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Abstract
The Epichloë fungal endophytes of turfgrasses have long been studied for the benefits they provide their plant hosts such as enhancing the host's

physiological characteristics and providing disease resistance against fungal pathogens. The mechanisms of fungal disease resistance have been

attributed to outcompeting of nutrients or through antifungal secondary metabolites, but these mechanisms have not been validated. The well-

established endophyte mediated disease resistance in strong creeping red fescue (Festuca rubra subsp. rubra) against dollar spot disease caused

by Clarireedia jacksonii is due to the presence of the endophyte Epichloë festucae. Studying this tripartite relationship has led to the identification

of  an  antifungal  protein  designated Efe-AfpA.  Expression,  purification,  and  testing  of  this  protein  on C.  jacksonii in  culture  and  on  infected

turfgrasses has verified Efe-AfpA's role in the endophyte-mediated disease resistance. Several other antifungal proteins similar to Efe-AfpA have

been characterized from other fungal species and could represent an untapped, novel control method for fungal plant diseases.
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 Introduction

Microbes  and  plants  are  known  to  form  close  associations
and  symbioses  with  each  other.  These  associations  can  either
be mutualistic or antagonistic depending on the pairing. Many
grasses  from  the  family  Poaceae  will  form  these  relationships
with Clavicipitaceous fungi, particularly species from the genus
Epichloë[1]. A common benefit of these fungal endophytes is the
reduction  in  herbivory  by  animals  due  to  the  alkaloids
produced by the Epichloë species[2]. Epichloë species  have also
been  shown  to  have  antifungal  activity  against  other  fungi,
mostly through in vitro dual growth cultures[3].

A  unique  benefit  of  the E.  festucae – Festuca  rubra subsp.
rubra symbiosis  is  the  endophyte-mediated  disease  resistance
the grass host attains against dollar spot disease, caused by the
fungal pathogen Clarireedia jacksonii, and red thread, caused by
Laetisaria fuciformis[4,5]. Dollar spot disease is a highly detrimen-
tal foliar disease of turfgrasses requiring the use of both chemi-
cal  and  cultural  control  methods[6].  The  use  of  chemical
controls  often leads to the selection of  resistant strains,  so the
discovery  of  novel  control  methods  that  could  be  utilized  in
tandem with, or in replacement of fungicides, would be a boon
to growers. As such, understanding the underlying mechanism
of  the  endophyte-mediate  disease  resistance  imparted  by E.
festucae represented  an  opportunity  to  discover  such  a  novel
control  method.  Using  transcriptome  analysis  and  protein
expression systems, an E.  festucae antifungal protein, Efe-AfpA,
was  identified  and  its  activity  against C.  jacksonii was
verified[7−9].

The purpose of this review is to summarize the identification
of the antifungal  protein Efe-AfpA and discuss the attempts of
using  it  and  other  antifungal  proteins  to  suppress  plant
pathogenic fungal diseases. To do so, a variety of topics need to

be  discussed:  (1)  the Epichloë spp.  endophytes  of  grasses,  (2)
the  tripartite  relationship  between E.  festucae, F.  rubra subsp.
rubra,  and C.  jacksonii,  (3) Efe-AfpA  and  other  antifungal
proteins, and (4) how these antifungal proteins could be a new
source of control for fungal plant diseases.

 Epichloё endophytes and their benefits

Endophytic  relationships  between  fungi  and  plants  have
been well documented for years. For the most part, these fungi
have been described to be from two distinct groups, Clavicipi-
taceous  and  Nonclavicipitaceous  that  are  further  divided  into
classes[10].  Relationships  between  these  fungi  and  grasses  can
range  from  antagonistic  to  symbiotic,  such  as  the  case  of  the
Epichloë species of the Clavicipitaceae fungi. These fungi endo-
phytically  interact  with  cool  season  grasses  of  the  genera
Agrostis, Brachypodium,  Bromus, Elymus, Festuca, Lolium,  and
Poa[11].  There  is  considerable  host  specificity  among  the
Epichloë spp., which is reviewed in Leuchtmann et al.[12].

