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Abstract
Nighttime  temperature  has  been  rising  at  a  faster  rate  than  daytime  temperature,  and  this  trend  is  predicted  to  continue  in  the  upcoming

decades. High night temperatures (HNT) during summer months are particularly detrimental to temperate plant species, including grass species.

Elevated  night  temperature  interrupts  various  physiological  and  metabolic  processes,  including  carbohydrate,  amino  acid,  and  hormone

metabolism. The HNT-inhibition of photosynthesis has been associated with accelerated leaf senescence, disruption of cellular membranes and

photochemical reactions, as well as restriction of the carboxylation process. Respiration rate increases with HNT, which contributes to the loss of

carbon and carbon deficits within plant tissues. The responses of amino acids to HNT vary among amino acids with variable functions, and some

non-proteinogenic amino acids or nitrogen-rich compounds having roles in stress protection exhibit increases in content under HNT, suggesting

the involvement of these compounds in plant adaptation to HNT. Hormones also vary in their responses to HNT with most growth-promoting

hormones, such as cytokinins, auxins, and gibberellic acids, exhibiting a reduction in content, while the content of stress-related hormones, such

as ABA and salicylic acid, increases under HNT conditions. The understanding of how HNT limits plant growth is just in its infancy, as many of the

physiological  and  metabolic  processes  affected  by  HNT  have  not  yet  been  investigated  and  are  unavailable  in  the  current  literature.  The

mechanisms of how plants can adapt to this stress remain largely unknown, particularly the key metabolic pathways and molecular factors or

networks.  Further  research  addressing  these  unknown  aspects  is  critically  important  for  improving  plant  resilience  against  warmer  nights,

particularly through genetic modification and breeding efforts, as well as management practices.
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Introduction

Global warming is a widely recognized climate change event
that adversely affects plant growth and development. The rate
of  increase in global  nocturnal  (nighttime) temperature (NT)  is
1.4  times  as  much  as  the  rate  of  rising  daytime  temperatures
(DT)[1,2]. Furthermore, the global temperature has increased at a
rate  of  0.204  °C  per  decade  in  the  nighttime  and  0.141  °C  per
decade  in  the  daytime  in  the  latter  half  of  the  20th century[3].
Nighttime  temperatures  are  projected  to  increase  at  a  faster
rate  (20%–40%  by  2100)  than  daytime  maximum
temperatures[4,5].  Each 1 °C increase of NT caused a grain yield
decline  of  10%  in  rice  (Oryza  sativa)  during  the  dry  growing
season,  but  yield  loss  was  not  related  to  DT,  suggesting  that
growth  inhibition  and  yield  production  of  crops  as  a  result  of
global  warming  may  mainly  be  due  to  elevated  night
temperature[6]. High soil temperature at night was found to be
more  detrimental  than  high  soil  temperature  in  the  daytime,
and lowering the soil  temperature at night was more effective
for  shoot  and  root  growth  of  creeping  bentgrass  (Agrostis
stolonifera)  than  lowering  the  daytime  soil  temperature[7].  The
physiological  and  metabolic  responses  and  plant  adaptation
mechanisms  to  high  nighttime  temperature  (HNT)  are  less
studied  than  plant  response  to  high  daytime  temperature
(HDT),  which  have  generally  been  investigated  intensively  in
various plant species.

High  night  temperature  hinders  plant  growth  and  causes
remarkable  loss  of  productivity  in  various  species[8−11].  For
example,  an  earlier  study  reported  that  increasing  NT  from  21
to 29 °C at a constant DT of 29 °C resulted in a 20% reduction in
total  biomass  production  of  rice  plants[12].  A  study  conducted
on  wheat  (Triticum  aestivum)  demonstrated  that  for  each  1  °C
rise  in  NT  during  the  time  of  seed-filling,  the  grain  yield
declined  by  approximately  6%[10].  Other  studies  on  spring
wheat and rice showed that an NT increase of 1 °C resulted in a
yield  reduction  of  4%−7%[9,13].  Studies  with  perennial  grass
species  found  that  HNT  caused  a  significant  decline  in  turf
quality and root dieback due to increased whole-plant and root
respiration  rate  at  night,  which  contributed  to  a  reduction  in
carbohydrates in creeping bentgrass[14]. The mechanisms asso-
ciated  with  the  inhibitory  effects  of  HNT  on  plant  growth  are
still  largely  unknown,  but  may  involve  adjustment,  alteration,
or  interruption  of  various  physiological  and  metabolic  pro-
cesses,  including  carbohydrates,  amino  acids,  and  hormone
metabolism.

