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Abstract
Buffalograss  has  been  extensively  used  in  recent  years  as  a  low-maintenance  lawn  grass.  The  artificial  manipulation  of  sex  differentiation  in

buffalograss  to  enhance  seed  production  is  important  for  both  cultivation  and  practical  applications.  In  this  study,  we  applied  a  specific

concentration  of  synthetic  auxin  (Naphthaleneacetic  acid,  NAA)  and  inhibitors  of  jasmonic  acid  synthesis  (Sodium  diethyldithiocarbamate

trihydrate, DIECA) solution on buffalograss under field conditions. The majority of treatments significantly improved the number of female fertile

tillers, female florets, the female-to-male ratio, and ultimately, seed yield (p < 0.05). Among all treatments, 100 mg/L DIECA + 100 mg/L NAA, and

100  mg/L  DIECA  +  150  mg/L  NAA,  demonstrated  the  most  effective  results.  Under  these  two  treatments,  the  number  of  female  fertile  tillers

increased by 161% and 145% respectively,  the number of  female florets  increased by 8.56% and 7.82% respectively,  the female-to-male ratio

increased by 130% and 118% respectively, the potential seed yield increased by 136% and 121% respectively, and the actual seed yield increased

by 69% and 77% respectively.
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 Introduction

Buffalograss  (Bouteloua  dactyloides)  is  a  member  of Chlori-
doideae subfamily and originates from the semi-arid temperate
Great Plains region of  the Western United States[1].  Historically
buffalograss  was  used  for  pastures  in  the  Western  United
States[2,3].  Due to its  strong drought tolerance,  heat resistance,
disease  resistance,  low  soil  nutrient  requirements,  low  height
and  strong  ability  for  vegetative  reproduction,  it  has  received
more attention as a low-maintenance lawn grass[4]. As a peren-
nial  warm-season  turfgrass,  it  is  commonly  utilized  for  urban
greening and ecological  slope protection,  as  well  as  for  turf  in
airports[5].

Buffalograss is a wind-pollinated, highly heterogeneous, and
dioecious species with rare occurrences of monoecy. The diffe-
rence  in  male  and  female  inflorescence  structures  of  buffalo-
grass  is  significant  enough  that  plants  of  different  sexes  were
initially classified into separate genera. It is known that the sex
expression  of  dioecious  buffalograss  remains  stable  in  natural
environments,  with  a  roughly  equal  sex  ratio  between  males
and  females[6−9].  Furthermore,  when  buffalograss  is  germi-
nated from seeds, it will segregate into female and male plants.
In  the  case  of  buffalograss  that  is  transplanted or  vegetatively
propagated,  they  are  typically  of  the  same  sex  as  the  mother
plant, although on rare occasions, certain plants may alter their
sex expression[10].  Buffalograss is dioecious, having an approxi-
mate  1:1  female-to-male  ratio  that  is  stable[11].  Some  cultivars
such  as  'Sharps  Improved'  will  also  exhibit  a  monoecious
phenotype at frequencies up to 13%.

Both female and male plants play distinct roles in the survival
and  reproduction  of  the  population.  The  male  plants  usually
allocate  all  their  resources  for  the  effective  spread  of  high-
viability  pollen,  thereby  achieving  a  higher  fertilization  rate.
Conversely,  female plants channel  more energy into seed pro-
duction,  providing  increased  resources  for  their  offspring  and
thereby  enhancing  the  survival  rate  of  seedlings[12].  Generally,
the female and male plants have great differences in morpho-
logy  when  flowering.  In  production,  the  application  and
economic value of different sex types varied significantly even
within  the  same  species.  For  example,  to  harvest  seeds,  the
number  of  female  plants  should be maximized under  the pre-
mise of ensuring pollination. Female plants are also preferred in
lawns  because  its  inflorescences  are  hidden  beneath  the  lawn
canopy,  while  male  inflorescences  protrude  above  the  lawn
canopy,  reducing  uniformity  and  overall  aesthetics[13].  There-
fore, regulating the sex ratio of buffalograss is very meaningful
in terms of production and application.