Endophytic  production  of  bioactive  molecules  provides
protection to the hosts from a variety of stresses. Peramines, in-
dole diterpenes, ergot alkaloids, and lolines have all been iden-
tified  as  being  synthesized  by  the Epichloё endophytes[13−16].
These compounds protect  the plant  against  animal  and insect
feeding.  This  reduced  insect  feeding  can  have  the  beneficial
side effect of the reduction of plant diseases vectored by those
insects. Endophyte infected meadow ryegrass (Lolium pratense)
had a lower incidence of  aphids and barley yellow dwarf  virus
compared  to  non-endophyte  infected  grass,  which  was
attributed  to  the  secondary  metabolites  the  endophyte
produced[17].  In some cases, endophyte infection also provides
tolerance to abiotic stressors through increased drought toler-
ance, increased root growth and root size[11].
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Class I  Clavicipitaceous endophytes,  which includes Epichloё
festucae,  was the first class shown to contribute fungal disease
resistance  to  their  hosts.  Specifically, E.  festucae infecting
Festuca rubra is one of the few associations that shows strongly
associated in  symbio fungal  disease  resistance,  against  dollar
spot  disease  caused  by Clarireedia  jacksonii,  and  red  thread
caused  by Laetisaria  fuciformis[4,5,10].  There  have  been  several
studies  attempting  to  identify  the  antifungal  capabilities  and
compounds of these endophytes, which will be discussed later.
While there are many reports of Epichloë-dependent antifungal
activity in dual cultures or using extracts, there are few reports
of  this  activity  in  planta.  Of  those  reports,  most  use  detached
leaf assays or whole plant assays in controlled settings[3]. The E.
festucae suppression of  dollar  spot  in  fine  fescues  is  unique in
that  it  has  been  observed  consistently  in  the  field[4],  further
solidifying interest in this interaction.

 Epichloë festucae – Festuca rubra subsp. rubra
– Clarireedia jacksonii interaction

In 1989 at  the Rutgers Plant Science Research Farm in Adel-
phia,  NJ,  USA,  strong  creeping  red  fescue  infected  with  the
endophyte E. festucae was seen to have resistance to dollar spot
disease  caused  by Clarireedia  jacksonii (formerly Sclerotinia
homeocarpa)[4,18].  Strong  creeping  red  fescue  plants  not
infected with E. festucae did not exhibit resistance.

Dollar spot is a destructive disease of turfgrasses whose diag-
nostic symptoms and signs include bleached white foliar lesions,
sunken  depressed  circles  of  turf,  and  cobweb-like  mycelium
evident  early  in  the  morning  on  dew  covered  grass[6].  In  the
United  States,  more  money  is  spent  on  controlling  dollar  spot
disease  with  chemical  fungicides  than  any  other  turfgrass
disease[19,20].  Specifically,  over  70%  of  all  fungicides  used  for
controlling  turfgrass  diseases  are  targeting  dollar  spot,  brown
patch  (Rhizoctonia  solani),  and  anthracnose  (Colletotrichum
sp.)[21].  Several  chemical  fungicides  have  been  used  over  the
years  in  the  control  of  this  disease  such  as:  benzimidazoles,
anilazine, dicarboximides, and DMIs (demethylation inhibitors).
Unfortunately,  resistance  has  been  found  for  all  of  these[22].
Fungicide programs are developed to deter the onset of these
resistance  strains.  Application  of  tank  mixes  of  fungicides
(azoxystrobin, chlorothalonil,  propiconazole, etc.) with or with-
out  the  addition  of  plant  growth  regulators  (paclobutrazol  or
trinexapaethyl)  have  shown  reduced  disease  severity,  with
those including plant growth regulators yielding a higher qual-
ity of Agrostis stolonifera (creeping bentgrass)[23].

Given that E. festucae infecting fine fescues had such a strong
association  with  fungal  disease  resistance,  and  it  is  uniquely
conferring disease resistance in symbio, the exact mechanism of
how  this  resistance  is  achieved  was  investigated.  Understand-
ing this mechanism could represent another tool in mitigating
the  damage  of  dollar  spot  disease,  both  physically  and  finan-
cially. First, a comparative transcriptomic analysis was done on
endophyte  infected  and  endophyte  free  strong  creeping  red
fescue via SOLiD-SAGE[7].  The resulting sequence data showed
that  the  fungal  endophyte  genes  for  secreted  proteins  were
abundant,  and  the  second  most  abundant  fungal  transcript
(6.3%  of  mapped  fungal  tags)  was  for  a  predicted  secreted,
small,  cysteine  rich  protein  with  similarity  to  the Penicillium
chrysogenum antifungal  protein  PAF[7].  The E.  festucae antifun-
gal  protein  was  designated Efe-AfpA  and  the  gene  was  desig-
nated Efe-afpA, using the Epichloё nomenclature guidelines[24].

