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Abstract
The  mutualistic  system  involving  grasses,  endophytic  fungi,  and  arbuscular  mycorrhizal  fungi  (AMF)  has  been  extensively  studied.  Several  studies  have

focused  on  the  effects  of Epichloë endophytic  fungi  on  AMF  colonization  and  the  impact  of  their  simultaneous  symbiosis  on  the  host  under  different

nutritional conditions, while environmental factors, such as salt stress, have received less attention. This study, using wild barley (Hordeum brevisubulatum)

as the experimental material, investigated the effects of simultaneous symbiosis between Epichloë bromicola fungi and three different AMF treatments on

the  growth,  nutrient  absorption,  and  biomass  (aboveground  and  belowground)  allocation  of  wild  barley  under  salt  stress.  Moreover,  the  nutrient  and

biomass changes of the salt effects were explored in these two types of fungi on wild barley during different stages of symbiosis establishment. Under high

salt stress, AMF colonization inhibited the growth of wild barley. E. bromicola and Glomus claroideum (GC) mycorrhizal fungi on the growth of wild barley are

independent. In E. bromicola-infected (E+) plants, colonization by Glomus mossease (GM) and G. claroideum + G. mossease (Gmix) mycorrhizal fungi led to

growth parameters reductions, indicating an antagonistic interaction between E. bromicola and G. mossease.
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Introduction

In  nature,  plants  can  coexist  with  multiple  microorganisms,  and
these  symbiotic  relationships  are  an  integral  element  of  natural
processes[1,2].  For  example,  grasses  can  form  co-symbiotic  associa-
tions  with Epichloë endophyte  that  are  present  in  their  aerial  parts
and arbuscular mycorrhizal fungi (AMF) that colonize their roots[1,3].
Epichloë (Ascomycetes,  Clavicipitaceae)  endophytic  fungi  are  sym-
biotic  with  the  majority  of  cool-season  grasses[3].  They  primarily
reside in the leaf sheaths and stems, and transmit through seeds[4−7].
AMF  can  infect  grass  roots  horizontally  by  infecting  neighboring
plant roots through mycelial growth[8−10].  Thus, Epichloë endophyte
and  AMF  can  form  a  mutualistic  symbiosis  with  grasses
simultaneously[11,12].  Host  grasses  provide  habitat  and  carbon
sources for Epichloë endophyte and AMF growth[13,14].  Host  grasses
also  enhance  resistance  to  abiotic  stress  through Epichloë endo-
phyte  and  improve  disease  and  insect  resistance  through  the
production  of  alkaloids[14−16].  AMF  enhances  the  uptake  of  limited
mineral nutrients, particularly phosphorus[17−19].

Under suitable nutrition conditions, Epichloë endophytes enhance
the resistance of the host grasses[20−23].  AMF helps plants to absorb
limited trace elements[24,25]. Epichloë endophytes and AMF promote
plant growth, enhance photosynthesis,  and contribute to the accu-
mulation  of  photosynthates[5,19,26].  This  accumulation  provides  a
sufficient  carbon  source  for  both Epichloë endophytes  and  AMF,
facilitating  mutualistic  symbiosis  among  the  host, Epichloë endo-
phytes, and AMF, increasing the infection rates of both fungi[5,26,27].
The  plant  serves  as  the  sole  carbon  source  for  the Epichloë endo-
phytes  and  AMF,  and  they  compete  for  the  photosynthesis
products[28,29]. The competition can reduce fungi's ability to provide
benefits to the plant, and the costs of symbiosis outweigh the bene-
fits, with antagonistic interactions occurring[28,29].

Numerous  studies  have  shown  that Epichloë endophytes  can
enhance  the  salt  tolerance  of  host  plants[30−32].  Song  et  al.[31]

studied the salt tolerance of wild barley and found that under high
salinity  stress, Epichloë endophytes  can  significantly  promote  the
growth  of  wild  barley.  Many  studies  have  indicated  that  AMF
enhances  plant  salt  tolerance,  although  its  effects  are  related  to
specific  species[33,34].  Only  a  few  studies  have  examined  the  effects
of  interactions  with  both Epichloë endophytes  and  arbuscular
mycorrhizal  fungi  (AMF)[35−40].  Moreover,  there  is  little  research  on
the  interactions  between Epichloë endophytes  and  AMF  under  salt
stress, as well as their effects on the host.

