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Abstract
Diethyl aminoethyl hexanoate (DA-6) is involved in the regulation of adaptive response of plants to unfavorable environmental conditions. The objective of

this  experiment  was  to  examine  whether  the  DA-6  pretreatment  could  effectively  alleviate  drought-triggered  leaf  senescence  and  oxidative  injury  to

creeping bentgrass.  Plants were exogenously irrigated with or without DA-6 (0.4 mM·L−1)  before being subjected to PEG-induced drought stress for 9 d.

Drought  stress  resulted  in  significant  growth  retardation,  Chl  loss,  and  decreases  in  leaf  relative  water  content,  water  use  efficiency,  photochemical

efficiency, and net photosynthetic rate, but significantly enhanced oxidative damage. Exogenous DA-6 markedly alleviated symptoms of drought stress by

improving  water  homeostasis,  ROS  scavenging,  Chl  biosynthesis,  and  photosynthesis.  In  contrast  to  untreated  plants,  the  DA-6-pretreated  creeping

bentgrass  demonstrated  significantly  higher  transcript  levels  of  genes  related  to  rubisco  activity  (AsRuBisCo),  and  Chl  biosynthesis  (AsMg-CHT, AsPBGD,

AsPOR, and AsCHLH), but lower transcript levels of Chl degradation-related genes (AsPAO, AsCLH, and AsPPH), and senescence-associated genes (Asl20 and

Ash36),  thereby  decreasing  leaf  senescence  and  ameliorating  photosynthetic  performance  under  drought  stress.  Moreover,  DA-6  also  significantly

promoted activities of superoxide dismutase, peroxidase, catalase, and ascorbate peroxidase, hence efficiently diminishing drought-stimulated oxidative

damage.  The  current  study  supplies  important  information  about  DA-6-regulated  growth  and  drought  tolerance  associated  with  osmotic  adjustment,

antioxidant defense, photosynthetic function, and Chl metabolism in cool-season turfgrass species.
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Introduction

Drought is the most drastic environmental hazard hindering plant
growth  and  development,  specifically  under  arid  and  semi-arid
conditions[1,2].  Plants experience various interlinked disturbances of
physiological and biochemical functions including stomatal closure,
reduced intracellular carbon dioxide assimilation and water use effi-
ciency (WUE), chlorophyll (Chl) degradation, and impaired photosys-
tems  associated  with  decreased  crop  growth  and  quality  under
water  stress[1,3,4].  Hence,  various  approaches  have  been  carried  out
to mitigate the adverse effects of water shortage when plants suffer
from  drought  stress.  One  of  the  most  effective,  cheap,  and  eco-
friendly  approach  is  the  application  of  plant  growth  regulators
(PGRs)[5,6].  Diethyl  aminoethyl  hexanoate  (DA-6)  is  a  new  synthetic
PGR exhibiting a similar function to phytokinin and has extensively
been applied worldwide to improve yield and stress adaptability of
many commercial crops under normal and stressful conditions[7−9]. It
has  been  found  that  exogenous  supplementation  of  DA-6  streng-
thened the defense system in plants under chilling stress, high salt,
and  heavy  metal  toxicity[10−12].  The  DA-6  pretreatment  could  also
significantly ameliorate drought tolerance of white clover (Trifolium
repens)  through  regulating  antioxidant  defense  system,  endoge-
nous  phytohormone  content,  photosynthetic  rate,  and  metabolic
homeostasis[3,6,13].  Our  earlier  study  reported  that  foliar  application
of  DA-6  effectively  alleviated  heat-induced  Chl  loss,  osmotic

imbalance,  cell  membrane  damage,  and  summer  bentgrass
decline[14].  However,  the  effect  and  mechanism  of  DA-6  associated
with  drought  tolerance  of  creeping  bentgrass  (Agrostis  stolonifera)
remain uninvestigated to date.