Of  the ten available Epichloё genomes at  the time,  only one
other, E. inebrians, had this gene present[7]. Since then, genome
sequences of  additional Epichloë spp.  became available,  which
also  have  an  antifungal  protein  gene, E.  baconii and E.
aotearoae[8]. E.  coenophiala,  a  fungal  endophyte  of  tall  fescue
turfgrass also has antifungal protein genes[9]. E. coenophiala is a
triparental hybrid fungus with two sequences similar to E. festu-
cae's Efe-afpA gene.  The  first  is  100%  identical,  so  it  can  be
assumed this gene comes directly from the E. festucae parent of
E. coenophiala. The other sequence is highly similar to Efe-AfpA,
so it could also be from E. festucae or possibly the Lolium-asso-
ciated  endophyte  component  of  the  triparental  hybrid.  The
third progenitor of E. coenophiala, E. typhina,  does not have an
afpA gene[7,25,26].  In  a  search of  the NCBI  database,  only five of
the  16 Epichloë spp.  for  which  whole  genome  sequences  are
currently available have a gene similar to Efe-AfpA. Although E.
coenophiala has  genes  similar  to Efe-AfpA,  tall  fescue  has  not
been  reported  to  exhibit  endophyte-mediated  disease  resis-
tance likely due to the low expression of the antifungal protein
genes[9,27].  There  is  no  information  available  on  disease  resis-
tance or gene expression for the other Epichloë spp.  that have
an antifungal protein gene. The limited existence of an antifun-
gal protein gene among Epichloë species and the unique nature
of  the  endophyte-mediated  disease  resistance  in F.  rubra
suggested the antifungal protein may be a factor in the disease
resistance.

 Antifungal proteins

Antimicrobial  peptides  are  common  among  all  organisms
ranging from single celled to multicellular organisms, and share
a  variety  of  characteristics:  small,  cationic,  and  amphiphilic[28].
Of the several known fungal antifungal proteins,  AFP and PAF,
produced by Aspergillus giganteus and Penicillium chrysogenum
respectively, have been studied most thoroughly.

AFP  is  a  51  amino  acid  protein  with  four  disulfide  bonds
whose  NMR  structure  was  determined  in  1995.  The  data
showed  five  beta  barrel  structures  stabilized  by  four  disulfide
bonds,  but  also  a  level  of  cysteine  pair  isomerization[29].  PAF,
the other highly researched antifungal protein, is produced by
P. chrysogenum.  It has about 43.6% amino acid sequence iden-
tity and 71.3% sequence similarity to AFP and shares the char-
acteristics  of  being  small  and  cationic,  but  has  three  disulfide
bonds[30−32].  Both  were  shown  to  have  high  activity  against  a
variety of fungi at low MIC (minimal inhibitory concentrations),
another  characteristic  of  these  types  of  antifungal
proteins[31,33]. Recently many more of these proteins have been
isolated and characterized[8,30,34−43].

PAF, as with many antifungal proteins,  has a broad range of
antifungal  activity  from  the  fungi  it  affects  and  the  effective
concentrations[44].  Some  fungi  are  extremely  sensitive  to  PAF,
and to the other P. chrysogenum antifungal protein PAFB, such
as Aspergillus  fumigatus and A.  niger,  having  MICs  of  1 µM  or
less. There are more resistant fungi, as is the case with P. chryso-
genum which is extremely sensitive to PAFB but not to PAF[43].
Sensitive  fungi  have  been  shown  to  internalize  PAF,  where  it
localizes  to  the  cytoplasm  as  seen  by  using  immunofluores-
cence  in  several Aspergillus species.  Internalization  of  PAF  has
multiple  effects  on  the  target  fungus,  such  as  membrane
permeabilization  and  changes  in  morphology  such  as  hyper-
branching[31,45]. More recently it was shown that the membrane
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sphingolipid  glucosylceramide  was  required  for  PAF  to  have
full antifungal activity on Neurospora crassa, while PAFB did not
have the same requirement[46].