In this study, we investigated the effects of interactions between
Epichloë  bromicola and different  AMF on the  growth of  wild  barley
under  salt  stress,  and  the  impact  of  symbiotic  duration  on  these
effects.  We  explored  the  effects  of  the  interactions  between E.
bromicola and  AMF  on  wild  barley  growth  under  salt  stress.  This
study provides support for the application of E. bromicola and AMF
in different habitats. 

Materials and methods
 

Plant material
Epichloë bromicola infected (E+) and uninfected (E−) wild H. brevi-

subulatum plants  were  collected  from  the  Linze  Experimental
Station of Lanzhou University (100°06'  E,  39°11'  N),  Gansu Province,
China.  Seeds  from  E+  and  E− plants  were  separately  planted  in  a
common  garden  at  the  Yuzhong  Experimental  Station  (103°36'  E,
36°28'  N),  Lanzhou  University,  China.  After  assessing  the E.  bromi-
cola infection  rates  (aniline  blue  and  molecular  detection),  the
samples were stored in a refrigerator at 4 °C (at the Keith Clay Labo-
ratory, Indiana University, USA). 
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AMF material
The  AMF  strains  were  provided  by  the  Bever  Laboratory  at

Indiana  University,  USA.  The  strains  include  spores  of Glomus
mosseae and Glomus claroideum (BEG23),  which were isolated from
natural prairie soil in northern Indiana, USA.

The  soil  (collected  from  Indiana  University)  and  sand  were
screened to 2 mm and then sterilized under high pressure at 121 °C
for 2 h. 

Pot experiment
A pot  experiment  was  conducted from February  to  August  2014

in the Indiana University Greenhouse. The treatments included ino-
culation  with  different  mycorrhizal  species:  non-inoculated  (M−).  If
there  are  specific  locations  requiring  attention,  please  let  us  know,
and we will  address  them promptly.  ), Glomus  mossease (= Funneli-
formis  mosseae,  GM), Glomus  claroideum (GC),  and  a  mix  of G.
claroideum and G.  mosseae (Gmix).  We  inoculated  approximately
10%  of  the  total  soil  volume  with  AMF,  at  a  depth  of  about  2  cm
below  the  soil  surface.  For  the  non-inoculated  control,  an  equal
amount of sterilized soil was added using the same method.

Seeds harvested from the E+ and E− plants were disinfected with
75%  ethanol  for  1  min.  The  sterilized  seeds  were  sown  in  pots  (3
seeds/pot)  filled  with  sterilized  vermiculite.  All  plants  were  germi-
nated in the greenhouse (14 h of light) and watered daily. Seedlings
of  similar  size  and  growth  were  selected.  Each  seedling  was  then
transplanted into a separate pot.

The effect of NaCl (NaCl concentrations: 0 mM, 100 mM, 300 mM,
labeled as S1, S2, S3) was assessed 7 d after transplanting seedlings,
with  five  replicates  per  concentration.  NaCl  was  added  to  the
medium  in  50  mM  increments  every  2  d  until  concentrations  of
100 mM and 300 mM were reached.

In each of the first 4 months, harvests were conducted (labeled as
H1,  H2,  H3,  and H4) after salt  stress treatment;  120 pots containing
all  treatments  (AMF  × E.  bromicola ×  salt  stress)  were  randomly
selected for harvest. The number of tillers and spikes was measured
at each harvest. The roots were washed with water and dried using
towels.  Wild  barley  was  divided  into  aboveground  and  below-
ground parts. From each plant, the oldest three tillers and the roots
were  separately  collected,  each  sample  weighing  approximately
0.05  g.  These  samples  were  quickly  frozen  in  liquid  nitrogen  and
stored at −80 °C. The aboveground and belowground biomass were
measured and the root-shoot ratio was calculated. After drying, the
wild  barley  was  ground  to  a  powder  using  a  ball  mill,  and  the
contents of C, N, P, Na+, and K+ were measured separately.