Sex differentiation is a natural phenomenon in the biological
world,  which  is  an  important  process  for  plants  to  shift  from
vegetative growth to reproductive growth. The sex differentia-
tion  of  plants  occurs  simultaneously  during  the  process  of
flower  bud  differentiation,  which  is  not  only  regulated  by  sex
determining genes, sex chromosomes, and endogenous signals
such  as  auxin[14],  gibberellins[15],  carbohydrates[16],  but  also
influenced  by  environmental  factors[17,18] such  as
temperature[19,20],  photoperiod[21,22],  water[23−25],  and
nutrition[26−28].  The  complexity  of  sex-determining  mecha-
nisms leads to different genders in plants[29].
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There are various methods to control  the sex differentiation
of plants artificially, among which by spraying exogenous plant
hormones  and  plant  growth  regulators  is  undoubtedly  the
most  simple  and  low-cost  method.  As  early  as  1950,  some
scholars  treated  cucumbers  (Cucumis  sativus L.)  with  3-
Indoleacetic acid (IAA), and the results showed that the propor-
tion of  female  and male  flowers  increased significantly[30].  In  a
study  conducted  by  Rudich  et  al.[31],  three  species  of
Momordica charantia L were treated with ethephon, resulting in
the formation of more female flowers. The application of ethy-
lene  treatment  at  an  appropriate  concentration  was  found  to
increase  the  number  of  female  flowers  on  each  vine  of Luffa
cylindrica L.  Furthermore,  it  advanced  the  timing  of  when
female  flowers  first  appeared,  increased  the  female-to-male
flower  ratio,  and  significantly  reduced  plant  height,  making
internodes shorter, and plants more compact[32].

Preliminary research has been conducted on the sex differen-
tiation  of  buffalograss.  Trends  of  sex  expression  for  buffalo-
grass, showed that conditions of warm temperature, high light,
and  low  N  were  favorable  for  female  sex  expression,  whereas
conditions  of  cool  temperature,  low  light,  and  high  N  were
favorable for male sex expression[6]. Chandra & Huff[33] showed
that  infection  by  the  pistil  smut  fungus  shifts  sex  ratios  of
buffalograss to be nearly 100% phenotypically hermaphroditic
by  increasing  inflorescences,  spikes,  spikelets,  and  florets.  In
addition, increased most seed yield components, and increased
pseudosexual  reproductive  allocation  in  both  sex  forms
compared to  uninfected clones.  Unfortunately,  plants  infected
with  pistil  smut  fungus  produce  smut  balls,  instead  of  seed.
Exogenous  application  of  IAA,  Gibberellin  A3  (GA3)  and
cytokinin  (CTK)  could  significantly  increase  the  number  of
female flowers and fertile tillers of buffalograss[34]. In this study,
a  series  of  experiments  were  performed  on  buffalograss  in
which  we  manipulated  concentrations  of  NAA,  DIECA  and
measured subsequent female-to-male ratio and seed yield.

 Material and methods

 Site description
A field trial  was carried out at the China Agricultural  Univer-

sity Zhuozhou Experimental Station (39.27'N, 115.51'E), which is
located  in  Zhuozhou,  Hebei  Province,  China.  The  site  has  an
altitude of 42 m and belongs to the warm temperate continen-
tal monsoon climate zone with sufficient sunlight, high tempe-
ratures,  and  rainy  summers,  but  cold  and  dry  winters.  The
average annual rainfall is 563 mm, the annual average tempera-
ture is 11.6 °C, and the cumulative frost-free period is 178 d on
average. The experimental site is dominated by sandy loam soil.
The  physical  and  chemical  properties  of  the  soil  are  shown  in
Table 1.

 Selection of experimental species, reagents, and
instruments

Seeds  of  'Zhongye  No.  1'  buffalograss  which  was  bred  by
China  Agricultural  University  (Beijing,  China)  were  selected  as

the  experimental  species.  Seeds  were  harvested  on  July  10,
2021.

NAA  and  DIECA  were  ordered  from  Rhawn  company
(Shanghai,  China),  analytical  pure.  HP-5890II  gas  chromato-
graph  (The  USA,  HP  Company)  and  G2-XS  Q-TOF  mass  spec-
trometer  (The  USA,  Waters  Company)  were  used  to  measure
endogenous JA content.

 Experimental design
The experimental  arrangement was a  randomized complete

block  design,  there  were  11  treatments  and  1  control.  Three
replicates  were  set  for  each treatment  which  led  to  36  experi-
mental  plots,  including  33  treatment  plots  and  three  control
plots  (CK).  The  size  of  each  experimental  plot  was  2  m  ×  2  m.
Three rows were planted with a  row spacing of  60 cm in each
plot, and the seeding rate was 20 g per plot.