This review focuses on the discussion of carbon, amino acids,
and hormone metabolism underlying plant response and adap-
tion mechanisms to HNT and provides insight into the current
knowledge and future research perspectives for further under-
standing the  effects  of  NT  on the  physiological  and metabolic
processes  governing  plant  growth  and  development.  Under-
standing  the  physiological  and  metabolic  effects  of  HNT  and
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strategies for mitigating the adverse impact of HNT are of great
importance  for  maintaining  plant  productivity  through  the
current and anticipated future climate change. 

Effects of HNT on carbohydrate metabolism
and availability

Photosynthesis  and  respiration  control  carbon  balance
and  availability,  which  are  necessary  for  plant  growth  and
development[15].  Enhancement  of  dark  respiration  during  and
reduction  of  photosynthesis  at  night  are  the  foremost  physio-
logical  responses  of  plants  subjected  to  HNT[6,16].  Enhanced
respiration  and  limited  photosynthesis  due  to  HNT  lead  to  a
decline in carbohydrate availability for supporting plant growth
and ultimately a loss of plant productivity[8,17−19] (Fig. 1). 

Photosynthesis
High night temperature inhibits photosynthesis by interrup-

ting or damaging light reactions (light harvesting, electron trans-
port,  and  photochemical  reactions)  and  carbon  metabolism
(carbon  fixation,  carboxylation,  and  assimilation).  Elevations  in
NT may adversely affect various activities associated with those
processes,  which  can  contribute  to  an  inhibition  in  photosyn-
thesis and lower production of carbohydrates.

High  night  temperature  accelerates  leaf  senescence  due  to
loss  of  chlorophyll  and reduces  the surface area  of  leaves  that

photosynthesize,  decreasing  the  duration  of  active
photosynthesis[16].  It  was  reported  that  HNT  reduced  the
number and size of chloroplasts in soybean (Glycine max L. Merr)
leaves  and  caused  a  decline  in  the  rate  of  photosynthesis[15].
Inhibition  of  leaf  photosynthesis  due  to  HNT  has  also  been
associated  with  the  disruption  of  chloroplast  membranes  and
an increase in ion leakage and lipid peroxidation[20].  The same
phenomenon was observed by[21] where a  4% decrease in  the
photosynthetic rate was recorded in sorghum (Sorghum bicolor)
subjected to temperatures increased from 32/22 °C (day/night)
to  44/34  °C  (day/night).  Enhanced  NT  caused  a  decrease  in
antioxidant  capacity  and  increased  the  production  of  reactive
oxygen  species  (ROS)  in  sorghum  and  wheat  leaves[22,23].  An
enhanced level of ROS in plants can result in oxidative damage
to  the  thylakoid  membranes  and  degradation  of  chlorophyll,
resulting  in  the  inhibition  of  photosynthesis[23,24].  A  study  on
the perennial  grass,  false wheatgrass (Leymus chinensis), found
that long-term nocturnal warming might have the potential to
adversely  affect  crucial  metabolic  processes,  resulting  in  an
increase  of  mesophyll  cell  peroxidation[25].  These  studies  pro-
vide  evidence  for  HNT-mediated  inhibition  of  photosynthesis
due to reduced light-harvesting capacity and photooxidation.