Organic  carbon content  was  determined using the  external  hea-
ting  method  for  chromic  acid  oxidation  titration[41].  Total  nitrogen
was  measured  using  the  Kjeldahl  method[42].  Total  phosphorus  in
both  aboveground  and  belowground  parts  was  determined  using
the  molybdenum  blue  colorimetric  method[43],  while  Na+ and  K+

contents were measured using flame photometry[44]. 

gDNA extraction
DNA  was  isolated  from  0.05  g  of  tiller  and  root  samples  using

MoBio DNeasy PowerPlant DNA Kit (MO BIO Laboratories, a QIAGEN
Company)  following  the  manufacturer's  instructions.  DNA  concen-
tration and purity were determined using NanoDrop (Thermo Fisher
Scientific,  USA).  The  A260/A280 purity  ratio  was  used to  assess  the
purity of the extracted nucleic acid sample.

The  DNA  extracts  were  used  for  validation  of  relative  qPCR  with
specific  primers  (Table  1)  to  quantify  fungal  colonization[29,45,46].
The  specificity  of  the  primers  was  verified  using  an  optimized  PCR
amplification  reaction  in  a  total  of  25 μL  and  2.5%  agarose
electrophoresis. 

Standard curve
The  purified  PCR  products  were  cloned  into  TOPO  vectors  and

transformed  into  competent E.  coli cells.  After  cultivation,  plasmid
DNA was extracted and purified using the QIAprep Spin Miniprep Kit.
The  purified  plasmid  DNA  was  then  serially  diluted  to  create  a  stan-
dard curve for the concentration of wild barley E. bromicola DNA.

Glomus  mosseae (GM)  and Glomus  claroideum (GC)  spores  were
extracted  separately  from  soil  samples,  and  DNA  was  extracted
using  the  MoBio  DNeasy  PowerSoil  Kit  (MO  BIO  Laboratories,  a
QIAGEN  Company)  according  to  the  manual.  After  purification,  the
DNA  was  used  to  prepare  standard  samples  and  build  a  standard
curve for the DNA concentration of both AMF species. 

Sequencing and bioinformatics
Epichloë  bromicola qPCR  system:  reaction  volumes  were  10 μL

with 5 μL Power SYBR™ Green Master Mix (Thermo Fisher Scientific),
1 μL  DNA  template,  0.25 μL  of  each  primer,  and  3.5μL  ultrapure
water mix. The reactions were carried out using the Applied Biosys-
tems  7500  Fast  Real-Time  PCR  (USA).  The  reaction  program  was  as
follows: 50 °C for 2 min, 95 °C for 10 min, 40 cycles of 95 °C for 15 s,
62 °C for 1 min, 72 °C for 15 s, and a final extension at 72 °C for 5 min.
A  melting  curve  analysis  was  also  performed  simultaneously.  The
copy numbers in the DNA template (wild barley + E. bromicola) were
calculated based on the standard curve, representing the molecular
biomass of the species.

AMF qPCR system: reaction volumes were 20 μL with 10 μL Power
SYBR™ Green Master Mix (Thermo Fisher Scientific),  2 μL DNA tem-
plate, 0.5 μL of each primer, and 7 μL ultrapure water. The reactions
were carried out using the Applied Biosystems 7500 Fast Real-Time
PCR (USA). The reaction program was as follows: 94 °C for 3 min, 30
cycles  of  92  °C  for  45  s,  72  °C  for  1  min,  72  °C  for  15  s,  and  a  final
extension  at  72  °C  for  5  min.  A  melting  curve  analysis  was  also
performed simultaneously. The copy numbers in the DNA template
(wild  barley  +  AMF)  were  calculated  based  on  the  standard  curve,
representing the molecular biomass of the two AMF species. 