Our  previous  experiments  showed  that  100  mg/L  and  150
mg/L  of  DIECA  significantly  increased  potential  seed  yield,
actual  seed  yield  and  female-to-male  ratios  of  buffalograss
(Supplemental  Table  S1).  To  further  investigate  DIECA  and  its
interaction with NAA, 2 L of solution were used to spray on the
leaves of the test materials in each plot using a manual sprayer
in  this  study.  An  equal  amount  of  clean  water  was  sprayed  in
the  control  group.  The  reagent  concentrations  used  in  diffe-
rent treatments are shown in Table 2.

Reagents  were  sprayed  at  10  am  after  dew  dissipated  from
the  buffalograss  canopy.  Two  litters  of  the  corresponding
reagents or clean water was sprayed in the plot until the leaves
were  moist.  Spraying  operations  were  carried  out  every  two
days  for  a  total  of  seven  times.  All  test  treatments  were  com-
pleted  before  the  materials  in  the  test  field  reached  the  initial
flowering stage to ensure the test effect.

 Experimental fields management
Before sowing, compound fertilizers ((N-P-K, 1-0.44-0.91), ET)

were uniformly applied to the experimental plots, including 20
kg/hm² of phosphorus, 38 kg/hm² of potassium, and 45 kg/hm²
of  nitrogen.  Before  sowing,  the  seeds  were  treated  at  low
temperature  (−20  °C)  for  7  d  to  break  dormancy.  Seeds  were
sowed  on  May  1st,  2022,  and  irrigated  with  punched  thin-soft
spray  tape  immediately  after  sowing.  The  plots  were  irrigated
every  48  h  before  emerging,  irrigation  amount  was  24  L  per
square  meter.  After  emerging,  30  L  per  square  meter  of  water
was  irrigated  every  48  h  to  ensure  normal  growth  of  the
seedlings which facilitated the control of weeds.

Forty-five  days  after  sowing,  the  natural  height  of  the
seedlings reached 5 cm. At this time, the herbicide Prodiamine
with  a  concentration  of  800  g/hm²  was  sprayed  to  prevent
weed  seed  germination.  In  the  local  hot  and  rainy  months  of
July  and  August,  a  mixture  of  Quinclorac  and  Amflunolin  at  a
concentration of 500 g/hm² was sprayed every 30 d to control
weeds. A gasoline-powered weeder was used to clear weeds in
the  aisles  of  the  experimental  fields.  At  the  end  of  October  of
the same year, 30 L per square meter of water was irrigated to
ensure that the test materials overwintered successfully.

 

Table 1.    Soil physical and chemical properties.

Depth (cm) Bulk density
(g/cm3)

Field moisture
capacity

(cm3/cm3)
Soil pH

Available
phosphorous

(mg/kg)

Available
potassium

(mg/kg)

Soil organic
matter
(g/kg)

Alkali-
hydrolyzable

nitrogen (mg/kg)

0−20 1.67 0.24 7.7 31.76 81.38 7.88 129.24
0−40 1.69 0.20 8.13 13.16 24.36 2.30 128.50
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The  next  year,  after  the  test  materials  turned  green,  they
were mowed to a uniform height of 8 cm. An equal amount of
compound fertilizer was applied in each plot to ensure normal
growth  of  the  test  materials.  Weed  control  measures  remain
consistent with the previous year. Treatments were initialed on
May 1st, 2023.

 Index measurements and methods
During the peak flowering period, a 20 cm × 20 cm quadrat

was used and three samples were taken from each plot, with a
total of nine samples for each treatment (the same as below) in
which  the  number  of  female  and  male  fertile  tillers  in  plots
were counted. The number of females and spikes in plots were
also counted at the same time. The ratio of female-to-male was
represented  by  the  ratio  of  female  and  male  fertile  tillers  in
each treatment plot.

Seed yield was divided into three parts.  First,  potential  seed
yield = (female fertile tillers/m2) × (female florets/female fertile
tillers) × average weight of a seed. Second, seed yield in experi-
mental  plots—Three  50  cm  ×  50  cm  quadrats  were  placed
randomly  in  each  plot,  and  all  mature  seeds  in  the  quadrat
were  harvested  manually.  Seed  that  fall  to  the  ground  were
also  collected.  Then  the  harvested  mature  seeds  were  dried,
cleaned,  and  weighed.  Lastly,  actual  seed  yield—Convert  the
seed yield per unit area (1 m2) based on the seed yield in experi-
mental plots.