The  damages  in  thylakoid  membranes  due  to  HNT  hinder
light  harvesting,  electron  transport,  and  photochemical
reactions[26].  High  night  temperature  resulted  in  enhanced
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Fig.  1    High  night  temperature  interrupts  carbon  balance  between  photosynthesis  and  respiration,  causing  a  carbon  deficit  in  plants.  The
upward arrows indicate increase or promotion, and downward arrows indicate decrease or inhibition.
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non-photochemical  quenching  (NPQ)[27].  This  alters  the  effi-
ciency of excitation energy transfer to the photosystem II (PSII)
reaction center, affecting the innate quantum efficiency of PSII
(F'v/F'm)[28].  This  alteration  in  the  photosystem  II  (PSII)  reaction
center  resulted  in  a  reduced  rate  of  photosynthesis  and  a
slower plant growth[29]. Moreover, HNT also disrupts the photo-
synthetic  electron  transport  process,  further  diminishing  the
overall  photosynthetic  rate,  partly  due  to  an  increase  in  the
permeability  of  thylakoid  membranes,  which  leads  to  proton
leakages[30].

The decrease in photosynthesis in response to HNT has also
been associated with the inhibition of photosynthetic enzymes,
particularly  ribulose-1,5-bisphosphate  carboxylase/oxygenase
(Rubisco).  HNT  enhances  the  production  of  ROS,  which  cause
oxidative damage to Rubisco[31].  The decline in photosynthetic
rate caused by high temperature can be caused by damages or
alterations  in  the  various  photosynthetic  components[32,33],  a
recent study on rice reported that the decline in the maximum
carboxylation  rate  regulated  by  Rubisco  and  the  maximal  rate
of  electron  transport  determined  by  the  thylakoid  reactions
were the main contributing factors to HNT-mediated decline in
photosynthetic rate[34].

Current research has demonstrated the detrimental effects of
HNT  on  photosynthesis  and  damages  in  various  processes  in
different  studies,  but  the  information  is  fragmented,  as
discussed  above.  Systematic  analysis  of  the  critical  steps  or
components  of  photosynthesis  impacted  by  HNT  is  lacking.
Furthermore,  little  is  known  about  the  mechanisms  of  plant
heat tolerance related to photosynthetic acclimation and adap-
tation to HNT. 

Respiration
Increases  in  respiration  rate  in  response  to  HNT  have  been

widely  reported  in  various  plant  species,  although  the  degree
of elevated respiration rate in response to HNT may vary based
on temperature,  growth stage,  tissue or  organ type,  and plant
species or cultivar[6,8,14,16,18,35].  For example, three rice cultivars,
'Gharib',  'N22',  and  'IR64',  were  exposed  to  HNT  of  29  °C  and
their physiological and biochemical properties were compared
to those grown under control conditions at 20 °C. The results of
this study revealed that HNT caused the leaf respiration rates of
'Gharib'  and  'IR64'  to  increase  by  63%  and  35%,  respectively,
while  no  significant  effects  were  observed  for  'N22'.  The
elevated respiration rate corresponded to a reduction in starch
content  in  the  panicles  of  both  'Gharib'  and  'IR64'  as  well  as
reduced sucrose synthesis  activity in these cultivars,  which led
to an overall reduction in grain weight and quality[8].  Increases
in  the  content  of  some  intermediates  in  the  tricarboxylic  acid
(TCA) cycle of respiration, such as fumarate and isocitrate were
recorded, which reflects an enhancement in the reparation rate
of  rice  exposed  to  HNT[36].  The  negative  effects  of  elevated
respiration  rate  on  crop  yield  were  more  pronounced  during
the exposure of plants in the flowering stage to HNT in compari-
son to those in the vegetative stage[6,8,35].

The  total  respiration  rate  of  plant  tissues  is  comprised  of
maintenance,  growth,  and  ion  uptake  respiration.  It  is  well
known  that  the  maintenance  respiration  rate  of  plant  tissues
increases  proportionally  with  rising  temperature,  due  to  a
consumption of carbohydrates and reduction in the amount of
carbohydrates  available  for  growth  and  yield[37,38].  However,
several studies on maize (Zea mays) and wheat found that yield

