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Abstract
Amomum xanthioides, A. villosum and A. longiligulare are three medicinally important herbs that are widely cultivated in southeast Asia. The ripe

fruits of all three species are not only used worldwide in treatments for gastrointestinal diseases, but are also popular condiments in cooked food.

In this study, we determined and analyzed the complete chloroplast (cp) genome sequences of these three Amomum species. The sizes of the cp

genomes of A. xanthioides, A. villosum and A. longiligulare were 161,889 bp, 162,355 bp, and 161,990 bp, respectively. The cp genomes of all three

species displayed a typical quadripartite structure. The cp genomes of A. xanthioides, A. villosum, and A. longiligulare encoded a total of 139, 138,

and 139 genes, respectively, of which 118, 117, and 118 genes were single-copy genes. These included 92 protein-coding genes, eight rRNAs, as

well  as  39,  38,  and  39  tRNAs,  respectively.  A  comparative  analysis  revealed  that  the  cp  genomes  of  the  three Amomum species  had  similar

characteristics and patterns of organization. However, they also varied in terms of gene content, the expansion of inverted repeats, codon usage,

repeat sequences, and simple sequence repeats. A phylogenetic analysis strongly supported a sister relationship between A. xanthioides and A.
villosum.  Overall, the results advance understanding of the relationships among the three medicinally valuable Amomum species, and provide

basic molecular information to aid conservation efforts as well as research in phylogenetics and systematics.
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 Introduction

Amomi  Fructus,  known  as  'Sharen'  in  Chinese,  is  an  impor-
tant traditional medicine that is widely used throughout south-
east  and  east  Asia,  and  which  has  been  used  for  medicinal
purposes  for  over  1,300  years[1−3].  In  China,  Amomi  Fructus  is
used  in  traditional  Chinese  medicine  (TCM)  as  a  prescribed
treatment  for  various  gastrointestinal  diseases[4−7].  It  is  also  a
popular condiment to food in many Asian countries[8].  Accord-
ing  to  the  Chinese  Pharmacopoeia,  Amomi  Fructus  originates
from the ripe fruits of Amomum villosum, A. xanthioides,  and A.
longiligulare[9]. However, the Japanese Pharmacopoeia lists only
A. xanthioides as the source of Amomi Fructus.

Of  the  three Amomum species, A.  villosum,  which  originates
from  Yangchun  City  in  Guangdong  Province  of  China,  has
traditionally been regarded as having superior medicinal qual-
ity[10−13].  Consequently, A.  villosum fetches  a  substantially
higher price than the other two Amomum species. Nonetheless,
many  recent  studies  indicate  that A.  xanthioides and A.
longiligulare have  biological  functions  that  can  promote  the
treatment of spleen and stomach stagnation,  and other diges-
tive  disorders[14−17].  Moreover, A.  villosum and A.  xanthioides
share many similar physical characteristics; the two species can
be distinguished by neither chemical methods, microscopy, nor
DNA barcoding. Instead, experts must examine the color of the
fresh  fruit  and  root  sheath  to  tell  the  two  species  apart.  In

contrast, A.  longiligulare is  morphologically  and  chemically
distinct  from A.  villosum and A.  xanthioides,  and  is  also  distin-
guishable by DNA barcoding.

Chloroplasts  (cp)  are  the  major  organelles  responsible  for
photosynthetic and biosynthetic activities in plant cells. The cp
genome  also  provides  a  particularly  useful  model  for  under-
standing the evolution and systematics of plants, as well as for
comparative  genetic  studies  owing  to  its  highly  conserved,
simple structure and genetic content[18,19]. In studies on phylo-
genetics,  DNA  barcoding,  population  biology  as  well  as  tran-
scriptomics,  genetic  information  from  cp  genomes  has  been
used  to  elucidate  the  relationships  between  different  species,
their  common  structures,  and  unique  features[20−24].  With  the
rapid  development  of  gene  sequencing  technology  in  recent
years,  increasing  numbers  of  cp  sequences  have  quickly  been
obtained[25−29]. At present, the cp genomes of over 1,500 plant
species have been entered into the National Center for Biotech-
nology Information (NCBI) database.