The  endogenous  JA  content  in  roots  and  leaves  was  also
measured. Leaf and root samples were obtained from each plot
at 6, 12, and 24 h after spraying the reagents. The sampling tool
was a root sampler with 10 cm diameter and 30 cm depth. After
obtaining  fresh  plant  samples,  immediately  washed  away  the
soil attached to the roots. After wiping away the water, cut out
the  roots  and  the  first  main-stem  leaf  from  the  end,  wrapped
them  separately  in  aluminum  foil,  and  immediately  frozen  in
liquid nitrogen then stored at  −80 °C.  Endogenous JA content
was  analyzed  through  gas  chromatography  +  mass.  The
method  of  Birkemeyer  et  al.[35] was  used  with  slight  modifica-
tion.

The  samples  were  lyophilized  and  then  ground  into  a  fine
powder  using  a  mortar  and  pestle.  The  powder  (0.1  g)  was
suspended  in  a  solution  of  acetone  and  50  mM  citric  acid
(70:30, v/v), and 9,10-dihydro-JA (20 ng) was added as an inter-
nal  standard.  To  prevent  the  loss  of  volatile  fatty  acids,  the
extracts  were  allowed  to  evaporate  overnight  at  room

temperature. The resulting aqueous solutions were filtered and
extracted with 3 × 10 mL of diethyl  ether.  The pooled extracts
were loaded onto a solid-phase extraction cartridge (500 mg of
aminopropyl  sorbent).  Once  loaded,  the  cartridges  were
washed  with  7.0  mL  of  trichloromethane  and  2-propanol  (2:1,
v/v). The bound JA and the relevant standard were eluted with
10  mL  of  diethyl  ether  and  acetic  acid  (98:2,  v/v).  After  the
solvents  were  evaporated  and  the  residue  was  esterified  with
excess  diazomethane,  the  sample  was  adjusted  to  50 µL  with
dichloromethane.  The  extracts  were  then  analyzed  by  GC-MS
(6890N  network  GC  system  and  5973  network  mass  selective
detector;  Agilent  Technologies,  Palo  Alto,  CA,  USA).  The
amounts of endogenous JA were determined by comparing the
peak areas of JA with the corresponding standards. Three repli-
cates per treatment were used for JA determination.

 Statistical analysis
Experimental data were summarized in Excel. The data were

subjected  to  analysis  of  one-way  ANOVA  and  Duncan's  multi-
ple  range  test  (DMRT)  by  SPSS  26.  GraphPadPrism  5  was  used
to draw graphs.

 Results

 Numbers of fertile tillers
Compared  with  the  control,  all  treatments  reduced  the

number  of  male  fertile  tillers  of  the  experimental  plants  (Fig.
1a).  Among  them,  the  most  significant  effects  were  achieved
under the treatments of 150 mg/L DIECA + 150 mg/L NAA, 100
mg/L DIECA + 100 mg/L NAA, and 100 mg/L DIECA + 150 mg/L
NAA. The number of male fertile tillers decreased by 44%, 42%,
and  42%  respectively  compared  with  the  control  group  (Fig.
1a).  Except  for  the  treatment  of  150  mg/L  DIECA  +  50  mg/L
NAA, there were also significant differences between the above
three  treatment  groups  and  the  remaining  treatment  groups
(p < 0.05).

Compared  with  the  control,  all  treatments  increased  the
number of female fertile tillers of the experimental  plants (Fig.
1b).  Among  them,  the  effect  was  most  significant  under  the
treatments  of  150  mg/L  DIECA  +  100  mg/L  NAA,  100  mg/L
DIECA + 100 mg/L NAA, and 100 mg/L DIECA + 150 mg/L NAA.
The  average  number  of  female  fertile  tillers  was  249%,  261%,
and 245% of the control group respectively (Fig. 1b).

 Numbers of spikes and female florets
Compared with the control, the four treatments of 100 mg/L

DIECA,  150 mg/L  NAA,  100 mg/L  DIECA + 100 mg/L  NAA,  and
100  mg/L  DIECA  +  150  mg/L  NAA  increased  the  number  of
spikes (p < 0.05).  Among them, the most significant effect was
achieved under  the treatment  of  100 mg/L DIECA + 150 mg/L
NAA (Fig. 2a).

Compared  with  the  control,  all  treatments  increased  the
number  of  female  florets  in  the  experimental  plants  (Fig.  2b).
Among  them,  the  most  significant  effect  was  achieved  under
the treatment of 100 mg/L DIECA + 50 mg/L NAA.