Data processing
The  data  were  analyzed  and  plotted  using  SPSS  22.0  (IBM,  USA)

and  OriginPro  2024b.  Significant  differences  between  treatments
were determined using Fisher's LSD test, with significance set at the
95% confidence level. The means of different treatments presented
in the figures and text represent the average value of five replicates
per treatment ± standard deviation. 

Results
 

Physiological responses to treatment
We compared the effects of E. bromicola and AMF on the growth

parameters  of  wild  barley  under  different  salt  concentrations  and

 

Table 1.    Sequences and function of specific qPCR primes for E.  bromicola, G.
mosseae, and G. claroideum

Primers 5' to 3' Function

perA.RTF AACATCGAGCACTCTCATTGC E. bromicola peramine alkaloid
synthesis gene forward primer

perA.RTR CCGTTTCCGATGGTGCCATTG E. bromicola peramine alkaloid
synthesis gene reverse primer

GmPT.RTF ACGTGAAGTCGATGAACCAG G. mosseae specific sequence
forward primers

GmPT.RTR CATGACACCGCAGTACCAAC G. mosseae specific sequence
reverse primers

LSU.RTF GCGAGTGAAGAGGGAAGAG G. claroideum specific sequence
forward primers

LSU.RTR TTGAAAGCGTATCGTAGATGAAC G. claroideum specific sequence
reverse primers
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harvest  times  through  greenhouse  pot  experiments.  The  results
revealed  that E.  bromicola significantly  increased  the  root  biomass,
root-to-shoot  ratio,  and  spikelet  formation  ability  of  wild  barley
under  300  mM  salt  conditions  (Fig.  1).  However,  the  effects  of E.
bromicola were  not  significant  under  0  and  100  mM  stress  condi-
tions  (Fig.  1).  The  effect  of E.  bromicola gradually  weakened  with
increased symbiotic duration. Under 300 mM salt stress, AMF infec-
tion hindered the growth of  wild barley,  with different  AMF strains
having varying levels of impact. As the symbiotic duration increased,
the hindering effect of different AMF strains on wild barley became
more  pronounced.  Regardless  of E.  bromicola fungal  infection,  GC
mycorrhizal  fungi  had  no  significant  impact  on  the  growth  of  wild
barley  (Figs  1, 2),  indicating  that  the  contributions  of E.  bromicola
and GC mycorrhizal fungi to the growth of wild barley are indepen-
dent of each other. Under 0 and 100 mM salt conditions, GM mycor-
rhizal fungi showed a tendency to promote various growth parame-
ters  of  wild  barley  in  the  absence  of E.  bromicola fungal  infection.
However, in E+ plants, infection with GM mycorrhizal fungi led to a
decrease in all  growth parameters,  indicating an antagonistic inter-
action between E.  bromicola and GM mycorrhizal  fungi  (Figs  1 & 2;
Supplementary Table S1). 

Effects of Epichloë bromicola and AMF on nutrient
content

The  nutrient  elements  in  the  aboveground  and  belowground
parts of wild barley were measured at different harvest times under
salt stress (Figs 3 & 4; Supplementary Tables S1 & S2). Under 300 mM
salt  concentration,  inoculation  with  GM  resulted  in  higher  above-
ground  nitrogen  (N)  content  in  wild  barley,  and  infection  with E.
bromicola enhanced  the  effects  (Fig.  3a).  The  effect  of  GC  was  not
significantly  influenced  by E.  bromicola,  and  an  antagonistic  effect
was  observed  between  the  Gmix  treatment  and E.  bromicola.  AMF
increased  the  total  nitrogen  (N)  content  in  the  aboveground  parts
(Fig.  3c, d)  and  the  total  phosphorus  (P)  content  in  the  below-
ground  parts  (Fig.  3e, f)  of  wild  barley,  with  stronger  effects
observed  at  300  mM  salt  concentration.  The  three  types  of  mycor-
rhizal  treatments alleviated the nutrient stress caused by salt  stress
and  enhanced  nitrogen  absorption.  This  indicates  that  when E.
bromicola and  GM  infect  wild  barley  together,  they  reduce  the
impact  of  salt  stress  by  enhancing  the  host  plant  nitrogen  absorp-
tion (N).

