  completed  KEGG  pathway-based  analysis

with  metabolites  in  female,  male,  and  monoecious  plants
combined with positive and negative codes. We focused on the
pathways  involved  in  at  least  five  DAMs  and  calculated  differ-
ential  abundance  scores.  Then  we  captured  the  tendency  for
DAMs in a pathway to increase or decrease than another group
(Fig.  4).  Among the  46  pathways  identified  in  the  group 'male
vs  female',  three  were  up  (>  0.5  differential  abundance  score,
red,  the  same  below),  including  bisphenol  degradation,
benzoate  degradation,  and  protein  digestion  and  absorption.
During  the  60  pathways  found  in  the  group  'monoecious  vs
female', three were up, including protein digestion and absorp-
tion,  betalain  biosynthesis,  and  central  carbon  metabolism  in
cancer.  During  the  71  pathways  in  the  group  'monoecious  vs
male',  five  were  up,  including  'phosphotransferase  system
(PTS)',  'protein  digestion  and  absorption',  'phenylalanine,  tyro-
sine,  and  tryptophan  biosynthesis',  'valine,  leucine,  and
isoleucine degradation', and 'biosynthesis of various alkaloids'.

 Correlation analysis of transcriptomic and
metabolomic data

To  further  identify  metabolic  pathways  associated  with  sex
differentiation,  we completed co-enrichment analyses of  DEGs
and DAMs (Fig. 5). Six significantly enriched pathways (p < 0.01)
in the sample group (male vs female)  included biosynthesis  of
amino acids and various secondary metabolites – part 2, carbon
metabolism,  photosynthesis,  riboflavin  metabolism,  and  Vita-
min B6 metabolism (Fig. 5a). Seven significantly enriched path-
ways  (p <  0.01)  in  sample  group  (monoecious  vs  female)
included  alpha-Linolenic  acid  metabolism,  biosynthesis  of
amino  acids  and  various  secondary  metabolites  –  part  2,
carbon,  glutathione,  glyoxylate,  dicarboxylate,  porphyrin,  and
chlorophyll  metabolism  (Fig.  5b).  Eleven  significantly  enriched
pathways  (p <  0.01)  in  sample  group  (monoecious  vs  female)
included alpha-Linolenic  acid  metabolism,  butanoate metabo-
lism, glutathione metabolism, isoflavonoid biosynthesis, mono-
terpenoid  biosynthesis,  porphyrin,  chlorophyll,  propanoate,
and  riboflavin  metabolism,  sesquiterpenoid  and  triterpenoid
biosynthesis, tyrosine metabolism, and Vitamin B6 metabolism
(Fig. 5c).

Since  these  pathways  are  associated  with  glutathione
metabolism,  photosynthesis,  and  plant  hormone  biosynthesis
and signal  transduction,  we mapped DEGs and DAMs simulta-
neously to related pathways using MapMan software better to
understand  the  sex  differentiation  mechanisms  in B.  dacty-
loides.

 Glutathione metabolism and photosynthetic capacity
changes in response to sex differentiation

We draw the networks of  DEGs and DAMs implicated in the
glutathione metabolism pathway using MapMan software (Fig.
6a)  to  evaluate  the  impact  of  glutathione  metabolism  among
sexes. The results showed that 154 genes and two metabolites
were  differentially  expressed  among  the  three  groups.  The
glutamate content in monoecious plants  was lower relative to
male  and  female  plants.  Oxidized  glutathione  (GSSG)  levels  in
female  plants  were  lower  than  in  male  plants. GCL (encoding
for  glutamate-cysteine  ligase  catalytic  subunit)  and DHAR
(encoding  glutathione  dehydrogenase/transferase)  were  less
expressed  in  male  plants  relative  to  female  and  monoecious
plants. In addition, the expression of GSS (encoding glutathione
synthase) and GSR (encoding glutathione reductase) was lower
in  female  plants  than  in  male  and  monoecious  plants.  Many
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Fig.  4    Pathway-based  analysis  of  metabolic  changes  on  different  groups.  The  differential  abundance  score  captures  the  average,  gross
changes  for  all  metabolites  in  a  pathway.  A  score  of  1  indicates  all  measured  metabolites  in  the  pathway  increase,  and  –1  indicates  all
measured metabolites in a pathway decrease.
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GSTs encoding glutathione S-transferase showed the highest in
monoecious plants,  followed by female plants,  and the lowest
in  male  plants.  The  results  showed  that  the  DEGs  and  DAMs
related  to  glutathione  metabolism  were  involved  in  response
to sexual differentiation.