loss of those plants exposed to HNT was not fully relative to the
increased maintenance respiration rate[39]. Interruption of other
metabolic  processes  by  HNT  may  also  contribute  to  the
observed  growth  inhibition  and  yield  reduction.  In  addition,
respiration  responses  to  elevated  temperature  may  exhibit
temporal  differences.  The  effects  of  HNT  on  daytime  respira-
tion  vary  from  those  of  nighttime  respiration  in  shoots  and
roots.  It  was  also  reported  that  the  nighttime  shoot  and  root
respiration  rates  of  creeping  bentgrass  increased  by  20%  and
44%, respectively,  whereas daytime shoot and root respiration
rates  decreased  by  21%  and  26%,  respectively,  in  response  to
an  increase  in  NT  from  19  to  24  °C  and  concluded  that  the
decline  in  turf  quality  and  root  viability  caused  by  HNT  was
mainly  associated  with  the  increased  shoot  and  root  respira-
tion  rate  at  night,  particularly  root  respiration  at  night.  Root
respiration  accounts  for  a  large  proportion  of  carbohydrate
consumption,  and  therefore,  minimizing  nighttime  root  respi-
ration rate to reduce carbohydrate loss  could be beneficial  for
sustaining plant growth in environments with HNT[14].

While  respiratory  energy  production  is  important  for  plant
growth  and  development  under  high  temperatures,  overcon-
sumption of carbohydrates or loss of carbon due to HNT should
be  minimized.  Effects  of  HNT  on  the  different  components  of
respiration  require  further  characterization  to  minimize  ineffi-
cient consumption of carbohydrates during respiration. 

Carbohydrate content
Effects of HNT on carbohydrate content vary among specific

types of  carbohydrates having different roles in the regulation
of  plant  growth  and  stress  response.  The  nonstructural  carbo-
hydrates  used  in  the  respiration  process,  such  as  sucrose,
starch,  glucose,  and  fructose  exhibit  a  declining  trend  in
content  due  to  elevated  respiration  rate  caused  by  HNT,  and
this  is  known  to  occur  particularly  when  the  respiration  rate
exceeds  the  photosynthetic  rate  under  various  stress  condi-
tions in a multitude of  plant species[8,14,40−43].  Decreases in the
starch  content  of  wheat  grains  as  a  result  of  HNT  have  been
reported and corresponded to the reduction in gene transcript
levels  of  the  adenosine  diphosphate  glucose  pyrophosphory-
lase  small  subunit,  which  controls  starch  synthesis,  as  well  as
the  increase  in  isoamylase  III,  alpha-,  and  beta-amylase,  which
regulate starch degradation[16,44]. Total soluble sugar content in
the  leaves  of  two  rice  cultivars  decreased  when  NT  was
increased from 22 to 28 °C and DT was 30 °C, and the leaves of
the  heat-tolerant  cultivar,  'Nagina22',  had  significantly  higher
soluble  sugars  content  than  the  heat-sensitive  cultivar,  'BRS
Querencia'[43].  Total  nonstructural  carbohydrate  content
decreased  significantly  in  shoots  and  roots,  while  shoot  and
root respiration rate of  creeping bentgrass increased when NT
was increased from 19 to 24 °C[14]. These studies provide strong
evidence  that  HNT  causes  a  reduction  in  the  availability  of
carbohydrates,  particularly  non-structural  carbohydrates  or
soluble  sugars,  which  may  lead  to  suppressed  shoot  and  root
growth and accelerated root dieback.

Carbohydrates  with  roles  in  stress  defense  or  protection,
however,  have  increased  content  in  response  to  high  night
temperatures  in  certain  cases.  For  example,  in  a  study  with
rice[45],  cultivars  tolerant  to  HNT  accumulated  more  raffinose
and stachyose, which are classified as raffinose family oligosac-
charides  (RFOs)[46].  Plants  that  experienced  HNT  also  had
increased content of myo-inositol[47]. Myo-inositol is a precursor
for raffinose and stachyose, and these RFOs are known to play
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positive roles in plant tolerance to abiotic stresses due to their
functions  as  osmoregulants,  antioxidants,  or  stress  signal
molecules[48].  The  accumulation  of  RFOs  is  a  mechanism  of
plant adaption to HNT and could be used as a biomarker for the
selection of cultivars that are tolerant to HNT. 

Effects of HNT on amino acid metabolism

Plant  responses  to  abiotic  stresses,  including  HNT,  involve
changes  in  amino  acid  metabolism;  however,  proteinogenic
amino  acids  that  are  biosynthesized  into  proteins  and  non-
proteinogenic  amino  acids  that  comprise  a  large  hetero-
geneous  group  of  non-coded  amino  acids  and  nitrogen-
containing  metabolites  may  respond  differently  to  increased
temperatures.