In  this  study,  we  determine  the  complete  cp  genome
sequences of A.  villosum, A.  xanthioides and A.  longiligulare.  To
advance  understanding  of  the  relationships  among  the  three
Amomum medicinal species, we undertake a comparative anal-
ysis to clarify details of their physical characteristics and chloro-
plast  genome  features.  We  also  construct  a  phylogenetic  tree
for Amomum species that is based on 53 protein-coding genes
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found  in  16  closely  related  species  and  two  outgroup  species.
Overall,  our  results  provide molecular  information that  is  valu-
able  for  guiding  the  conservation  of  the  three Amomum
medicinal  species  and  for  improving  understanding  of  their
phylogenetic relationships.

 Materials and methods

 Plant materials, DNA extraction, and sequencing
Fresh plants of A. xanthioides, A. villosum and A. longiligulare

were  collected  from  Jinghong  City  in  Yunnan  Province,
Yangchun  City  in  Guangdong  Province  and  Haikou  City  in
Hainan Province (China),  respectively.  Total  genomic DNA was
extracted from samples weighing approximately 100 mg using
the  DNeasy  Plant  Mini-Kit  (Qiagen  Gmbh,  Hilden,  Germany)
according to the manufacturer’s instructions. Purified genomic
DNA  was  quantified  using  a  TBS-380  fluorometer  (Turner
BioSystems  Inc.,  Sunnyvale,  CA,  USA).  Genomic  DNA  was  frag-
mented  into  400–500  bp  using  a  Covaris  M220  Focusd-ultra-
sonicator  (Covaris,  Woburn,  MA,  USA).  Library  preparation was
conducted using the TruSeq DNA Sample Prep Kit. At least 5 µg
of  genomic  DNA  was  used  for  each  strain  when  constructing
the  sequencing  library  for  Illumina  sequencing.  Paired-end
libraries  with  an  insert  size  of  ~300  bp  were  constructed
according  to  the  manufacturer’s  instructions  (Bioscientific,
AIR™  Paired-End  DNA  Sequencing  Kit).  Subsequently,  the
100 bp at each end was sequenced using Illumina Hiseq4000.

 Assembly and annotation of the chloroplast genome
The  chloroplast  genomes  were  assembled  by  MITObim

(v1.9.1)[30].  Gaps  in  the  assembled  sequences  were  filled  using
GapCloser[31]. The final circular step was checked manually. The
final  assembly generated a  circular  genome sequence with no
gaps.  Annotation  of  the  chloroplast  genome  was  performed
using  DOGMA  (www.dogma.ccbb.utexas.edu/)[32].  tRNAs  were
identified  using  tRNAscan-SE  (v1.23, http://lowelab.ucsc.edu/
tRNAscan-SE)  and  rRNAs  were  determined  using  RNAmmer
(v1.2, www.cbs.dtu.dk/services/RNAmmer/)[33,34].  Identification
of  predicted  coding  sequences  (CDS)  was  performed  using
Glimmer  version  3.02  (http://cbcb.umd.edu/software/
glimmer)[35].  All  CDS  with  less  than  300  base  pairs  were  dis-
carded.  The  cp  genomes  were  illustrated  using  the  software
OrganellarGenome  DRAW  (http://ogdraw.mpimp-golm.
mpg.de)[36].

 Sequence analyses
To  investigate  the  distribution  of  condon  usage,  relative

synonymous condon usage values (RSCU) were detected using
the  program  CondonW  (v1.4.2,  available  from: http://down-
loads.fyxm.net/CodonW-76666.html)[37].  The  REPuter  program
was  used  to  identify  repeats  including  forward,  palindrome,
reverse and complement sequences with a length ≥ 30 bp and
sequences  for  which  ≥ 90%  were  identified  in  chloroplast
genomes[38].  The  SSRs  (Simple  sequence  repeats)  were
detected using MISA software using the thresholds:  10,  5,  4,  3,
3, and 3 repeat units for mono-, di-, tri-, tetra-, penta- and hexa-
nucleotide  SSRs,  respectively.  mVISTA  software  was  used  to
compare  the  complete  cp  genomes  of A.  xanthioides, A.
villosuman and A. longiligulare[39].