Under 0 and 100 mM salt conditions, the three mycorrhizal treat-
ments did not have a significant effect on phosphorus (P) content in
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Fig. 1    (a)−(c) Root biomass, (d)−(f) root/shoot ratio, and (g)−(i) seedhead numbers of wild barley at four harvest times (H1, H2, H3, H4) under different
treatments of E. bromicola, arbuscular mycorrrhizal fungi, and salt concentrations. The unit of biomass is 'g' .
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the  roots  (Fig.  3e, f).  Both  GC  and  Gmix  mycorrhizal  treatments
increased  the  phosphorus  (P)  content  in  the  roots  under  300  mM
salt conditions (Fig. 3e, f). However, the phosphorus (P) content did
not change significantly after GM mycorrhizal infection (Fig. 3e, f). At
300 mM salt concentrations, E+ plants exhibited higher phosphorus
(P)  content  in  the  roots,  particularly  in  the  AMF-free  treatments
(Fig.  3e, f).  However,  after  inoculation  with  GM  mycorrhizal  fungi,
this advantage was significantly reduced, demonstrating an antago-
nistic effect between E. bromicola and GM mycorrhizal fungi.

With E. bromicola, E+ plants exhibited lower Na+ content, and AM
fungi  also  contributed  to  reducing  Na+ levels.  GM  and  Gmix  treat-
ments showed an additive effect with E. bromicola, acting synergisti-
cally  to  mitigate  Na+ toxicity  and  osmotic  stress  on  the  host  plant.
There was no interaction between GC and E.  bromicola.  GM signifi-
cantly increased the potassium (K+) content and the K+/Na+ ratio in
wild barley plants under salt  stress (Fig.  4).  At 300 mM salt  concen-
trations,  the  K+/Na+ ratio  was  increased  by  GM,  compared  to  AMF-
free treatments (Fig. 4e, f). However, the Gmix fungal treatment had
no  significant  effect  on  either  K+ content  or  the  K+/Na+ ratio
(Fig. 4a, b).

E.  bromicola and  AMF  had  a  significant  effect  on  the  organic  C
content  in  the  aboveground  part  of  wild  barley,  but  AMF  did  not
significantly  affect  the  belowground  organic  C  content  (Fig.  3a, b).

However, Epichloë fungi  significantly  increased  the  organic  C
content  in  the  wild  barley  roots,  resulting  in  these  roots  having  a
higher organic C content than the E- plants (Fig. 3a, b). Compared to
E− plants, E+ wild barley roots had higher organic C content (Fig. 3a,
b).  There were no interactions between E.  bromicola and AMF,  sali-
nity, or sampling time (Supplementary Table S2). Sampling time had
a  significant  effect  on  both  above  and  belowground  organic  C
content,  with  an  increasing  trend  over  time  in  both  parts  of  wild
barley  (Fig.  3a, b; Supplementary  Table  S2).  Additionally,  sampling
time  and  salinity  showed  an  interactive  effect  on  belowground
organic C content, where increased salinity reduced the variation in
belowground organic C content induced by sampling time (Supple-
mentary Table S2). 

qPCR to measure the infection rates of Epichloë
bromicola and AMF

Quantitative  fluorescence  PCR  was  used  to  determine  the  infec-
tion rates (molecular biomass) of E. bromicola and different AMF (GC,
GM, Gmix). The results showed that the content of E. bromicola was
not  affected  by  GC  fungi  but  was  significantly  reduced  when  co-
infected with GM and Gmix (Fig. 5), indicating an antagonistic effect
between  GM,  mixed  infections,  and E.  bromicola. E.  bromicola
showed  no  significant  influence  on  the  content  of  GC  but  signifi-
cantly  reduced  the  content  of  GM.  The  content  of  AMF  decreased
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Fig.  2    (a)−(c)  Tiller  numbers,  (d)−(f)  shoot  biomass,  and  (g)−(i)  total  biomass  of  wild  barley  at  four  harvest  times  (H1,  H2,  H3,  H4)  under  different
treatments of E. bromicola, arbuscular mycorrrhizal fungi, and salt concentrations. The unit of biomass is 'g'.
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Fig. 3    (a),  (b) Organic carbon (C) content; (c),  (d) total nitrogen (N) content; and (e),  (f)  total phosphorus (P) content of wild barley (aboveground and
belowground)  at  four  harvest  times  (H1,  H2,  H3,  H4)  under  different  treatments  of E.  bromicola (uninfected:  a,  c,  d;  infected:  b,  d,  e),  arbuscular
mycorrrhizal fungi (GC, GM, GMix, M−), and salt concentrations (S1, S2, S3).
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Fig. 4    (a), (b) Potassium (K+) content; (c), (d) Na+ content; and (e), (f) K+/Na+ ratio of wild barley (aboveground and belowground) at four harvest times
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with increasing salt concentration, but regardless of the salt concen-
tration,  the  content  of  AMF  increased  with  symbiotic  duration
(Fig. 6). 