Water  stress  induces  a  significant  decrease  in  photosynthesis  by
disrupting  Chl  metabolism  and  decreasing  rubisco  activity[15,16].
Drought  stress  enhanced  enzyme  activities  and  gene  expression
levels of many key Chl degradation enzymes such as chlorophyllase
(CLH),  Chl-degrading  peroxidase  (Chl-PRX),  and  pheophytinase
(PPH)  in  creeping  bentgrass,  contributing  to  stress-stimulated  leaf
senescence[17].  In  addition,  exogenous  application  of  5-aminole-
vulinic acid significantly mitigated the drought-induced Chl loss via
up-regulation  of  Chl-anabolic  genes  including PBGD (porphobilino-
gen  deaminase), CHLH (magnesium  chetalase  H-subunit),  and POR
(protochlorophyllide  oxidoreductase)  in  grapevine (Vitis  labruscana ×
Vitis  vinifera)[18].  Massive  production  of  reactive  oxygen  species
(ROS)  including hydroxyl  ions  (OH−),  superoxide  radicals  (O2

·−),  and
hydrogen  peroxide  (H2O2)  are  liable  to  oxidize  chloroplasts,  cell
membranes,  other  organelles,  and  biomacromolecules[19].  Stress-
triggered  production  of  ROS  is  rooted  in  damaged  energy  dissipa-
tion  in  the  process  of  Chl  fluorescence  quenching  and  electron
transport in the photosynthetic electron transfer chain[20]. Therefore,
there  is  a  close  association  between  ROS  metabolism  and  photo-
oxidation in photosystem II[21]. To counter the drastic effects of ROS,
plants  have  evolved  a  natural  antioxidant  defense  comprising

ARTICLE
 

© The Author(s)
www.maxapress.com/grares

www.maxapress.com

mailto:lizhou1986814@163.com
https://doi.org/10.48130/grares-0025-0002
https://doi.org/10.48130/grares-0025-0002
https://doi.org/10.48130/grares-0025-0002
https://doi.org/10.48130/grares-0025-0002
https://doi.org/10.48130/grares-0025-0002
mailto:lizhou1986814@163.com
https://doi.org/10.48130/grares-0025-0002
https://doi.org/10.48130/grares-0025-0002
https://doi.org/10.48130/grares-0025-0002
https://doi.org/10.48130/grares-0025-0002
https://doi.org/10.48130/grares-0025-0002
http://www.maxapress.com/grares
http://www.maxapress.com


enzymatic systems such as superoxide dismutase (SOD), peroxidase
(POD),  catalase  (CAT),  and  ascorbate  peroxidase  (APX)  as  well  as
non-enzymatic  antioxidants  including  ascorbic  acid,  glutathione,
polyphenols,  carotenoids,  etc.[22].  It  has  been  found  that  the  DA-6-
induced plant tolerance to drought stress, salinity, or high-tempera-
ture  stress  could be associated with  enhanced antioxidant  defense
systems[12−14,23]. However, the DA-6-regulated ROS homeostasis and
Chl metabolism contributing to leaf senescence need further inves-
tigation in creeping bentgrass under drought stress.

Creeping bentgrass is an important perennial cool-season grami-
neous turfgrass with a soft, fine texture, hence being widely utilized
as  an  excellent  turf  in  the  sports  industry  worldwide[24].  However,
due to its poor tolerance to water scarcity, creeping bentgrass often
demands  a  constant  water  supply  to  sustain  growth  and  develop-
ment,  which  ultimately  results  in  huge  water  consumption  and
management  issues[25].  Therefore,  the  enrichment  of  drought  tole-
rance is  crucial  to  improve its  production,  turf  quality,  and mainte-
nance management.  The current  study aimed to  reveal  DA-6-regu-
lated  drought  tolerance  related  to  alterations  in  photosynthetic
functions,  Chl  metabolism,  osmotic  adjustment  (OA),  and  antioxi-
dant defense in creeping bentgrass. 