 Seed yield in experimental plots
Compared  with  the  control  group  treatments  of  100  mg/L

NAA, 150 mg/L DIECA + 100 mg/L NAA, 150 mg/L DIECA + 150
mg/L NAA, 150 mg/L DIECA + 150 mg/L NAA, 100 mg/L DIECA
+  50  mg/L  NAA,  100  mg/L  DIECA  +  100  mg/L  NAA  and  100
mg/L  DIECA  +  150  mg/L  NAA  increased  seed  yield  (p <  0.05)

 

Table 2.    Reagent concentrations in treatment.

Treatment
Reagent concentration

NAA (mg/L) DIECA (mg/L)

A-b-1 – 100
A-c-1 – 150
A-a-2 50 –
A-b-2 100 –
A-c-2 150 –
B-a-1 50 150
B-b-1 100 150
B-c-1 150 150
B-a-2 50 100
B-b-2 100 100
B-c-2 150 100
CK – –

If a certain reagent was not used in the treatment, it is marked as '–'.
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(Fig.  3).  The  seed  yield  in  experimental  plots  of  treatments
mentioned  above  increased  by  an  average  of  57%,  68%,  55%,
57%, 69%, and 77% compared with the control group.

 Potential seed yield
All  treatments  increased  potential  seed  yield  compared  to

the control group (p < 0.05) (Table 3).  Among them, 100 mg/L
DIECA + 50 mg/L NAA, 100 mg/L DIECA + 100 mg/L NAA, and
100  mg/L  DIECA  +  150  mg/L  NAA  have  the  most  significant
treatment effects. Potential seed yields of the three treatments
increased by an average of 122%, 136%, and 121% respectively.
Potential  seed  yield,  actual  seed  yield,  and  seed  yield  coeffi-
cient is shown in Table 3.

 Actual seed yield
All treatments increased actual seed yield compared with the

control group (p < 0.05) (Fig. 4). Among them, three treatments
showed  the  best  results.  The  actual  seed  yield  showed  68%
increase  under  150  mg/L  DIECA  +  100  mg/L  NAA  treatment,
69%  increase  under  100  mg/L  DIECA  +  100  mg/L  NAA  treat-
ment,  and  77%  increase  under  100  mg/L  DIECA  +  150  mg/L
NAA treatment.

To  comprehensively  compare  the  changes  in  the  female  to
male  ratio  and seed yield  under  various  treatments  and select
the treatment with the best effect, Table 4 was created. Under
the  treatments  of  100  mg/L  DIECA  +  100  mg/L  NAA  and  100
mg/L  DIECA  +  150  mg/L  NAA,  the  number  of  female  fertile

tillers, male-to-female ratio, potential seed yield, and the actual
seed yield of the treatment groups are significantly higher than
control  groups,  even  higher  than  several  treatment  groups
(Table  4).  It  can  therefore  be  concluded  that  these  two  treat-
ments  are  effective  methods  to  increase  the  female-to-male
ratio and seed yield of buffalograss under field conditions.

 Female-to-male ratio
Compared with the control  group,  except  for  the two treat-

ments  of  100  mg/L  DIECA  and  100  mg/L  NAA,  all  other
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Fig.  1    Effects  of  spraying  reagents  on  the  number  of  (a)  male,  and  (b)  female  fertile  tillers.  The  content  on  the  abscissa  represents  the
concentration of reagents used in the corresponding treatment. A-b-1: 100 mg/L DIECA; A-c-1: 150 mg/L DIECA; A-a-2: 50 mg/L NAA; A-b-2: 100
mg/L NAA A-c-2: 150 mg/L NAA; B-a-1: 50 mg/L NAA + 150 mg/L DIECA; B-b-1: 100 mg/L NAA + 150 mg/L DIECA; B-c-1: 150 mg/L NAA + 150
mg/L DIECA;  B-a-2:  50  mg/L  NAA + 100 mg/L  DIECA;  B-b-2:  100 mg/L  NAA + 100 mg/L  DIECA;  B-c-2:  150 mg/L  NAA + 100 mg/L  DIECA;  CK:
Water.
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Fig. 2    Effects of spraying reagents on (a) the number of spikes and (b) female florets. The content in the abscissa is the same as Fig. 1.
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treatments  significantly  increased  the  female-to-male  ratio  of
the test materials (p < 0.05) (Fig. 5). Among them, the 150 mg/L
DIECA + 150 mg/L NAA,  100 mg/L DIECA + 50 mg/L NAA,  100
mg/L DIECA + 100 mg/L NAA, and 100 mg/L DIECA + 150 mg/L
NAA  treatments  had  the  most  significant  effect  on  increasing
the  male-female  ratio  (Fig.  5).  Compared  with  the  control
group,  the  female  to  male  ratio  of  the  four  treatments
increased  by  an  average  of  107%,  105%,  130%,  and  118%
respectively.