Discussion

Due  to  the  salt  and  alkali  tolerance  and  strong  adaptability  of
Epichoë endophytes,  wild  barley  is  an  excellent  forage  grass.  It  is
important  to  study  the  effects  of  co-infection  by E.  bromicola and
arbuscular  AMF  under  different  stress  conditions[12,16,47].  Under-
standing the dynamic interactions among wild barley, E.  bromicola,

and AMF is crucial for the promotion and application of wild barley
and  for  the  development  of  the  forage  industry[30−32].  However,
there  is  a  gap  in  research  regarding  the  interactions  between E.
bromicola and  AMF  and  their  effects  on  the  host  under  salt  stress.
Only  Fang[48] studied  the  interactions  among  wild  barley, E.  bromi-
cola, and AMF under salt and phosphorus stress. The results showed
that  both  fungi,  whether  individually  or  jointly  inoculated,  could
enhance wild barley's resistance to salt stress and promote growth.
The study did not consider either different AMFs under salt stress or
the dynamic changes in the wild barley - E. bromicola-AMF symbio-
tic system.

Currently, the interaction mechanisms between Epichoë fungi and
AMF remain unclear. In the early stages of symbiosis,  the symbiotic
relationship  can  consume  significant  amounts  of  plant  photosyn-
thates  and  other  products,  which  affect  plant  growth[49].  However,
from  a  long-term  perspective,  symbionts  can  establish  mutualistic
interactions  with  host  plants[50].  The  density  of E.  bromicola fungal
hyphae  may  alter  the  nutrient  requirements  of  the  host  plant,
thereby  affecting  the  growth  of  AMF[51,52].  For  instance,  some
studies  have  shown that E.  bromicola can  enhance the  host  plant's
ability to absorb and store phosphorus, thereby reducing the contri-
bution of AMF infection to the host[53−55].

Malinowski  &  Belesky[56] found  that Festuca  arundinacea plants
with  endophytic  fungi  had  significantly  longer  root  hairs  but  a
significantly  reduced  root  diameter  compared  to  non-inoculated
plants.  This  indicates  that  endophytic  fungi  can  increase  the  root
surface  area  of  the  host  plant,  enhancing  nutrient  uptake  and
thereby  reducing  the  host's  reliance  on  AMF[23].  Many  cool-season
grasses,  such  as Festuca  arundinacea,  typically  have  lower  AMF
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infection rates and rely more on endophytic fungi for nutrient acqui-
sition than other plants[57]. The density of endophytic fungal hyphae
is  closely  related  to  the  concentration  of  secondary  metabolites,
such as alkaloids[58,59], and the production of alkaloids directly leads
to  a  reduction  in  AMF  infection  rates[60].  Compared  to  AMF,  endo-
phytic fungi have an advantage in terms of infection timing[6,7,9,10]. E.
bromicola fungi spread vertically and present in seeds before germi-
nation, whereas AMF spread horizontally through the soil and infect
plants  after  seed  germination[6,7,9,10].  With  the  differences  in  infec-
tion  space,  the  timing  of  infection  may  be  another  key  factor
contributing to the asymmetry in interactions between E. bromicola
and AMF[11]. 
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