Materials and methods
 

Planting material and treatments
Before  sowing,  seeds  of  creeping  bentgrass  cultivar  Penncross

were sterilized with 75% ethanol for 5 min and washed three times
with deionized water. Seeds (0.37 g) were then sown in plastic con-
tainers  (9  cm depth,  24 cm length,  and 18 cm breadth)  comprising
sterilized quartz sand and deionized water under controlled growth
chamber  conditions  (23/19  °C  (day/night),  65%  relative  humidity,
and  650 μmol  photon  m−2·s–1 PAR).  Seeds  were  first  germinated
in  deionized  water  for  7  d,  and  then  half-strength  Hoagland's
solution[26] was utilized as a nutrient source for the next 23 d of culti-
vation. Plants with similar sizes were selected for hydroponic cultiva-
tion. For DA-6 pretreatment, plants were grown in Hoagland's solu-
tion containing 0.4 mmol/L DA-6 for 3 d, whereas the unpretreated
plants were grown only in Hoagland's solution without the DA-6 for
three  consecutive  days.  After  this,  the  DA-6-pretreated  and  unpre-
treated plants were exposed to well-watered conditions or drought
stress induced by polyethylene glycol (PEG-6000, −0.52 MPa) which
was  dissolved  in  Hoagland's  solution  for  9  d.  All  solutions  were
refreshed daily.  Four different treatments (four biological  replicates
for  each  treatment)  were  set  for  this  experiment  including  well-
watered control  check (CK),  well-watered control  pretreated by the
DA-6 (CK + DA-6), PEG-induced drought stress without the DA-6 pre-
treatment (PEG), and PEG-induced drought stress with the DA-6 pre-
treatment (PEG + DA-6).  The optimum dose of  DA-6 (0.4  mmol·L–1)
with  the  most  promising  effect  on  drought  tolerance  in  terms  of
phenotypic  changes  was  chosen  via  a  preliminary  experiment.  All
treatments  were  arranged  by  a  completely  randomized  design.
Samples were taken after 9 d of drought stress for various morpho-
logical,  physiological,  and  biochemical  parameters  as  well  as  the
analysis of gene expression. 

Estimation of growth parameter and leaf water status
The  shoot  length  (SL)  and  root  length  (RL)  of  each  plant  were

measured  using  a  ruler,  and  2−3  plants  were  selected  randomly
from  each  replication  of  each  treatment.  A  total  of  10  plants  were
used  to  detect  the  SL  and  RL  of  each  treatment.  For  relative  water
content (RWC), the formula RWC (%) = [(FW − DW)/(SW − DW)] × 100
was  used,  and  FW,  SW,  and  DW  indicated  fresh  weight,  saturated

weight,  and  dry  weight,  respectively.  Fresh  leaves  (0.1  g)  were
sampled and FW was weighed immediately. These leaves were then
submerged  in  deionized  water  for  1  d  to  detect  SW.  DW  was
weighed after oven drying at 75°C for 3 d[27].  For the measurement
of osmotic potential (OP), fresh samples were collected and soaked
in deionized water  for  8  h.  After  being blotted to eliminate surface
water,  saps  in  leaf  samples  were  expressed.  The  osmolality
(mmol·kg−1) of leaf sap was detected using an osmometer (Wescor),
and then OP (MPa) was estimated based on the OP (MPa) = [0.001] ×
[2.58] × [osmolality][28]. 

Measurement of chlorophyll content and
photosynthetic function

To  measure  the  Chl  content,  0.1  g  of  samples  were  taken  and
submerged in dimethyl sulphoxide (10 mL) for 2 d under dark condi-
tions.  A  200 μL  of  leaf  extract  was  measured  at  663  and  645  nm
spectrophotometrically. Later, the contents of Chl a, Chl b, and total
Chl were evaluated[29]. Leaf Fv/Fm was estimated with a chlorophyll
fluorescence meter (Pocket PEA). Leaves were placed in a dark envi-
ronment  with  attached  clips  for  30  min,  and  then  the  Fv/Fm  ratio
was noted using the chlorophyll  fluorescence meter.  The WUE and
net  photosynthetic  rate  (Pn)  were  measured  with  portable  photo-
synthesis  apparatus  (CIRAS-3)  that  supplied  800 μmol  photon  m−2

red and blue light  as  well  as  400 μL·L−1 CO2 in  the leaf  chamber.  A
single  layer  of  leaf  was  placed in  the leaf  chamber  and the estima-
tion of WUE and Pn was performed at 10:30 am. 