 Endogenous JA content
At  6,  12,  and  24  h  after  spraying  the  reagents,  the  endoge-

nous JA content in the leaves under all  treatments was signifi-
cantly  lower  than  that  of  the  control  (p <  0.05)  (Table  5).  Six
hours  after  spraying  the  reagents,  the  effect  was  most  signifi-
cant  under  the  treatment  of  150  mg/L  DIECA  and  150  mg/L
NAA. The endogenous JA content in plant leaves of treatments
mentioned  above  decreased  by  60%  and  58%  compared  with
the  control.  The  effect  was  most  significant  under  the  treat-
ment of 150 mg/L DIECA + 50 mg/L NAA 12 h after spraying the
reagents.  The  endogenous  JA  content  in  plant  leaves
decreased  by  65%  compared  with  the  control.  The  effect  was
most  significant  under  150  mg/L  NAA  treatment  24  h  after
spraying  the  reagents.  The  endogenous  JA  content  in  plant
leaves decreased by 57% compared to the control.

At  6,  12,  and  24  h  after  spraying  the  reagents,  the  endoge-
nous  JA  content  of  the  plant  roots  under  all  treatments  was
significantly  lower  than  the  control  (p <  0.05)  (Table  6).  Six
hours  after  spraying  the  reagents,  the  effect  was  most  signifi-
cant under the treatment of 150 mg/L DIECA + 150 mg/L NAA.
The endogenous JA content in plant roots was reduced by 54%
compared to the control. The effect was most significant under
the  treatment  of  100  mg/L  DIECA  +  50  mg/L  NAA  12  h  after
spraying  the  reagents.  The  endogenous  JA  content  in  plant
roots decreased by 44% compared to the control.  Twenty four
hours  after  spraying  the  reagents,  the  most  significant  effect

 

Table 3.    Seed yield in each group.

Treatment Potential seed
yield (g/m2)

Actual seed yield
(g/m2)

Seed yield
coefficient

A-b-1 44.97c 32.58bc 72%
A-c-1 48.70c 22.04c 60%
A-a-2 42.15c 38.13abc 90%
A-b-2 53.74bc 42.84ab 80%
A-c-2 47.44c 30.53bc 64%
B-a-1 62.93ab 38.80abc 62%
B-b-1 65.96ab 45.78a 69%
B-c-1 63.67ab 42.18ab 66%
B-a-2 67.71a 42.82ab 63%
B-b-2 72.40a 46.00a 64%
B-c-2 67.62a 48.22a 71%
CK 30.56d 27.29d 89%

Values with superscript letters a, b, c and d are significantly different within
columns (p < 0.05).
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Fig. 4    Effects of spraying reagents on actual seed yield. Note: The
content in the abscissa is the same as Fig. 1.

 

Table 4.    Sex differentiation and seed yield of each treatment group.

Treatment FFT FF RFM PSY ASY Sum

A-b-1 – – – – – 0
A-c-1 – – – – – 0
A-a-2 – – – – – 0
A-b-2 – – – – – 0
A-c-2 – – – – – 0
B-a-1 – A – – – 1
B-b-1 A – – – A 2
B-c-1 – – A – – 1
B-a-2 – A A A – 3
B-b-2 A – A A A 4
B-c-2 A – A A A 4

If  the significance of  the treatment was marked as  'A'  in  Duncan's  multiple
range test, it is marked as 'A' in the table, otherwise it is marked as a '–'. The
abbreviations in the column headings represent the following content. FFT:
Female  fertile  tillers;  FF:  Female  florets;  RFM:  Ratio  of  female  to  male;  PSY:
Potential seed yield; ASY: Actual seed yield; Sum: Total number of 'A'.
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Fig.  5    Effects  of  spraying  reagents  on  ratio  of  female  to  male.
Note: The content in the abscissa is the same as Fig. 1.

 

Table 5.    Endogenous JA content in leaves, 6, 12, 24 h after treatment.