AFP from A. giganteus is also active against a wide variety of
ascomycete  fungi  such  as  multiple Fusarium and Aspergillus
species  and Botrytis  cinerea[29,47,48].  This  antifungal  protein's
mode of action has been explored using the Sytox green viabil-
ity  stain,  where sensitive  fungi  treated with the protein  would
take up the stain. Using both immunofluorescence and an AFP-
antibody,  it  was  shown  that  the  protein  interacted  with  the
plasma  membrane  leading  to  the  conclusion  that  it  must
permeabilize  the  membrane  allowing  for  the  dye  to  enter  the
cells[48].  Transmission  electron  microscopy  of  AFP  treated A.
niger (sensitive)  and P.  chrysogenum (resistant)  showed  major
differences  in  the  cellular  ultrastructure.  Treated A.  niger
showed  a  collapsing  cytoplasm  and  aberrant  vacuoles,  with
AFP localizing to  the  cell  wall  visualized through immunogold
staining. P.  chrysogenum did  not  show  AFP  localization  to  any
particular  cellular  compartment  but  was  internalized,  and  the
ultrastructure remained similar to the untreated control[49].

Analysis  of  antimicrobial  peptides  revealed  a  conserved
structure  termed  the γ-core  motif.  Variations  of  this  motif  are
found  in  antimicrobial  proteins,  defense  polypeptides,  and
toxins suggesting that the γ-core is  an essential  component of
the  membrane  interactions  of  these  compounds[50].  Modern
molecular  and  computational  modelling  work  suggests  that
the  AFP  protein's γ-core  motif  is  responsible  for  its  interaction
with fungal membranes. Furthermore, the modeling showed a
likely  scenario  where  AFP  proteins  would  assemble  as  a  blan-
ket  over  the  fungal  membrane[51,52].  Similarly  to  how  PAF
requires  the  lipid  glucosylceramide  for  full  activity,  AFP
depends  on  the  C-3  unsaturation  of  membrane  glycosylce-
ramides. Those fungi with Δ3 unsaturation are sensitive to AFP
while  fungi  with Δ3  saturation  are  insensitive.  When  the  gene
responsible  for Δ3  unsaturation, dtdA,  was  knocked  out  in A.
niger and Fusarium  graminearum their  sensitivity  to  AFP
decreased[53].

 Efe-AfpA, Epichloё festucae Antifungal Protein
A

Epichloё  festucae's Efe-AfpA  was  first  identified  through
SOLiD-SAGE  analysis  of  RNA  from E.  festucae infected  strong
creeping red fescue as the second most abundant fungal tag. It
was  predicted  to  be  secreted  and  antifungal  by  sequence
analysis[7].  Protein  sequencing  of Efe-AfpA  isolated  from  the
apoplast  confirmed  its  abundance  in  infected  plants.  Its
predicted amino acid sequence showed high sequence simila-
rity  to  the  well  characterized  PAF  antifungal  protein  from P.
chrysogenum.  This  apoplastic  isolated Efe-AfpA  was  tested
against C. jacksonii in vitro to determine activity and resulted in
a zone of inhibition of growth[8].

While  other  antifungal  proteins  can  be  isolated  from
fermented  pure  cultures, Efe-AfpA  is  not  found  in  culture.  The
Efe-afpA gene was expressed 700-fold greater in the leaf sheath
of E.  festucae infected  strong  creeping  red  fescue  than  in
culture[54]. Efe-AfpA  is  found  in  the  apoplast  of  endophyte
infected strong creeping red fescue,  but not in a high enough
abundance  that  would  suggest  purification  from  the  apoplast
as  being  viable[8].  Therefore,  this  required  utilizing  another
expression  system  for  large  scale  purification  of Efe-AfpA.  The

yeast Pichia  pastoris (currently  referred  to  as Komagataella
phaffi[55])  is  commonly  used  for  heterologous  protein  expres-
sion. Pichia  pastoris was  utilized  to  produce Efe-AfpA  as  it  had
also been used to produce A. giganteus's AFP[8,56,57].

Larger quantities of the protein were able to be purified from
transformed P.  pastoris,  although  the  protein  was  not  com-
pletely pure.  Several  tests  were performed,  all  concluding that
Efe-AfpA had antifungal activity against C. jacksonii by permea-
bilizing  the  membrane[8].  While  active  protein  was  obtainable,
induction of expression was cumbersome requiring two differ-
ent  media,  a  daily  addition  of  methanol,  and  yielded  impure
protein. These factors lead to the search for an optimal expres-
sion system.