Measurement of oxidative damage and antioxidant
enzyme activity

To  determine  electrolyte  leakage  (EL),  leaf  samples  (0.1  g)  were
dipped in 45 mL of distilled water at 4 °C for 1 d. The initial conduc-
tivity  (Ci)  was  recorded  by  using  a  conductivity  meter  (DDS-307A).
The samples were then autoclaved at 105 °C and the final conducti-
vity  (Cf)  was  detected.  The  EL  was  estimated  in  percent  counting
method,  following  the  equation  EL  [%]  =  Ci/Cf  ×  100[30].  Assay
methods  of  Elstner  &  Heupel[31],  Velikova  et  al.[32],  and  Dhindsa  et
al.[33] were utilized for the measurement of O2

·−, H2O2, and malondi-
aldehyde  (MDA)  contents,  respectively.  The  reagents  and  proce-
dures  have  been  clearly  mentioned  in  our  previous  study[13].  For
antioxidant  enzymes  activities,  leaf  samples  (0.1  g)  were  put  into
4 mL of cold phosphate buffer (50 mM, pH 7.8) and ground mecha-
nically at 4 °C. After the homogenate was centrifuged at 12,000 g for
30  min,  the  supernatant  was  collected  for  further  analysis.  SOD
activity was determined by observing the reduction rate of p-Nitro-
Blue tetrazolium chloride at 560 nm spectrophotometrically[34].  The
CAT,  POD,  and APX were also spectrophotometrically  measured by
noting  the  variation  in  absorbance  value  at  a  wavelength  of  240,
470,  and  290  nm,  respectively[35,36].  The  protein  content  was  esti-
mated using the protocol illustrated by Bradford[37]. 

Total RNA extraction and qRT-PCR analysis
To examine the impact of DA-6 on transcript levels of senescence-

associated  genes  and  those  genes  associated  with  Chl  metabolism
and rubisco, a qRT-PCR was used. For total RNA extraction, fresh leaf
samples were extracted with RNeasy Mini Kit (Qiagen) following the
manufacturer's protocols. Later, the RNA was reverse-transcribed to
cDNA with a Revert Aid First Strand cDNA Synthesis Kit (Fermentas).
Primer  sequences  of  all  genes  including reference  gene β-actin are
presented in Table 1. The PCR conditions (iCycler iQ qRT-PCR detec-
tion  system  with  SYBR  Green  Supermix,  Bio-Rad,  USA)  were  as
follows:  5  min  at  94  °C,  denaturation  at  95  °C  for  30  s  (40  repeats),
45  s  at  55−58  °C  (annealing),  and  extension  from  60  to  95  °C.  The
transcript  level  of  all  genes  was  computed  by  using  the  formula
2−ΔΔCᴛ[38]. 
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Statistical analysis
Data  was  assessed  with  two-way  ANOVA  and  Tukey's  test  by

using statistix 8.1 (version, 8.1. Statistix, USA) at p < 0.05. All figures
were generated using GraphPad Prism 8.3.0 (538).
 

Results
 

Impact of DA-6 on growth and water status under
normal conditions and drought stress

SL and RL were significantly promoted by the DA-6 under normal
conditions (Fig.  1a & b).  Drought stress  reduced SL and RL,  but the
DA-6  pretreatment  effectively  mitigated  drought-induced  decline
in  SL  and  RL  (Fig.  1a & b).  In  response  to  drought  stress,

DA-6-pretreated  plants  maintained  a  27%  upsurge  in  RWC  than
unpretreated  plants  (Fig.  2a).  The  OP  decreased  in  all  drought-
stressed plants compared with well-watered plants. Plants with DA-
6  pretreatment  demonstrated  a  47%  lower  OP  in  contrast  with
untreated plants under water-limited conditions (Fig. 2b). Moreover,
exogenous  supplementation  of  DA-6  markedly  alleviated  the
drought-triggered decline in WUE by 36% (Fig. 2c). 