Treatments
JA content (ng/g FW)

6 h 12 h 24 h

A-b-1 19.02 19.70 26.97
A-c-1 11.15 16.31 21.51
A-a-2 18.87 20.41 25.04
A-b-2 12.86 13.54 12.95
A-c-2 11.67 14.76 12.11
B-a-1 15.74 9.67 20.12
B-b-1 18.13 18.98 14.80
B-c-1 14.46 17.40 20.79
B-a-2 19.96 15.77 19.94
B-b-2 14.44 14.51 18.43
B-c-2 13.50 19.53 17.14
CK 27.90* 27.90* 27.90*

'*'  indicates  that  the  treatment  is  significantly  different  from  other  groups
within column.
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was  achieved  under  the  treatment  of  100  mg/L  DIECA  +  150
mg/L NAA. The endogenous JA content in the plant roots was
reduced by 57% compared to the control.

 Discussion

 NAA regulates plant growth and development
NAA  is  a  synthetic  plant  growth  regulator  that  promotes

early  flowering[36],  increases  female  flowers[37],  delays
maturity[38] and increases yield[39]. At present, most research on
NAA  focuses  on  its  effects  on  plant  secondary  metabolites
using plant  tissue culture.  The basic  research method involves
adding  NAA  and  other  plant  growth  regulators  to  Murashige
and Skoog (MS) medium[40,41].

Appropriate  concentrations  of  NAA  treatments  have  been
shown  to  increase  the  content  of  monoterpene  glycosides  in
Telekia speciose multi-branch buds[42],  terpenoid content in the
buds  of  the  South  African  medicinal  plant Sutherlandia
Frutescens[43],  callus  formation  in Prunella  vulgaris L[44],  and
flavonoid  content  in  non-regenerating  callus  of Sterculia
urens[41].  NAA  enhanced  the  antioxidant  activity  of  plants,  by
increasing  the  activities  of  peroxidase  (POD),  catalase  (CAT),
and  superoxide  dismutase  (SOD)  in  plants  after  treatments[44].
Studies have demonstrated that the oxygen free radical antioxi-
dant  capacity  (ORAC)  of  soybean  sprouts  (Glycine  max (Linn.)
Merr.)  is  higher  in  the  first  three  days  after  NAA  treatment
compared to the control[45], providing evidence of NAA' s posi-
tive  effects  on  plant  antioxidant  activity.  The  present  study
found that spraying 100 mg/L and 150 mg/L NAA significantly
increased  the  female-to-male  ratio  of  buffalograss  and  signifi-
cantly increased seed yield. Fifty mg/L and 100 mg/L NAA treat-
ments  did  not  significantly  increase  the  number  of  spikes  but
significantly increased the number of female florets. Therefore,
it  can be inferred that  exogenous NAA may have a promoting
effect on the reproductive growth of buffalograss plants, but it
may  have  an  inhibitory  effect  on  the  development  of  male
flowers.

 JA plays a role in sex determination in plants
JA and its derivatives are widely distributed in various organs

of plants[46]. Some studies suggest that JA may play a role in the
sex  determination  process  in  corn. TS1 and TS2 are  key  genes
for  tassel  development  in  maize  (Zea  mays L.).  The  loss  of  any

one  of  them  will  lead  to  failure  of  tassel  sex  determination,
resulting in tassel seeding ts1 (tasselseed1) and ts2 (tasselseed2)
mutants[47]. Acosta et al.[48] found that the activity of 13-lipoxy-
genase (13-LO) disappeared in the developing inflorescences of
the ts1 mutant,  and  the  endogenous  JA  concentration  was
reduced to one-tenth that of wild-type maize. External applica-
tion  of  JA  to  the  developing  inflorescences  of ts1 and ts2
mutants restored the development of stamens, indicating that
the  lack  of  JA  is  the  cause  of  the  mutant  phenotype  and  is
closely related to maize stamen development[49].  Furthermore,
studies have demonstrated that the expression of the TS2 gene
in  maize  reproductive  organs  is  significantly  higher  than  in
vegetative organs. NAA significantly inhibited the expression of
TS2 gene. Therefore, the authors propose that the TS2 gene is a
plant sex-determining gene that is mediated by JA signaling[50].
A  homologous  gene, BdTs2,  of  the  maize TS2 gene,  is  also
present  in  buffalograss.  Higher  expression  of BdTs2 in  male
inflorescences leads to the abortion of pistils and the develop-
ment of unisexual male flowers. BdTs2 is  specifically expressed
in  the  reduced  pistil  group  of  male  flowers,  but  not  in  other
floral  organs  of  the  inflorescence[51].  Based  on  the  above
results, it is inferred that the expression pattern of the TS2 gene
in  buffalograss  is  consistent  with  that  in  corn,  and  its  high
expression  promotes  male-oriented  sex  expression  of  buffalo-
grass. Additionally, the expression level of the TS2 gene may be
influenced by the content of endogenous or exogenous JA.