Efe-AfpA was expressed in and purified from E. coli, P. chryso-
genum,  and P.  pastoris and  the  antifungal  activities  were
compared to PAF produced by a P. chrysogenum overexpressor
strain[9,58].  The  heterologous  system  used  to  express Efe-AfpA
had  an  effect  on  its  antifungal  activity  against Neurospora
crassa in vitro, with the P. chrysogenum derived Efe-AfpA having
the highest antifungal activity at relatively low concentrations.
Its  activity  was  also  the  most  similar  to  that  of  PAF.  This Efe-
AfpA's activity against C. jacksonii was confirmed in culture and
was assayed to determine if it could control dollar spot disease
on  both  creeping  bentgrass  and  endophyte-free  strong  cree-
ping  red  fescue  in  a  greenhouse  setting.  Dollar  spot  disease
symptoms were reduced on both turfgrasses[9].

Several pieces of evidence therefore indicate that Efe-AfpA is
a  major  component  in  the  endophyte-mediated  disease  resis-
tance  seen  in  strong  creeping  red  fescue  infected  by Epichloë
festucae: (1) Uniqueness of the Efe-afpA gene amongst Epichloë
spp.;  (2)  high  levels  of  expression in  symbio,  but  not  in  pure
culture;  (3)  its  antifungal  activity  against C.  jacksonii in  culture,
and;  (4)  its  reduction  in  dollar  spot  disease  severity  in  green-
house  trials  when  applied  to  non-endophyte  infected  strong
creeping red fescue inoculated with dollar spot. The next piece
of  evidence  required  to  fully  validate  this  protein's  involve-
ment  in  disease  resistance  would  be  a  strong  creeping  red
fescue isolate infected with an Efe-AfpA E. festucae knockout.

Two independent Efe-afpA knockouts  were generated using
CRISPR-Cas9,  and  neither  could  infect  strong  creeping  red
fescue  whereas  the  wild  type  and  the  complemented  isolates
could.  This  suggested  that  the Efe-AfpA  protein  could  be  an
effector  with  an  additional  role  in  the  symbiotic  relationship
between  strong  creeping  red  fescue  and E.  festucae beyond
disease resistance[54].  Other antifungal proteins have also been
described to have more than one function[59,60].

Other  methods  could  be  used  in  lieu  of  a  knockout  such  as
transgenic  turfgrass  expressing Efe-AfpA.  Grasses  normally
susceptible  to  dollar  spot  disease,  such  as  non-endophyte
infected  strong  creeping  red  fescue  and  creeping  bentgrass,
could  heterologously  express  the  antifungal  protein  and  then
be  inoculated  with C.  jacksonii.  Reduction  in  disease  severity
compared  to  an  untransformed  control  would  support Efe-
AfpA's role in disease resistance. Both red fescue and creeping
bentgrass  have  been  shown  to  be  amenable  to
transformation[61,62].

Epichloë endophytes  are  known  to  affect  their  hosts  and
produce  many  secondary  metabolites,  so  other  mechanisms
may  be  involved  with  this  disease  resistance.  From  the  tran-
scriptomic  work  by  Ambrose  &  Belanger[7] no  candidate  plant
genes  for  disease  resistance  or  defense  response  were
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identified  with  the  highest  percentage  of  upregulated  plant
tags  being in  the gene ontology category  'photosynthesis'.  So
while E. festucae has an impact on the host gene expression, no
obvious  plant  genes  stood  out  that  explained  the  endophyte-
mediated  disease  resistance. Epichloë spp.  also  have  an  effect
on  the  host  plant's  microbial  community. Festuca  arundi-
naceum (tall  fescue)  infected  with E.  coenophiala had  a  diffe-
rent  fungal  community  than  its  endophyte-free  counterpart,
particularly  in  the  amount  of Puccinia  coronata,  a  common
fungal  pathogen[63].  This  different  population  may  also  play  a
role in disease resistance,  but  more work needs to be done to
further  elucidate  if  this  is  the  case  with  strong  creeping  red
fescue and dollar spot disease.

Recently  Card,  Bastìas,  and  Caradus  excellently  reviewed
publications  detailing  the  antagonism  of Epichloë species
against  plant  pathogens[3].  Many of  these studies  utilized dual
culture  assays  where  the Epichloë spp.  were  cultured  with
another fungus and growth inhibition was observed[64−76] while
others  did  show  antifungal  activity  in  planta  described  as
antibiosis[70,73−75,77−82].  Of  the  29  studies  cited  spanning
decades  of  work  where  in  vitro  or  in  planta  bioactivity  was
reported  to  be  due  to  antibiosis,  only  5  identified  the  com-
pounds  responsible  for  the  antifungal  effect[75,76,83−85].  More
recently,  antifungal  compounds were identified from E.  bromi-
cola and Epichloë strains NEA12 and NEA23[86,87].