Impact of DA-6 on chlorophyll metabolism and
photosynthesis under normal conditions and drought
stress

Plants  with  and  without  DA-6  pretreatment  showed  no  signifi-
cant differences in the total Chl, Chl a, Chl b, Chl a/b, Fv/Fm, and Pn
under  normal  conditions  (Fig.  3a−f).  The total  Chl,  Chl  a,  and Chl  b

 

Table 1.    Primer sequences and relative information of analyzed genes in creeping bentgrass.

Target gene Forward primer (5'-3') Reverse primer (5'-3') Tm (°C)

β-actin CCTTTTCCAGCCATCTTTCA GAGGTCCTTCCTGATATCCA 58
AsMg-CHT ACAACGGTTAGGTCATTGGTCG TTATTACTCGGTCTCGCACTTCAA 58
AsPBGD TAGCGCTGCGGATTAGAACT GAAGGATAACGAACCGCTGA 55
AsPOR GCGTCTACTGGAGCTGGAAC GTCACTTCATGCAGGTCACG 58
AsRuBisCo GGCTTCAACAAACGCTCTATCC CTTTAGCAGCGGCTTTAACCAT 58
AsPAO TCATATCAGTTGCTGCAATAGGGA GCGAAAGGCGTGGTTGTAGTC 57
Asl20 GGGTAGACGGCAACGATACT TACTTGGTTGAATCGTCGGA 58
Ash36 TGGGAATGTGTTCAGGGTAA TCACCTCGATGAGGTAGTCG 58
AsCHLH CATCAGGGCGGATAGAGAGA TCTGCCACAATCAGCTTCAG 56
AsCLH GGTCGCATTCCTGAGGTCTA ATCATATTCAACCGGGTCCA 58
AsPPH GAATGTCATTGCCGTCTGAA CAATGAAATGCTGGACCTGA 55
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declined  significantly  in  response  to  PEG-induced  water  scarcity
(Fig.  3a−c).  Exogenous  application  of  DA-6  significantly  mitigated
declines  in  the  total  Chl,  Chl  a,  or  Chl  b  induced  by  drought  stress
(Fig.  3a−c).  Drought  stress  and  the  application  of  DA-6  did  not
significantly  influence  the  Chl  a/b (Fig.  3d).  In  addition,  drought
stress caused significant decline in Fv/Fm and Pn, but DA-6-treated
plants maintained significantly higher Fv/Fm and Pn compared with
untreated plants under drought stress as shown in Fig. 3e and f.

In terms of genes encoding rubisco and enzymes involved in Chl
metabolism,  the  DA-6  application  significantly  up-regulated  the
transcript levels of AsCHLH, but AsMg-CHT (Asmagnesium-chelatase),
AsPBGD, AsPOR, AsRuBisCo, AsPAO, AsCLH,  and AsPPH remained un-
affected  under  normal  conditions  (Fig.  4).  The  transcript  levels  of

AsMg-CHT, AsPBGD, AsPOR, AsCHLH,  and AsRuBisCo were  down-
regulated, whereas AsPAO, AsCLH,  and AsPPH were up-regulated by
drought  stress.  The  DA-6-pretreated  plants  exhibited  2.7,  2.4,  1.9,
3.6,  or  6.3  times  higher  expression  level  of AsMg-CHT, AsPBGD,
AsPOR, AsCHLH, or AsRuBisCo compared with untreated plants when
they  were  exposed  to  drought  stress,  respectively  (Fig.  4).  In  addi-
tion, the transcript level of AsPAO, AsCLH, or AsPPH was 1.53, 1.50, or
1.32 times higher in drought-stressed plants without the DA-6 appli-
cation than that in drought-stressed plants with the DA-6 pretreat-
ment.  Exogenous  application  of  DA-6  demonstrated  no  significant
effect on transcript levels of senescence-associated genes (Asl20 and
Ash36)  under  normal  conditions  (Fig.  4).  When  plants  were  sub-
jected  to  drought  stress,  DA-6-pretreated  plants  showed  a  24%  or
31% lower  transcript  level  of Asl20 or Ash36 than untreated plants,
respectively (Fig. 4). 