The DEGs and DAMs involved in photosynthesis are shown in
Fig.  6b.  78.34%  of  DEGs  in  photosynthesis  showed  higher
expression levels in male plants relative to monoecious plants,
including  PsbA,  PsbB,  PsbP,  PsbR,  PsbW,  Psb27  proteins  in
photosystem  Ⅱ (PSⅡ),  PetH  and  PetJ  responsible  for  photo-
synthetic  electron  transport,  PsaB,  PsaE,  PsaG,  and  PsaO
proteins  in  photosystem  Ⅰ (PSⅠ),  and  the  gamma  and  delta
complexes  of  F-type  ATPase.  73.38%  DEGs  in  photosynthesis
showed  higher  expression  levels  in  female  plants  relative  to
monoecious  plants,  including  PsbC,  PsbB,  PsbK,  PsbO,  PsbP,
PsbS,  PsbW,  and  Psb28  proteins  in  PSⅡ, PetA encoding
cytochrome  b6/f  complex  (Cyt  b6f)  subunits,  PsaD,  PsaG,  and
PsaO proteins in PSⅠ, and the delta and b sub-complexes of F-
type ATPase.  In  addition,  the  expression level  of  photosynthe-
sis-related  genes  varied  in  female  and  male  plants.  The PsbA,
PetJ, PsaB,  and delta content were higher,  whereas PsbC, PsbK,
PetA,  and PsaA were  less  in  female  plants  than  in  male  plants.
Phosphoric  acid  (Pi),  ATP,  and  NADP  were  related  to  carbon
fixation in  photosynthetic  organisms and varied among sexes.
The  Pi  levels  showed  the  highest  in  male  plants,  then  female

plants,  and the lowest  in  monoecious  plants.  In  female  plants,
the  content  of  ATP  was  higher  in  monoecious  plants,  and  the
content of NADP was higher in male plants.

 Plant hormones in response to sex differentiation
We  examined  the  changes  in  hormone  metabolites  in

female,  male,  and  monoecious  plants  and  found  that  abscisic
acid (ABA),  cytokinin (CTK),  and gibberellin (GA) were differen-
tially expressed. DEGs and DAMs involved in ABA, CTK, and GA
metabolism  and  signaling  pathways  were  mapped  to  related
pathways  using  MapMan  software  to  better  understand  the
mechanism  of  plant  hormones  in  response  to  sex  differentia-
tion.

We  analyzed  the  levels  of  DAMs  and  DEGs  encoding
enzymes  that  participate  in  ABA  metabolism  in  female,  male,
and  monoecious  plants  (Fig.  7).  Antheraxanthin  content  and
the  expression  of  DEGs  encoding  zeaxanthin  epoxidase
(ABA1/ZEP) were highest in female plants, then male plants, and
lowest in monoecious plants. The neoxanthin levels were lower
than  in  female  and  male  plants.  Compared  with  male  plants,
three  out  of  five  DEGs  encoding  9-cis-epoxycarotenoid  dioxy-
genases  (NCEDs)  were  down-regulated  in  female  plants.
Compared  with  monoecious  plants,  four  out  of  five  DEGs
encoding NCEDs were up-regulated in female plants; this value
was  eight  out  of  nine  in  male  plants.  The  number  of  overex-
pression  DEGs  encoding  short-chain  alcohol  dehydrogenase
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Fig. 5    Co-enrichment p-value histogram of DEGs and DAMs. (a) Male vs female. (b) Monoecious vs female. (c) Monoecious vs male.
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(ABA2)  and  abscisic  aldehyde  oxidase  (AAO3)  was  highest  in
monoecious  plants,  followed  by  female  plants,  and  lowest  in
male  plants.  Compared  with  monoecious  plants,  the  abscisic
alcohol,  ABA,  and  ABA  glucosyl  ester  (ABA-GE)  levels  were
lower  than  in  female  and  male  plants.  8'  -hydroxy  ABA  was
slightly  down-regulated  in  male  plants  than  in  monoecious
plants.  Then  we  focus  on  the  ABA  catabolism  enzymes
abscisate  beta-glucosyltransferases  (AOGs)  and  Cytochrome
P450 (CYP707A).  Compared with male  plants,  two out  of  three
DEGs  encoding AOGs were  up-regulated  in  female  plants.
Compared  with  monoecious  plants,  two  DEGs  encoding AOGs
were  up-regulated  in  female  plants,  and  one  DEGs  encoding
AOGs were  up-regulated  in  male  plants.  Compared  with  male
plants,  three  out  of  five  DEGs  encoding CYP707A were  down-
regulated in female plants. Compared with monoecious plants,
three  out  of  four  DEGs  encoding AOGs were  up-regulated  in
female or male plants.