Besides  the highly  abundant Efe-afpA tag,  the Epichloë tran-
scriptomic data identified many more small,  secreted, Epichloë
specific proteins. E. festucae is known to produce small secreted
proteins,  some  of  which  have  been  predicted  to  be  effectors
from a study done on its symbiosis with Lolium perenne. Of the
three  effectors  investigated,  no  functions  were  determined
beyond localization in the host plant[88]. It is possible that these
proteins also play a role in disease resistance or the induction of
a defense response in the host. Further knockouts, overexpres-
sors, or purifications of the other abundant E. festucae proteins
should  be  conducted to  further  validate  their  functions.  While
many publications have reported antifungal activity by Epichloë
spp.  only  a  few  have  specifically  identified  the  compounds
involved  and  confirmed  that  the  compounds  are  found in
symbio as  opposed  to  pure  culture,  which  may  not  represent
the compounds produced by the endophyte in the host plant.
Bioprospecting  these  metabolites  using  advanced  analytical
methods  and  software  should  help  streamline  and  expedite
this  process[89].  So,  despite  the  other  players  that  could  be
involved,  the  evidence  gathered  about Efe-AfpA  solidifies  its
place  as  a  major  component  of  the  endophyte-mediated
disease resistance seen in strong creeping red fescue.

Efe-AfpA's  potential  mode  of  action  was  investigated,  much
like  that  of  the  antifungal  proteins  AFP  and  PAF.  AFP  from A.
giganteus appears  to  rely  heavily  on  both  the  presence  of
glycosylceramides  (GlcCer)  on  the  membrane  and  the  unsatu-
ration of the C-3 carbon in the glycosylceramides in the target
organism. In experiments where the glucosylceramide synthase
protein  was  inhibited,  the  sensitive  fungus A.  niger had
decreased  susceptibility.  When  the Δ(3)  desaturase  gene  was
knocked out in the AFP-sensitive A. niger it also had decreased
susceptibility[90].  PAF's,  from P.  chrysogenum,  mode  of  action
was also investigated in relation to glucosylceramides with the
GlcCer N.  crassa mutants.  All  mutants  generated  in  the  gluco-
sylceramide pathway, including gcs, lead to decreased suscepti-
bility to PAF but not PAFB, also from P. chrysogenum, indicating

that  not  only  are  glucosylceramides  important  for  PAF's  acti-
vity but that PAFB may have other membrane constituents with
which  it  interacts[46].  The  antifungal  activities  of Efe-AfpA  and
PAF  were  assayed  against  a  selection  of  these  glucosylce-
ramide mutants. It  was found that while PAF required the pre-
sence of glucosylceramide for full  activity, Efe-AfpA was highly
antifungal  against  all  the  mutants[9].  This  indicated  that  while
these  two  proteins  share  sequence  and  predicted  structural
similarities, their modes of action are different.

AFP  and  PAF,  among  other  antifungal  proteins,  have  been
tested  against  a  variety  of  fungi  to  determine  their  activities.
This is important as these proteins could potentially represent a
new  type  of  disease  control  method  and  understanding  of
which can be used against which plant pathogenic fungus will
be a necessity. Efe-AfpA was assayed against  a variety of  plant
pathogenic fungi in addition to C. jacksonii.  In culture Efe-AfpA
had  antifungal  activity  against  fungi  that  cause  economically
important diseases, such as Botrytis cinerea, Fusarium graminea-
rum, and Pyricularia oryzae[91].

 Antifungal proteins and disease control

Management  of  fungal  plant  pathogens  is  a  problem  for
many crops. Current management strategies rely heavily on the
use of fungicides,  which are considered critical  for global food
security[92,93]. Fungicides are also used heavily on amenity crops
such  as  turfgrasses[94].  Although  deemed  critical  for  disease
management,  there  are  several  problems  associated  with
fungicide  use,  including  toxicity  to  non-target  organisms  and
development  of  resistance  in  the  target  fungus[92].  Another
strategy for  disease control  is  the development  of  alternatives
or complements to synthetic fungicides with reduced toxicities.
This  approach  can  involve  application  of  biological  control
organisms  or  products  derived  from  living  organisms  to  crops
to  reduce  disease  severity[95].  In  particular,  antifungal  proteins
produced by fungi are being researched for their  utilization as
biofungicides[96].