Impact of DA-6 on oxidative injury and antioxidant
enzyme activity under normal conditions and
drought stress

The  EL,  O2
·−,  H2O2,  and  MDA  contents  were  not  affected  by  the

DA-6  under  well-watered  conditions  (Fig.  5a−d).  Drought  stress
induced  significant  upsurges  in  EL,  O2

·−,  H2O2,  and  MDA  contents,
but  DA-6-treated  plants  exhibited  an  18%,  13%,  29%,  or  15%
decrease in EL, O2

·−, H2O2, or MDA content than plants without DA-6
under drought stress, respectively (Fig. 5a−d). Water deficit caused a
significant decline in SOD activity, but promoted POD, CAT, and APX
activities  in all  plants  (Fig.  6a−d).  The DA-6 pretreatment efficiently
mitigated  the  decline  in  SOD  activity  and  also  further  promoted
CAT, POD, and APX activities under drought stress (Fig. 6a−d). SOD,
CAT,  POD,  or  APX  activity  increased  by  34%,  25%,  17%,  or  41%  in
DA-6-treated plants compared with those plants without DA-6 pre-
treatment  under  water-limited  conditions,  respectively  (Fig.  6a−d).
Figure 7 shows an integrated diagram depicting the promising role
of DA-6 in drought tolerance. 
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Discussion

Drought  limits  the  water  supply  and  gas  exchange  of  photosyn-

thetic  and  respiratory  processes,  thereby  hindering  regular  plant

growth  and  development[2,3].  Plants  normalize  water  balance  in
intricate ways, such as water absorption and transport, OA, and WUE
when subjected to drought stress[39]. It is a well-known fact that the
maintenance of water balance through enhancing OA and WUE is of
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primary  importance  for  the  survival  of  creeping  bentgrass  under
drought stress[40]. Our previous study found that foliar spray of DA-6
effectively  improved  OA  in  white  clover  associated  with  the  accu-
mulation  of  multiple  organic  metabolites  under  PEG-stimulated
water  stress[6].  Moreover,  exogenous  DA-6  also  helped  to  mitigate
drought-induced decline in WUE in drought-tolerant and -sensitive
white  clover  cultivars[3].  These  studies  are  in  accordance  with  our
current  study  which  demonstrated  that  drought  stress  negatively
affected the leaf water status as reflected by reduced RWC and WUE
in  leaves  of  all  creeping  bentgrass  plants,  but  DA-6-treated  plants
maintained  significantly  higher  RWC  and  WUE  as  well  as  lower  OP
than untreated plants under water-deficient conditions. In addition,
drought stress also significantly reduced the shoot and root lengths
of creeping bentgrass plants, demonstrating growth restriction. How-
ever,  the DA-6 pretreatment not  only  markedly alleviated drought-
triggered decreases in shoot and root lengths, but also significantly
promoted  shoot  and  root  lengths  under  optimal  conditions,  sug-
gesting the promising role of  DA-6 in plant growth.  As a  necessary
condition  for  photosynthesis,  better  water  status  is  propitious  to
achieve  stable  photosynthetic  carbon  assimilation,  which  provides
necessary energy for plant growth[41].  The present results indicated
that  the  DA-6-mediated  drought  tolerance  might  be  related  to
better  OA  and  WUE  as  well  as  higher  photosynthesis  in  favor  of
growth of creeping bentgrass under drought stress.