 Phylogenetic analysis
A  total  of  24  complete  chloroplast  genomes  were  down-

loaded from the NCBI, with the genomes of Kingia australis and

Mauritia  flexuosa serving  as  outgroups.  The  53  protein-coding
gene sequences commonly present in 27 species, including the
three  species  in  this  study,  were  aligned  using  Clustal  W2[40].
Subsequently, RAxML-HPC 2.7.6.3 and PAUP in XSEDE at CIPRES
Science  Gateway  (www.phylo.org/)  were  employed  to  con-
struct  the  ML  (Maximum  likelihood)  tree  with  1,000  bootstrap
replicates[41−43].

 Results and discussion

 Genome features
All  three Amomum chloroplast  genomes  displayed  typical

quadripartite  structures,  which  had  similar  lengths  and  base
compositions  in  their  respective  genomes  and  corresponding
regions (Supplemental Table S1). The largest genome was that
of A. villosum (162,355 bp), while those of A. xanthioides and A.
longiligulare were 161,889 bp and 161,990 bp, respectively. The
total GC content of the A. villosum genome (35.1%) was slightly
lower  than  that  of  the  other  two  species  (both  35.2%).  In A.
villosum ,  a  higher  GC  content  was  found  in  the  inverted
repeats  (IRs)  region  than  in  the  large  single-copy  (LSC)  and
small  single-copy  (SSC)  regions,  a  pattern  that  was  also
observed in the other two Amomum species as well as in the cp
genomes  of  other  species  reported  in  the  literature  (Fig.  1,
Supplemental Figs S1 & S2). The GenBank accession numbers of
A.  villosum, A.  longiligulare,  and A.  xanthioides are  MH165483,
MH165484, and MH165485, respectively.

A  total  of  139,  138,  and  139  genes  were  encoded  from  the
chloroplast  genomes  of A.  xanthioides, A.  villosum,  and A.
longiligulare, respectively. The three Amomum species also had
different  tRNA  amounts:  a  total  of  39,  38,  and  39  tRNAs  were
identified  in A.  xanthioides, A.  villosum,  and A.  longiligulare,
respectively.  The  three  species  were  also  found  to  share
another  92  protein-coding  genes  and  eight  rRNAs.  Duplicates
were  found  in  ten  protein-coding  genes,  seven  tRNAs,  and  all
rRNAs  genes.  After  the  duplicates  were  removed,  there  were
118  unique  protein-coding  genes,  117  unique  tRNAs,  and  118
unique rRNAs genes (Table 1). Although the tRNA trnI-CAU was
present in A. longiligulare and A. xanthioides, it was absent from
A.  villosum.  Among  these  genes,  nine  protein-coding  (atpF,
ndhA, ndhB, rpoC1, rps16, rpl2, rpl16, ycf15, ycf68) and four tRNA
(trnA-UGC, trnI-GAU, trnL-UAA, trnV-UAC) genes contained one
intron, and three genes (rps12, ycf3, clpP) contained two introns
(Table 2).

 IR contraction and expansion
The  LSC/IRa/SSC/IRb  junctions  of  the  three Amomum cp

genomes were compared,  and expansions and contractions in
IR boundary regions were also observed (Fig. 2). The ycf1 gene
was  located  at  the  SSC/  IRa  boundary  in A.  villosum and A.
longiligulare,  but  located  entirely  within  the  IRa  region  in A.
xanthioide.  In  addition,  the  SSC/IRb  border  extended  into  the
ycf1  pseudogene  in  all  three Amomum species.  Overall,  while
the IR/SC junctions of all three Amomum species were similar, A.
xanthioides displayed  differences  at  the ycf1  gene  in  compari-
son with the other two species.

 Condon usage
There  were  53963,  54118,  and  53996  codons  in  the  chloro-

plast genomes of A. xanthioides, A. villosum, and A. longiligulare,
respectively.  The  codon  usage  frequency  and  RSCU  were
analyzed.  Leucine  and  tryptophan  were  the  most  and  least
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Fig. 1    Gene map of the complete chloroplast genome of A. xanthioides. Genes located on the inside and outside of the circle are transcribed
clockwise and counterclockwise, respectively. The inner circle indicates the GC and AT content.