The efficacies of other antifungal proteins have been studied,
with  purified  antifungal  protein  being  applied  to  the  plant  to
reduce  or  prevent  disease.  The  MIC  for  AFP  from A.  giganteus
against the rice blast fungus Pyricularia oryzae (formerly Magna-
porthe  oryzae)  was  determined  to  be  4 µM in  vitro.  In  both
detached leaf assays and whole plant experiments,  treatments
with  AFP  protected  the  plants  from  rice  blast  as  compared  to
the  untreated  control[33].  Tomato  roots  that  were  pre-treated
with  AFP  of  different  concentrations  were  challenged  against
Fusarium  oxysporum f.  sp. lycopersici.  When  pre-treated  with  a
concentration  of  100 µg·mL−1 of  AFP,  the  tomato  plants  were
protected from the pathogen while lower concentrations were
not effective[49]. Reduction of barley powdery mildew (Blumeria
graminis f.  sp. hordei)  and wheat  leaf  rust  (Puccinia  recondite f.
sp. tritici)  was  shown  by  either  applying  PAF  from P.  chryso-
genum to  leaves  or  floating  detached  leaves  in  a  PAF
solution[97]. PAFB was shown to be effective in reducing disease
on oranges and apples caused by P.  digitatum,  P.  italicum,  and
P. expansum, all of which are post-harvest problems on fruits[98].

$

The turfgrass industry in the United States is extremely lucra-
tive.  Turfgrass  is  the  fourth  largest  crop  in  the  United  States
with 50 million acres and an annual value of 40 – 60 billion[99].
Given how economically important it  is,  and how costly fungi-
cide applications can be to control diseases such as dollar spot,
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any alternatives or additives to current management programs
would be very  useful  not  only  to  the US but  internationally  as
well.  Since  applications  of  purified  antifungal  proteins  can
reduce  plant  disease  symptoms,  and Efe-AfpA  was  previously
shown to inhibit  growth of C.  jacksonii,  the E.  festucae antifun-
gal  protein  could  be  a  potential  alternative  or  additive  to
current control measures for dollar spot disease as well as other
fungal  pathogens.  This  would require scaled up culture condi-
tions  allowing  for  the  purification  of  large  amounts  of  the
protein  needed  for  field  efficacy  trials.  An  important  facet  of
this  scale up would be the selection of  an appropriate expres-
sion  system  as E.  festucae does  not  produce Efe-AfpA  in
culture[54].  When  it  comes  to  fungicides  on  the  market  today,
expression systems are not  used as  the fungicidal  compounds
are  produced through chemical  means.  This  method could  be
used for small antimicrobial proteins, as the production of PAF
through  chemical  ligation  was  successful  in  producing  a
protein  with  the  same  structure  and  antifungal  activity  as  the
native PAF[100]. However, between the complicated methodolo-
gies,  some  of  which  failed,  described  by  Varadi  et  al.  and  the
ease of which many of these antifungal proteins are produced
using  fungal  expression  systems,  heterologous  expression  is
still the most efficient method[100].

When  it  comes  to  expression  systems,  one  would  want  to
select those that produce high levels of active protein with the
least  amount  of  economic  and  physical  input.  In  other  words,
an  expression  system  that  is  cheap  and  easy  to  use.  Three
expression systems were tested for the production of Efe-AfpA:
P. pastoris, E. coli, and P. chrysogenum.

The Pichia system,  while  capable  of  producing  AFP  easily,
yielded impure Efe-AfpA and was cumbersome due to multiple
media  types  and  the  necessity  of  methanol  for  induction  of
expression[8,56]. Bacteria present an attractive alternative expre-
ssion system with several marketed kits for easy transformation,
growth,  and  heterologous  protein  purification.  However,
correct  disulfide  bond  pairing  can  be  difficult  to  achieve  in
heterologous  systems,  which  can  lead  to  mispairing,  mis-fold-
ing,  and  protein  aggregation[101].  This  is  even  more  important
as it has been shown that incorrect pairing can lead to impaired
function  of  the  PAF  protein.  When  the  six  cysteine  residues  in
PAF were reduced by dithiothreitol, causing a loss of the disul-
fide  bonds,  the  modified  PAF  no  longer  had  any  inhibitory
activity against Aspergillus niger[32].