The expression patterns of ABA signaling genes were further
analyzed.  ABA  acceptor  protein  PYR/PYL,  Type  2C  protein

phosphatase (PP2C), SNF1-related protein kinase 2 (SnRK2), and
transcriptional  factor  ABF  were  all  differentially  expressed.
71.25% and 55.22% of DEGs showed higher expression levels in
male and female plants  relative to monoecious plants,  respec-
tively.  Furthermore,  71.61%  of  DEGs  showed  lower  expression
levels in female plants than in male plants.

We  analyzed  the  GA  biosynthesis,  catabolism,  and  signal
transduction  pathways  involving  275  DEGs  and  seven  DAMs
(Fig.  8).  The  expression  of KS is  less  in  the  monoecious  plant
than  in  the  female  plant.  Of  the  genes  in  the  GA  biosynthesis
pathway, KAO and GA20ox are the most noteworthy. The essen-
tial  genes, KAO and GA20ox,  are  more active in  the male plant
than  in  the  female  or  monoecious  plant  (adjusted p-value  <
0.01).  PB_transcript_123979,  encoding GA3ox,  was  expressed
only in the monoecious plant. GA catabolism genes GA2ox also
exist with specific expression. PB_transcript_514 was expressed
only  in  the  female  plant.  In  contrast,  PB_transcript_85857  was
expressed only in male and monoecious plants. Compared with
monoecious  plants,  about  80%  of  transcripts  encoding  GID1
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Fig. 7    Comparison of DEGs and DAMs involved in ABA biosynthetic and signaling pathways in response to sex differentiation. The red and
blue text indicated DAMs and DEGs, respectively. The red color means up-regulation, while the blue color means down-regulation.
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(GA  receptor)  proteins  were  down-regulated  in  female  plants,
and this value was 75% in male plants. For GA signal repressors,
DELLAs,  there  was  little  difference  in  the  number  of  up-down
and  down-down  DEGs  among  the  three  groups.  Compared
with phytochrome interacting transcription factors (PIFs) inter-
acting  with  DELLA  in  monoecious  plants,  there  were  twice  as
many up-regulated DEGs as down-regulated DEGs.

We  examined  the  expression  of  transcripts  encoding
enzymes  and  metabolites  involved  in  CTK  metabolism  in
female, male, and monoecious plants (Fig. 9). The expression of
three critical  enzymes involved in CTK biosynthesis,  adenosine
phosphate-isopentenyltransferases  (IPTs),  was  significantly
reduced  in  female  and  male  plants  compared  with  monoe-
cious plants. The substrate synthesizing iPRPs, ATP, exhibited a
higher level in male plants than in monoecious plants. Similarly,
one of the iPRPs, the iPRMP in male plants, was higher than that
in female and monoecious plants. The primary forms of CTK in
plants  are  isopentenyladenine  (iP),  trans-zeatin  (tZ),  and  dihy-
drozeatin  (DZ).  We  found  that  iP  exhibited  a  lower  content  in
female  plants,  and  tZ  exhibited  a  lower  level  in  male  plants.
Compared  with  monoecious  plants,  six  out  of  seven  DEGs
encoding  CTK  oxidase  (CKX)  were  up-regulated  in  female
plants, while this value was six out of nine in male plants. UDP-
glucose,  conjugated  to  active  CTKs,  either  tZ  or  DZ,  showed
a  high  content  in  male  plants.  The  metabolites  of  CTK

metabolism, UDP, trans-Zeatin-O-glucoside (tZOG), and O-Xylo-
sylzeatin  (OXZ),  exhibited  a  higher  level  in  monoecious  plants
than  in  male  and  female  plants.  The  content  of  UDP  in  male
plants  was  higher  than  in  female  plants.  Likewise,  the  expres-
sion  of  DEG-encoding  enzymes  (UGT73C and UGT85A1)  conju-
gated  to  CTKs  in  glucose  to  inactivate  them  was  highest  in
monoecious  plants,  then  male  plants,  and  lowest  in  female
plants.  Transcripts  encoding cytokinin response 1 (CRE1),  histi-
dine-containing  phosphotransfer  proteins  (AHPs),  and  type-B
response  regulators  (B-ARRs)  were  differentially  expressed  in
female, male, and monoecious plants. Then we focused on the
negative regulator of CTK signaling, the type-A response regu-
lator  (A-ARRs).  Compared  with  male  plants,  64.7%  of  DEGs
encoding A-ARRs were  up-regulated  in  female  plants.  Com-
pared with monoecious plants, 57.9% of DEGs encoding A-ARRs
were  up-regulated  in  female  plants,  whereas  this  value  was
33.3% in male plants.