Table 1.    Gene contents of three Amomum chloroplast genomes.

No. Group of genes Gene names Amount

1 Photosystem I psaA, psaB, psaC, psaI, psaJ 5
2 Photosystem II psbA, psbB, psbC, psbD, psbE, psbF, psbG, psbH, psbI, psbJ, psbK, psbL, psbM,

psbN, psbT, psbZ
16

3 Cytochrome b/f complex petA, petB, petD, petG, petL, petN 6
4 ATP synthase atpA, atpB, atpE, atpF*, atpH, atpI 6
5 NADH dehydrogenase ndhA*, ndhB*(×2), ndhC, ndhD, ndhE, ndhF, ndhG, ndhH, ndhI, ndhJ, ndhK 12(1)
6 RubisCO large subunit rbcL 1
7 RNA polymerase rpoA, rpoB, rpoC1*, rpoC2 4
8 Ribosomal proteins (SSU) rps2, rps3, rps4, rps7(×2), rps8, rps11, rps12**(×2), rps14, rps15, rps16*, rps18,

rps19(×2)
15(3)

9 Ribosomal proteins (LSU) rpl2*(×2), rpl14, rpl16*, rpl20, rpl22, rpl23(×2), rpl32, rpl33, rpl36 11(2)
10 Proteins of unknown function ycf1(×2), ycf2(×2), ycf3**, ycf4, ycf15*(×2), ycf68*(×2) 10(4)
11 Other genes accD, clpP**, matK, ccsA, cemA, infA 6
12 Transfer RNAs# 39/38/39 tRNAs 39/38/39(7)
13 Ribosomal RNAs rrn4.5(×2), rrn5(×2), rrn16(×2), rrn23(×2) 8(4)

*  Gene with  one intron;  **  gene with  two introns;  (×2)  indicates  the  number  of  the  repeat  unit  is  2.  #  indicates  different  amount  among A.  xanthioides,  A.
villosum and A. longiligulare.
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encoded universal amino acids, respectively. Except for methio-
nine and tryptophan, most amino acids are encoded by multi-
ple,  synonymous  codons  (Fig.  3).  Additionally,  in  all  three
Amomom species,  codon  usage  was  biased  towards  codons
that  terminated  in  A  or  U;  this  has  similarly  been  observed  in
other species[19,23,27].

 Repeat structure and analysis of simple sequence
repeats

An  analysis  of  repeat  sequences  using  REPuter  detected  no
complement  repeats  in  all  three Amomum chloroplast
genomes. Figure 4 shows the results  of  the analysis  for  repeat
structures  in  the three Amomum species.  We found that  while
the chloroplast genome of A. xanthioides had the fewest palin-
dromic  repeats  (7)  and  forward  repeats  (14),  it  had  the  most
reverse  repeats  (13)  among  the  three Amomum species.  In
comparison,  the  chloroplast  genome  of A.  villosum had  the
greatest  number  of  palindromic  repeats  (28)  and  forward
repeats (18), and no reverse repeats. The chloroplast genome of
A. longiligulare had 21 palindromic repeats, 20 forward repeats,
and one reverse repeat. Most of the repeated units were differ-
ent  among  the  three Amomum species;  that  is,  any  repeated
sequences were molecularly unique to each species.

A total  of  94 SSRs were detected in the chloroplast genome
of A.  xanthioides (Table  3).  Rich  mononucleotide  repeats  were
identified. Specifically, there were 57, 15, 3, 13, 2 and 4 mono-,
di-, tri-, tetra-, penta- and hexa-nucleotide repeats, respectively.

In line with the results of previous studies on many other plants
species[44,45],  high contents  of  AT were found in  the SSRs  of A.
xanthioides.  Only 17 SSRs were composed of G and C, while 77
SSRs  were  composed  of  A  and  T.  The  chloroplast  genomes  of
the  other  two Amomum species  shared  similar  types  and
amounts of SSRs. The chloroplast genome of A. xanthioides had
two and five types of SSRs that presented in different amounts
from the chloroplast genomes of A. villosum and A. longiligulare,
respectively.