SHuffle  cells  and  the  Expresso® T7  SUMO  Cloning  and
Expression  System[102] were  used  to  ensure  proper  folding  of
Efe-AfpA.  SHuffle  cells  are  the E.  coli strain trxB gor suppressor
strain,  which  has  had  its  reductive  pathways  in  the  cytoplasm
diminished  yielding  an  environment  primed  for  the  oxidation
of  the  sulfhydryl  groups  leading  to  the  formation  of  disulfide
bonds.  It  also  overexpresses  DsbC,  a  disulfide  bond  isomerase
that acts as a chaperonin to further ensure correct bond forma-
tion  and  pairing[103,104].  However,  the  resulting Efe-AfpA  had
very different levels of activity compared to its Pichia and Peni-
cillium produced  counterparts  and  the  highly  similar  PAF
protein  which  may  be  due  to  structural  differences  involving
these  disulfide  bonds.  This  system  becomes  even  less  useful
because of its low yield[9].

Small  cationic  proteins  have  also  been  produced  in  a P.
chrysogenum system  developed  from  the ΔPAF  mutant[59].
Multiple  PAF  and  PAF-like  proteins  (NFAP  from Neosartorya
fischeri)  have  been  transformed  and  expressed  in  the P.

chrysogenum ΔPAF system yielding high quantities and biologi-
cally  active  proteins[43,58].  This  provides  an  alternative  to  a
bacterial  system  which  may  not  be  able  to  accommodate  the
correct  pairing  of  disulfide  bonds.  The  PAF  expression  system
resulted  in  the  highest  yield  of  very  active Efe-AfpA[9].  It  also
utilizes very common reagents for the media, does not require
an  additive  to  induce  expression,  and  allows  for  a  one  step
purification of the protein using a cation exchange resin[58].  As
such,  it  is  the most  straightforward and easiest  of  the systems
tested to use for expression and purification of active protein.

A variety of other experimentation and testing is required to
further determine these antifungal proteins' efficacy in disease
control.  Field  testing  is  the  ultimate  test,  but  stability  studies
are  required  to  first  see  if  these  proteins  can  persist  on  plants
long  enough  to  provide  protection.  Heat,  ion  concentrations,
and  protease  sensitivity  have  been  investigated  for  some  of
these  antimicrobial  proteins[29,32,48,49],  but  another  obvious
stress to test would be light stability particularly UV sensitivity.
Stability  of  these proteins  in  different  formulations  would also
need to be examined as many chemical fungicide products are
sold  in  a  variety  of  forms:  liquid,  solids,  wettable  powder,  etc.
Should stability be a problem, adjuvants could also be added to
these  formulations  to  provide  increased  stability  and  persis-
tence  of  the  protein  in  the  field.  To  answer  these  questions
however,  one  first  needs  to  produce  large  quantities  of
active  protein,  which  is  why  expression  system  selection  is
paramount.

 Conclusions

Fungal  endophytes  of  plants  have  long  been  known  to
impart  benefits  to  their  host,  but  the  exact  mechanisms  of
which  have  been  an  ongoing  area  of  research.  Many  of  these
benefits  come  from  the  secondary  metabolites  the  fungal
endophyte produces such as the antiherbivory alkaloids. While
antagonism  against  a  variety  of  fungi  has  been  reported,  very
few  studies  verify  the  compounds  involved  and  confirm  their
presence in symbio.  The  endophyte-mediated  disease  resis-
tance  imparted  by E.  festucae in  strong  creeping  red  fescue,
which  protects  the  grass  host  from  dollar  spot  disease,  is  a
more unique benefit among clavicipitaceous endophytic fungi.
While  this  field  phenomenon  was  observed  decades  ago,  the
molecular  mechanism  is  only  now  being  understood.  Several
lines  of  research  have  now  revealed  the  endophyte-mediated
disease resistance is likely due to an endophyte produced anti-
fungal protein, Efe-AfpA, which has activity against C. jacksonii.
Efe-AfpA,  and other antifungal  proteins like it  such as AFP and
PAF, has activity against many fungi and could represent a new
mechanism for disease control.  Further studies are required to
fully understand Efe-AfpA's efficacy against dollar spot disease,
specifically  scale  up,  UV  stability,  and  field  trials.  In  tandem,
research  into  its  mode  of  action  should  be  continued.  Once
fully  characterized, Efe-AfpA  and  other  proteins  like  it  could
represent  a  new  product  for  plant  disease  control  alleviating
the  use  of  chemical  fungicides  resulting  in  less  environmental
impacts  and  a  reduction  in  the  selection  for  resistant  fungal
pathogens.
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