 Discussion

Buffalograss  is  a  perennial  warm-season  grass  species  of
Gramineae  used  commonly  as  pasture,  ecological,  or  lawn
grass[42]. Buffalograss plays a vital role in environmental restora-
tion,  creating  economic  benefits  and  promoting  the  high-
quality  development  of  the  grassland  and  turf  industries[3].
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Buffalograss  is  a  dioecious  plant,  and  a  few  are  monoecious.
The visual and functional quality of the female plant in B. dacty-
loides is  better  than  the  male  plant  because  when  the  male
plant enters the flowering stage, there is a distinct yellow color
due  to  the  flower  shaft  being  higher  than  the  bush,  and  the
female  plant  does  not  have  such  a  problem[5].  There  are  both
dioecious  and  monoecious  plants  in  buffalograss,  providing
great convenience for studying sex differentiation. The identifi-
cation  of  sex  differentiation  candidate  genes  (e.g.,  male  steril-
ity)  is  an  essential  step  to  proclaim  the  practical  value  of B.
dactyloides and  may  provide  necessary  information  for  sex
differentiation-related pathway elucidation.

The  missing  genome  sequence  and  full-length  cDNAs  of B.
dactyloides limit our research. This study first provided the full-
length transcriptome of B. dactyloides and completed 90.52% of
transcript  function  annotation  using  PacBio  SMRT  technology.
Recent  studies  have  shown  that  long  non-coding  RNAs  (lncR-
NAs) play critical functions in various biological processes[43,44].
lncRNAs  could  interact  with  proteins,  RNAs,  and  DNA  to  per-
form  complex  and  diverse  functions[28].  Therefore,  identifying
lncRNAs  and  their  targets  helps  understand  the  biological
processes and mechanisms of plants. We predicted 7,682 lncR-
NAs and target genes for 6474 lncRNAs. AS allows the plant to

enhance  gene  coding  potential,  regulate  gene  expression via
different  mechanisms,  and  play  essential  functions  in  plant
development[45,46].  We  identified  4,091  AS  events  involved  in
6,188  transcripts.  Interestingly,  32  transcripts  in  AS  events
participate in the regulation of photoperiodism, flowering with
a p-value of 1.08 × 10−8.

The  correlation  analysis  of  transcriptomic  and  metabolomic
data  better  explains  transcription  regulation  mechanisms  in
metabolic  pathways[47,48].  To characterize sex differentiation in
the buffalograss transcriptome and its regulation, we measured
and analyzed the transcriptional and metabolomic responses of
B.  dactyloides to  sex  differentiation.  The  most  important  path-
ways  responding  to  sex  differentiation  were  glutathione
metabolism, photosynthesis, and plant hormone metabolism in
B. dactyloides.

The  study  demonstrated  that  glutathione  metabolism  was
the  most  significantly  enriched  pathway  in  response  to  sex
differentiation.  One  hundred  and  fifty  four  genes  and  two
metabolites  (glutamate  and  GSSG)  related  to  glutathione
metabolism had altered contents. GCL, GSS, GSR, DHAR, and GST
participate  in  glutathione  metabolism  to  generate  glutamate,
cysteine,  and  glycine,  which  are  involved  in  several  critical
cellular functions, such as scavenging H2O2 and protecting cells
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Fig. 9    Comparison of DEGs and DAMs involved in CTK biosynthetic and signaling pathways in response to sex differentiation. The red and
blue text indicate DAM and DEG, respectively. The red color means up-regulation, while the blue color means down-regulation.
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from oxidative stress[47,49]. Based on our data, we can infer that
glutathione  metabolism  was  in  response  to  sexual  differentia-
tion.

Notably,  most  DEGs  were  upregulated  in  male  and  female
plants relative to monoecious plants, including those encoding
PSⅡ proteins  (such  as  PsbB  and  PsbO),  cytochrome  b6/F
complex  (such  as  PetA  and  PetC),  electron  transport  proteins
(such as PetE and PetJ), PSⅠ proteins (such as PsbB and PsbO),
and ATP production proteins (gamma and delta).  These genes
govern  light  harvesting,  electron  transport,  reduction-oxida-
tion reactions, and ATP production[41,50]. The increased ATP and
Pi  levels  aligned  with  this  result.  The  above  results  supported
the positive functions of maintaining the photosynthetic activ-
ity of leaves in male and female plants.