Proteinogenic  amino  acids  exhibit  both  decreases  and
increases  in  their  content,  depending  on  whether  the  amino
acids  are  derived  from  the  biosynthesis  of  amino  acids  or  the
degradation  of  proteins  that  are  affected  by  heat  stress.  For
example,  some proteinogenic  amino acids  exhibit  a  decline  in
content,  such  as  leucine,  lysine,  glycine,  and  aspartate  under
HNT,  which  could  be  associated  with  stress-mediated  inhibi-
tion  of  amino  acid  synthesis[49−51].  Other  proteinogenic  amino
acids,  such  as  tyrosine  and  methionine  increase  in  content  in
plants exposed to HNT, which has been associated with accele-
rated  protein  degradation  due  to  stress,  particularly  in  heat-
sensitive  cultivars[41].  The  interruption  of  proteinogenic  amino
acid  metabolism  at  HNT  is  mainly  associated  with  metabolic
damage and dysfunction.

 

HNT impact on amino acids

Glucose

Amino acids of the
serine family

Amino acids of the
pyruvate family

Amino acids of the
aspertate family

Glycine Serine

Alanine

Leucine

Valine

Asparagine

AspartateHomoserine-
4-phosphate

Homocysteine

Methionine

Lysine

Aspartate
semialdehyde

α-
acetolactate

Fructose-1.6
biphosphate Erhythrose-

4-phosphate
Glyceraldehyde

3-phosphate

3-phospho-
glycerate

Phosphoenol-
pyruvate

Pyruvate

Acetyl-CoA

Citrate

Isocitrate

Amino acids of the
glutamate family

Proline

Glutamate GABA

Glutamine

Histidine

Ribose-5-
phosphate

Oxalo-
acetate

Malate

Fumarate

Succinate

Succinyl-
CoA

α-keto-
glutarate

DAHP

Aromatic
amino acids

Tyrosine

Chorismate Prephenate

Phenylalanine

Fig. 2    Effects of HNT on amino acid metabolism. The upward arrows indicate increases, and the downward arrows indicate decreases in the
content of amino acids in response to HNT.

 
Metabolic responses to elevated night temperature

Page 4 of 8   Abbas et al. Grass Research 2024, 4: e015



Many  non-proteinogenic  amino  acids  are  typically  found  to
play  crucial  roles  in  how  plants  respond  to  environmental
stresses.  Non-protein  amino  acids  with  roles  in  stress  protec-
tion, such as proline, polyamine, and gamma-aminobutyric acid
(GABA),  have been found to  increase  in  content  under  HNT in
various plant species[45,52−55]. The balancing of the redox poten-
tial  in  the  cell  cytosol  and  plastids  is  achieved  by  the  cyclic
process of proline synthesis and degradation, which appears to
be essential for antioxidant defense during unfavorable condi-
tions  and  might  be  relevant  when  plants  experience  stress
under  HNT[56,57].  Polyamines  are  related  to  stress  defense  due
to their roles in osmotic adjustment. The content of polyamines,
including  spermine,  spermidine,  and  putrescine,  increased
when  plants  were  exposed  to  HNT[45,53,54].  Gamma-aminobu-
tyric  acid,  which  functions  as  a  signaling  molecule,  can  exert
influence  on  various  physiological  processes[58].  Increased
content  of  GABA  during  stress  contributes  to  tolerance[59].
Increases  in  the  accumulation of  stress-protective  amino acids
play  critical  roles  in  plant  adaptation  to  heat  stress  and  could
be  manipulated  through  genetic  modification  or  exogenous
application to improve plant tolerance to HNT (Fig. 2). 

Effects of HNT on hormone metabolism

Plant  hormones  are  affected  by  high  temperatures,  which
ultimately  alter  morphological  and  physiological  traits,  as  well
as  plant  stress  defense  systems.  Hormones  are  typically  classi-
fied as growth-promoting hormones, such as cytokinins, auxins,
and gibberellins (GA), or hormones involved in stress response,
such  as  abscisic  acid  (ABA),  ethylene,  and  salicylic  acid  (SA),
which may respond differentially to HNT (Fig. 3).