Chl is a crucial pigment for photosynthesis, facilitating the absorp-
tion  and  conversion  of  light  energy[42].  Drought  stress  induces
significant  degradation  of  photosynthetic  pigments,  hence  drasti-
cally  impairing  photosynthesis  and  plant  growth[2].  It  has  been

reported that foliar application of DA-6 ameliorated stress tolerance
of white clover via maintenance of better Chl content, photochemi-
cal efficiency, and Pn under drought stress[3]. Moreover, accelerated
Chl  loss  and  damage  to  the  photosystem  induced  by  salt  stress  in
Cassia obtusifolia could be significantly alleviated by the exogenous
application  of  DA-6[12].  Similar  findings  were  found  in  the  present
study which showed that  drought  stress  inhibited Chl  biosynthesis
by  reducing  transcript  levels  of  Chl-biosynthetic  genes  including
AsPBGD, AsMg-CHT, AsPOR,  and AsCHLH.  For  Chl  biosynthesis,  four
porphobilinogen  subunits  are  enzymatically  combined  to  form  a
tetrapyrrole  ring  by  the  PBGD,  whereas  Mg-CHT  and  CHLH  are
involved  in  the  insertion  of  Mg2+ in  the  tetrapyrrole  ring.  Subse-
quently,  POR  catalyzes  the  conversion  of  protochlorophyllide  to
chlorophyllide[43,44].  Previous studies have reported that drought or
abnormal  temperature  stresses  led  to  significant  declines  in  Mg-
CHT,  PBGD,  POR,  and  CHLH  activities  in  rice  (Oryza  sativa),  cucum-
ber (Cucumis sativus),  and wheat (Triticum aestivum),  thus inhibiting
Chl  biosynthesis[45,46].  An  exogenous  supply  of  mannose  could
significantly  alleviate  drought-induced  Chl  loss  by  maintaining
higher  expression  levels  of TrMg-CHT and TrPOR in  leaves  of  white
clover[15]. A low dose of Na+-activated expressions of TrPBGD, TrPOR,
TrMg-CHT,  and TrRubisCo in  white  clover  contributes  to  better  Chl
biosynthesis  and  carbon  assimilation  in  response  to  a  prolonged
period of drought stress[47]. In our present study, the DA-6 pretreat-
ment  significantly  lessened  the  drought-triggered  decline  in  Chl
content,  associated  with  the  fact  that  the  DA-6  significantly
enhanced expressions of AsMg-CHT, AsPBGD, AsPOR, and AsCHLH. In
addition,  the  DA-6-induced  up-regulation  of AsRubisCo could  be
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related  to  better  CO2 assimilation  in  creeping  bentgrass  under
drought stress.

Chl catabolism is positively linked with leaf senescence[48].  CLH is
the initial Chl-catabolic enzyme that performs hydrolytic catalysis of
ester  bonds  to  produce  chlorophyllide  and  phytol[49].  PPH  is  res-
ponsible  for  catalyzing  the  elimination  of  the  phytol  chain  from
pheophytin[50].  Moreover, PAO is involved in the partitioning of the
porphyrin  ring  in  the  Chl  degradation  pathway[51,52].  Leaf  senes-
cence stimulated by submergence stress was linked with enhanced
PPH  activity  and PPH transcript  level  in  perennial  ryegrass  (Lolium
perenne)[53].  The inhibition of  CLH and PPH activities  by exogenous
application of glutamate or morphactin could significantly mitigate
leaf senescence of creeping bentgrass under high temperatures[54,55].
Drought-induced  leaf  senescence  was  linked  with  significant  upre-
gulations  of TrPAO and TrCLH,  and  inhibitory  expressions  of  these
genes by exogenous application of  different PGRs could effectively
mitigate  leaf  senescence  under  drought  stress[15,47].  In  creeping
bentgrass,  Chl-degradation  genes  (AsCLH and AsPPH)  and  their
enzyme  activities  were  significantly  down-regulated  by  the  exoge-
nous  application  of  melatonin  contributing  to  a  slowdown  in  leaf
senescence[17].  In addition, the study by Sharma et al.[56] found that
elevated CLH transcript  levels  significantly  decreased  functional
components  of  photosynthesis  in  grafted Carya  cathayensis plants
under  drought  stress.  These  results  indicated  that  DA-6-mediated
drought tolerance and leaf senescence of creeping bentgrass could
be  related  to  higher  expression  levels  of  Chl-biosynthesis  genes
(AsPBGD, AsMg-CHT, AsPOR, and AsCHLH) and lower transcript levels
of  Chl-degradation  (AsCHL, AsPPH,  and AsPAO)  and  senescence-
associated genes (Asl20 and Ash36) contributing to stable Chl meta-
bolism, photosynthetic function, and growth under drought stress.