DIECA  likely  inhibits  the  JA  pathway  by  shunting  13  (S)-
hydroperoxylinolenic  acid  to  13-hydroxylinolenic,  thereby
sharply reducing the precursor pool leading to cyclization and
eventual  synthesis  of  JA[52].  In  this  study,  DIECA  solution  was
sprayed on buffalograss  plants.  The treatment groups showed
significantly  higher  numbers  of  female  fertile  tillers,  female
florets,  and  seed  yield  compared  to  the  control  group.  These
results align with previous research and inferences, suggesting
that DIECA reduces the endogenous JA content in buffalograss
and  inhibits  the  expression  of  the TS2 gene  by  inhibiting
endogenous  JA  biosynthesis.  This  inhibition  allows  for  the
development  of  some  female  flowers  without  hindrance,
thereby  increasing  the  female  ratio  and  seed  yield.  The
combined  use  of  NAA  and  DIECA  also  promotes  a  higher
female-to-male  ratio  and  increases  seed  yield,  with  a  stronger
effect observed when the two are used together.

$

Taking  the  treatment  with  the  most  significant  effect  as  an
example.  Two liters  of  100 mg/L DIECA + 100 mg/L NAA solu-
tion was sprayed in a 4 m2 plot and it was sprayed seven times.
The  total  cost  of  reagents  per  hectare  equals  USD 280.  Prices
for  commercially  purchased  reagents  might  be  lower.  In  this
study, the actual seed yield under 100 mg/L DIECA + 100 mg/L
NAA  treatment  was  180  kg  per  hectare  more  than  that  of  the
control.  Since  sex  expression  in  buffalograss  is  stable  across
various  environmental  conditions,  the  sex  of  buffalograss
plants  might  be  fixed  after  the  finish  of  sex  determination
process.  It  would  be  commercially  acceptable  to  apply  treat-
ment just in the first year after sowing.

This  study  represents  the  first  application  of  the  reagents
NAA  and  DIECA  on  buffalograss.  The  effects  of  these  reagents
on the number of male and female fertile tillers, the number of
male  and  female  florets,  and  seed  yield  were  statistically
analyzed.  Additionally,  a  preliminary  investigation  was  con-
ducted on the effects of NAA and DIECA on the endogenous JA
concentration  in  buffalograss  leaves  and  roots.  These  findings

 

Table 6.    Endogenous JA content in roots, 6, 12, 24 h after treatment.

Treatments
JA content (ng/g FW)

6 h 12 h 24 h

A-b-1 6.42 6.85 6.78
A-c-1 6.40 8.45 6.40
A-a-2 8.26 8.08 8.22
A-b-2 7.59 7.30 6.18
A-c-2 5.38 8.77 5.75
B-a-1 6.09 5.97 6.64
B-b-1 5.56 6.12 6.40
B-c-1 4.54 7.62 8.16
B-a-2 8.43 5.44 5.14
B-b-2 6.31 5.70 4.22
B-c-2 5.69 9.25 7.30
CK 9.80* 9.80* 9.80*

'*'  indicates  that  the  treatment  is  significantly  different  from  other  groups
within column.
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provide  an  innovative,  simple,  and  effective  method  for
artificially regulating the female-to-male ratio of buffalograss in
field production to increase seed yield.

 Conclusions

The  present  results  show  that  spraying  NAA,  DIECA  or  a
mixture  of  the  two  on  buffalograss  plants  under  field  condi-
tions significantly increased the number of female fertile tillers,
the  number  of  female  florets,  and  significantly  increased  the
female-to-male ratio, and seed yield. At the same time, it signifi-
cantly  reduced  the  number  of  male  fertile  tillers  and  the
number  of  spikes.  The  results  of  endogenous  JA  content
showed that spraying these two reagents reduced the endoge-
nous JA content of buffalograss plants. Different reagents have
different  effects  on  regulating  the  endogenous  JA  content  of
buffalograss plants at different concentrations and proportions.
In addition, the changes in endogenous JA content of buffalo-
grass  were  also  different  at  6,  12,  and  24  h  after  spraying  the
reagents.
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