High  night  temperature  reduces  the  content  of  cytokinins,
auxins,  and  gibberellins[60,61].  The  down-regulated  expression
of  GA- and  auxin-related  genes  and  the  decreased  concentra-
tions of GA and IAA by HNT are related to stunted shoot elon-
gation under HNT[62].  High night temperature caused a signifi-
cant  reduction  in  endogenous  IAA,  as  observed  in  developing
grains  of  rice  and  rice  panicles[61,63] pistil  tissue,  and
anthers[12,64] and  these  findings  were  associated  with  pollen

and  spikelet  sterility  and  ultimately  grain  yield  loss.  When
auxins  were  applied  exogenously,  elongation  of  the  pollen
tube  that  was  stunted  when  the  plant  experienced  HNT  was
restored[12,61].  The  interruption  of  cytokinin  metabolism  has
been  associated  with  reduced  kernel  filling  in  cereal  crops
under  high  temperatures[65].  Cytokinin  levels  in  developing
panicles were reduced in plants subjected to HNT, which resul-
ted  in  a  reduced  spikelet  number  per  panicle.  This  happened
due to the inhibition of enzymes involved in cytokinin biosyn-
thesis and a decrease in cytokinin transportation from the root
to panicle meristems, and under heat stress, there is an increase
in  the  expression  of  the  cytokinin  degradation  enzyme,
cytokinin  oxidase[61,66].  The  adverse  effects  of  HNT  on  the
metabolism of growth-promoting hormones largely contribute
to growth inhibition and reduction in reproductive capability in
various plant species.

The content of ABA, SA, and ethylene exhibits an increasing
trend  under  HNT[61,65].  For  example,  endogenous  ABA  levels
increased  in  anthers  and  young  panicles  when  plants  experi-
enced HNT[61,67]. High night temperature caused a reduction in
the tiller number during the vegetative stage of growth, which
was  associated  with  the  alteration  of  strigolactone  and  ABA
metabolism[68,69].  A  study  on  exogenous  application  of  ABA
found  increases  in  grain  yield  (15%),  leaf  net  photosynthetic
rate  (6%),  and  spikelet  fertility  (6%)  and  decreases  in  respira-
tion rate (33%) in rice exposed to HNT, and these findings were
linked to a rise in stomatal conductance by 22% and a decrease
in nonphotochemical quenching by 29%[70]. An increase in ABA
level in response to HNT could be activated for stress defense,
although  excessive  accumulation  may  cause  inhibitory  effects
on plant growth. The effects of SA may vary depending on the
mode of  application and environmental  conditions.  For  exam-
ple,  in  purple  false  brome  (Brachypodium  distachyon)  plants,
soaking  seeds  in  a  sodium  salicylate  (NaSA)  solution  or  expo-
sing them to 35 °C for 4 h did not significantly increase free SA
content.  Instead,  high  SA  levels  were  detected  in  sprayed
leaves[71].  How  other  stress-related  hormones  are  involved  in
plant  response  to  HNT  is  not  well  documented  and  deserves
further investigation. 
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Conclusions and future research perspectives

An  increase  in  night  temperatures  has  been  observed  and
this trend is predicted to continue, as NT is rising at a faster rate
than  DT[72].  The  detrimental  effects  of  rising  NT  on  plant
growth,  development,  and  productivity  are  well  known,  and
some  physiological  and  metabolic  impacts  of  HNT  are  begin-
ning to be discovered, as reviewed in this paper and exhibited
in Fig. 4; however, there is still a lack of insight into why warmer
nights are detrimental to plant growth, as explained by effects
on  physiological  and  metabolic  processes,  water  and  nutrient
use  and  antioxidant  metabolism,  and  how  much  genetic  vari-
ability  in HNT response exists  in various plant species,  particu-
larly grass species. Furthermore, the mechanisms of how plants
can  adapt  to  this  stress  remains  largely  unknown,  particularly
the key metabolic pathways and molecular factors or networks.
Further research addressing these unknown aspects is critically
important for improving plant resilience against warmer nights
through  genetic  modification  and  breeding  efforts,  as  well  as
through management practices. 
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