Water  deficit  promotes  an  immense  amount  of  ROS  which  are
responsible  for  oxidative  damage  to  chloroplasts  and  cell  mem-
brane  systems,  thereby  resulting  in  Chl  degradation  and  severe
membrane lipid peroxidation[39].  Antioxidant enzymes are the main
constituents of antioxidant defense and perform vital roles in elimi-
nating ROS. Among diverse antioxidant enzymes, SOD is involved in
catalyzing  O2

·− dismutation  into  H2O2,  whereas  the  POD,  APX,  and
CAT  are  chiefly  associated  with  H2O2 scavenging[22].  Many  studies
found  that  different  PGRs  such  as γ-aminobutyric  acid,  spermidine,
and chitosan could ameliorate the activities of SOD, POD, APX, and
CAT  or  expression  levels  of  genes  encoding  those  antioxidant
enzymes  in  creeping  bentgrass,  thereby  mitigating  oxidative
damage  to  cellular  membranes  and  chloroplasts  under  drought
stress[57−59].  It  has  been  reported  that  an  enhanced  antioxidant
defense system was conducive to the alleviation of leaf senescence,
since  reduced  cellular  oxidative  damage  is  propitious  to  better
metabolic  homeostasis[15,60].  In  addition,  our  previous  study  found
that  the  DA-6  priming  improved  enzymatic  antioxidant  system  to
effectively  minimize  oxidative  damage  when  white  clover  seeds
were germinated under drought stress[13].  Foliar  spray of  DA-6 also
could  markedly  enhance  the  drought  tolerance  of  pineapple
(Ananas comosus)  by strengthening antioxidant defense systems to
eliminate  ROS[23].  In  this  study,  DA-6  priming  greatly  improved  the
activities of SOD, POD, CAT, and APX, which could efficiently reduce
ROS-induced oxidative injury when creeping bentgrass plants were
exposed to drought stress. 

Conclusions

DA-6  pretreatment  significantly  mitigated  PEG-induced  stress
damage  to  creeping  bentgrass  including  the  decrease  in  plant
growth, water deficit,  Chl loss,  the inhibition of photochemical  effi-
ciency  and  Pn,  and  membrane  lipid  peroxidation.  In  contrast  to

untreated plants, DA-6-fertigated plants showed significantly higher
WUE  and  lower  OP  for  better  water  balance  under  drought  stress.
Exogenous  DA-6  up-regulated  transcript  levels  of  genes  related  to
rubisco  activity  (AsRuBisCo)  and  Chl  biosynthesis  (AsMg-CHT,
AsPBGD, AsPOR, and AsCHLH), while down-regulated transcript levels
of genes for Chl degradation (AsPAO, AsCLH,  and AsPPH) and senes-
cence  (Asl20,  and Ash36),  thereby  decreasing  leaf  senescence  and
ameliorating  photosynthetic  performance  under  drought  stress.  In
addition,  exogenous  DA-6  also  significantly  enhanced  antioxidant
enzyme activities (SOD, CAT, POD, and APX), hence efficiently dimini-
shing  drought-stimulated  oxidative  damage  and  leaf  senescence.
These  findings  suggest  the  importance  of  DA-6-regulated  water
balance,  antioxidant  defense,  photosynthetic  functions,  and  Chl
metabolism associated with drought tolerance in turfgrass species. 
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