Three  hormones  (ABA,  GA,  and  CTKs)  varied  in  metabolite
content  among  the  sexes. NCEDs are  a  crucial  enzyme  in  ABA
biosynthesis[51]. We found the disruption of multiple NCEDs and
the  lowest  abscisic  alcohol  and  ABA  levels  in  monoecious
plants  relative  to  female  and  male  plants.  Interestingly,  we
found the expression profile between NCEDs and ABA2/AAO3 in
female,  male,  and  monoecious  plants  was  opposite,  which
suggests NCEDs, ABA2,  and AAO3 were  candidate  genes
involved in ABA homeostasis. ABA-GE, a stored form of ABA[51],
consistently  performs  with  abscisic  alcohol  and  ABA  in
response to sexual differentiation. The lowest ABA content and
disruption  of  multiple AOGs and CYP707A were  found  in
monoecious plants compared to female and male plants, which
suggests that reduced ABA leads to reduced ABA catabolism. In
addition,  we  found  that  ABA  signal  transduction  was  more
active  in  female  and  male  plants  than  in  monoecious  plants.
The  above  results  showed  that  ABA  biosynthesis,  catabolism,
and signaling synergize in response to sexual differentiation.

The active  GAs  (mainly  GA4)  are  essential  for  stamen devel-
opment and control  of  pistil  growth in  Arabidopsis[52].  The GA
biosynthesis essential genes, KAO and GA20ox,  are more active
in  male  plants  than  female  plants  (adjusted p-value  <  0.01).
Furthermore,  GA4  signal  transduction  was  most  active  in
female  plants,  followed  by  male  plants,  and  inhibited  in  male
plants. The above results showed that GA biosynthesis is incon-
sistent with GA signaling in response to sexual differentiation.

Compared with male and female plants,  we found the over-
expression of all three IPTs, the disruption of multiple CKXs, and
the  highest  tZ  and  iP  levels  in  monoecious  plants. The  results
were  in  line  with  the  previous  report  that  tZ  and  iP  levels  are
regulated  and  fine-tuned  by IPTs and CKXs[53].  In  addition,  tZ
deactivation  was  associated  with  the  up-regulation  of  CTK
modification  enzymes, UGT73C and UGT85A1,  and  the  results
corresponded with the previous report[51]. The cytokinin recep-
tor CRE1 and  critical  regulators  (AHPs and B-ARRs)  function  in
CTK  perception  and  signaling[53].  Surprisingly,  there  was  little
difference in the number of DEGs encoding the proteins CRE1,
AHPs,  and B-ARRs in  female,  male,  and  monoecious  plants,
which is likely due to compensatory changes in the expression
of CTK signaling genes to maintain the appropriate level of CTK
function[53]. A-ARRs are considered CTK signaling negative regu-
lators[51,53].  Compared with female and monoecious plants,  we
found disruption of multiple A-ARRs and the lowest tZ levels in
male  plants.  The  results  suggest  that  reduced  tZ  leads  to
reduced CTK signaling[51]. The results above suggest that active
CTKs  and  genes  encoding IPTs, CKXs, UGT73C, UGT85A1,  and

A-ARRs involved  in  CTK  metabolism  and  signaling  play  critical
roles in response to sex differentiation.

 Conclusions

Few  studies  have  investigated  transcript  annotation  and
complete mRNA structure in B. dactyloides, and the pathways of
species-specific  factors  in  sex  differentiation  remain  unclear.
We  performed  full-length  transcriptome,  second-generation
transcriptome,  and  metabolome  analysis  to  specify  candidate
factors  influencing  sex  differentiation.  We  first  provided  the
full-length  transcriptome  of B.  dactyloides,  identified  110,870
full-length transcripts, and obtained 90.52% of transcript anno-
tation  information.  Then  we  identified  49,448  DEGs  and  3,070
DAMs  in  female,  male,  and  monoecious  leaf  samples.  The  co-
enrichment  analysis  indicated  that  sexual  differentiation  was
regulated  by  glutathione  metabolism,  photosynthesis,  plant
hormone  biosynthesis,  catabolism,  and  signaling.  The  identifi-
cation  of  DEGs  and  DAMs  that  participate  in  glutathione
metabolism,  photosynthesis,  ABA,  CTK,  and  GA  biosynthesis,
catabolism,  and  signaling  has  helped  illuminate  the  roles  of
plant hormones in the sex differentiation of B.  dactyloides.  The
full-length  transcriptomic  data  will  allow  further  functional
gene studies. Integrating transcriptomic and metabolomic data
advances knowledge of the molecular mechanism of sex differ-
entiation  and  provides  information  on  breeding  programs  for
B. dactyloides.
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