Interspecific  comparisons  of  sequence  identity  among  the
chloroplast  genomes  of  the  three Amomum species  were
conducted  using  mVISTA  (Fig.  5).  We  found  that  the  chloro-
plast  genomes  of  all  three Amomum species  were  highly
conserved,  and  that  their  IR  regions  were  less  divergent  than
their  LSC  and  SSC  regions.  However,  any  non-coding  regions
appeared to be more variable globally than the coding regions.
Highly  divergent  regions  were  located  at  inter-gene  spacers,
including matK-trnK-UUU, rps16-trnQ-UUG, atpF-atpH, atpH-
atpl  and psbM-trnT-GGU,  with ycf1  being  the  most  divergent
coding region. These highly divergent regions could be used to
develop potential markers for future phylogenetic analyses and
molecular identification of Amomum species.

 Phylogenetic analyses
Due to the limited availability of extensive biological samples

per  species  in  previous  phylogenetic  studies  on  chloroplast
genomes  of  Amomi  Fructus[46−49],  we  addressed  this  issue  by

Table 2.    Gene with introns in three Amomum chloroplast genomes and the length of exons and introns.

Gene Location Exon I (bp) Intron I (bp) Exon II (bp) Intron II (bp) Exon III (bp)

atpF# LSC 378 770/771/771 207 − −
clpP# LSC 252 627/626/629 237 908/909/909 72
ndhA# SSC 567 1,056/1,067/1,054 513 − −
ndhB IR 849 603 783 − −
rpl16# LSC 8 1,045/1,042/1,038 420 − −
rpl2 IR 426 658 396 − −
rpoC1# LSC 1605 751/752/739 438 − −
rps12 LSC 156 − 159 156 159
rps16# LSC 234 703/707/721 46 − −
trnA-UGC IR 38 803 35 − −
trnI-GAU# IR 35/42/35 937 42/35/42 − −
trnL-UAA# LSC 35 563/534/534 50 − −
trnV-UAC# LSC 37 606/606/603 38 − −
ycf3# LSC 138 773/773/774 249 710/711/710 135

# indicates different amount among A. xanthioides, A. villosum and A. longiligulare.
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Fig. 2    Comparison of the borders of the LSC, SSC, and IR regions in the genomes of the three Amomum species. Ψ indicates pseudogenes.
The number above the gene feature indicates the distance between the ends of genes and border sites. Figure is not drawn to scale.
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integrating  all  sequences  in  our  study.  We  have  arranged  a
comprehensive  set  of  12  chloroplast  genomes,  including A.
villous, A. longiligulare, and A. xanthioides, alongside 13 from the
Zingiberales  clade.  For  phylogenetic  analysis,  we  utilized  two
Arecales  species  as  out-groups.  We  performed  multiple
sequence  alignment  to  construct  the  maximum  parsimony
(MP) and maximum likelihood (ML) phylogenetic tree based on

53 common protein-coding genes (Fig. 6). The maximum likeli-
hood (ML) phylogenetic analysis yielded robust results, with A.
longiligulare clustered  into  a  monophyletic  clade  separately
from A. villosum and A. xanthioides, and branches of A. villosum
and A.  xanthioides formed  a  distinct  clade.  Furthermore,  the
nested relationship observed among all  samples  of A.  villosum
and A.  xanthioides.  The  results  suggested  that  the  common
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Fig.  3    Codon content  of  20 amino acids  and stop codons in  all  protein-coding genes of  the chloroplast  genomes.  The histogram (as  read
from left to right) shows the different numbers of codons found in A. xanthioides, A. villosum and A. longiligulare.
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Fig. 4    Repeat sequences in three Amomum chloroplast genomes.  REPuter was used to identify repeat sequences with length ≥ 30 bp and
sequences  for  which  ≥ 90%  were  identified  in  chloroplast  genomes.  Different  letters  are  used  to  indicate  forward  repeats  (F),  palindromic
repeats (P), reverse repeats (R), and complementary repeats (C). Repeats of different lengths are indicated in different colors.
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protein-coding  genes  can  be  used  as  a  basis  for  identifying A.
longiligulare,  but  cannot  be  used  as  a  basis  for  identifying A.
villosum and A.  xanthioides.  The  phylogenetic  positions  of  the
three Amomum species  as  determined in  this  study align with
previous  results  obtained  with  DNA  barcoding[50,51].  Our  find-
ings therefore provide an empirical resource to aid the identifi-
cation  of Amomum species  as  well  as  species  of  other  genera
using the cp genome.

 Conclusions

Here,  we  constructed  the  complete  chloroplast  genomes  of
A.  xanthioides, A.  villosum,  and A.  longiligulare and  performed
detailed  comparisons  of  the  genomes  of  the  three Amomum
species.  We found that  although the cp genomes of  the three
Amomum species  were  relatively  conserved,  they  differed  in
their  gene  contents  as  well  as  patterns  of  IR  contraction  and
expansion.  We  investigated  repeat  sequences  and  SSRs  with
the aim of facilitating the development of polymorphic micro-
satellites  and new molecular  markers.  Our phylogenetic  analy-
ses  revealed A.  xanthioides and A.  villosum clustered  together,
which  further  supports  previous  observations  of  the  two
species’  high  similarity  in  terms  of  morphological  characteris-
tics, chemical components, and DNA barcodes, suggesting that
the evidence does not support considering A. xanthioides as an
independent species. In the Chinese Pharmacopoeia, for exam-
ple, A.  xanthioides is  considered a  variety  of A.  villosum.  There-
fore,  identification  of A.  villosum and A.  xanthioides using
common  protein-coding  genes  of  chloroplast  genomes  is  not
recommended.

Overall,  our  findings  are  useful  to  evolutionary,  phylogenic,
population  and  barcoding  studies.  The  specific  results  should
also  inform  efforts  to  genetically  engineer  and  conserve
Amomum species, which are important medicinal resources.
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Table 3.    SSR types and amounts in three Amomum chloroplast genomes.

SSR type Repeat unit
Amount Ratio (%)

A. xanthioides A. villosum A. longiligulare A. xanthioides A. villosum A. longiligulare

Mono A/T 57 62 58 100 100 100
Di GA/TC 2 2 2 13.3 10.5 11.8

AT/AT 13 17 15 86.7 88.2 86.7
Tri GCT/AGC 1 1 1 33.3 25.0 33.3

TTC/GAA 1 1 1 33.3 25.0 33.3
GGA/TCC 1 1 1 33.3 25.0 33.3
ATA/TAT 0 1 0 0.0 25.0 0.0

Tetra TTAT/ATAA 2 2 2 15.4 18.2 18.2
AAAG/CTTT 1 1 1 7.7 9.1 9.1
ATTT/AAAT 2 2 1 15.4 18.2 9.1
CTAA/TTAG 1 1 1 7.7 9.1 9.1
AGAA/TTCT 2 2 2 15.4 18.2 18.2
CGTA/TACG 1 1 1 7.7 9.1 9.1
CATA/TATG 1 1 0 7.7 9.1 0.0
GAAT/ATTC 1 1 1 7.7 9.1 9.1
TATT/AATA 1 1 1 7.7 9.1 9.1
AATT/AATT 1 1 1 7.7 9.1 9.1

Penta TTAAA/TTTAA 1 1 1 50.0 50.0 50.0
AATCA/TGATT 1 1 1 50.0 50.0 50.0

Hexa TGATAG/CGATCA 1 1 1 25.0 25.0 50.0
GAAGAG/CTCTTC 1 1 0 25.0 25.0 0.0
TCCTCT/AGAGGA 1 1 0 25.0 25.0 0.0
TCACTA/TAGTGA 1 1 1 25.0 25.0 50.0
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Fig. 5    Sequence alignment in the chloroplast genomes of three Amomum species using mVISTA software. The top line shows the genes in
order (with the direction of transcription indicated by an arrow). A cut-off of 70% identity was used for the plots. The Y-axis indicates the value
of percent identity and ranges from 50% to 100%.
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