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Abstract
Perilla is a characteristic medicinal and edible plant. According to the different main monoterpenes in Perilla leaves, Perilla can be divided into

many chemical types. In this study, four Perilla cultivars of different chemical types, included perillaldehyde (PA), perillaketone (PK), perillene (PL)

and  piperitenone  (PT)  were  selected  for  metabolome  and  transcriptome  analysis.  Totally,  35  terpene  compounds  were  identified  and  main

monoterpenes  were  consistent  with  corresponding  chemical  types,  respectively.  Combined  with  transcriptome,  a  total  of  5,920  differentially

expressed  genes  were  obtained  among  them.  Totally,  69  genes  refered  to  MVA  and  MEP  pathways  and  109  PfTPSs  encoded  genes  were

identified,  which  possessed  partial  differentially  expressed  in  four  chemical  types.  The  core PfTPSs in  co-expression  analysis  were  functional

characterization. Three PfTPSs were identified as linalool synthase and one PfTPSs were identified as geranyl synthase. This research analyzed the

monoterpene  biosynthesis  and  functional  characterization  of  TPSs  in Perilla,  which  can  give  foundation  for  in-depth  research  of Perilla
chemotype metabolic mechanism.
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Introduction

Perilla  frutescens (L.)  Britton,  belonging  to  Lamiaceae,  is  a
kind of versatile economic crops, and is also a commonly used
herbal medicine. It  has been widely cultivated in China, Japan,
South Korea and many other Asian countries in recent years[1].
The leaves of Perilla are used for preparation of cold granules in
Traditional  Chinese  Medicine  (TCM),  and  as  vegetables  and
spices  in  Asian  countries[1,2].  The  leaves  of Perilla possess  vari-
ous  chemicals,  including  terpenes,  flavonoids,  phenolic  acids
etc.[3]. The medicinal value of Perilla has been officialized in the
Chinese pharmacopoeia and the catalogue of  affinal  drug and
diet[1,4]. The essential oils of Perilla leaves are the major medici-
nal flavor components. They are also widely applied in skin care
produce and aromatization industry[5,6].

The essential oils of Perilla leaves include abundant diversity
of  chemical  types,  which  are  classified  into  the  monoterpene
(MT)-type  oils  and  phenylpropene  (PP)-type  oils[7,8].  Interest-
ingly, there are multiple kinds of monoterpenes in the leaves of
Perilla genus, which can be further classified into the following
six chemotypes according to their principal constituents: peril-
laldehyde  (PA),  perillaketone  (PK),  perillene  (PL),  piperitenone
(PT),  citral  (C)  and  elsholtziaketone  (EK)  types[9].  Among  these
monoterpenes,  PA  are  the  major  aromatic  medical  ingredient
for prescriptions in China and Japan, while PK were thought to
be  a  potent  lung  toxin[10].  Besides  these  main  monoterpenes,
geraniol  (GL)  is  an acyclic  monoterpene also commonly  found

in  a  wide  range  of Perilla plants[11],  and  linalool  (LL)  can  be
found in all Perilla plants and may be a dead-end compound in
general  monoterpene  biosynthetic  pathways[12].  Wherein,  PA,
PL,  GL and LL are commercially  important  for  perfumery,  food
and  medicine[13,14].  As  multiple  chemical  types  of  monoter-
penes are enriched in Perilla, Perilla hence has been thought as
a model system for the study of monoterpenes metabolism.

The biosynthesis of monoterpene is specially localized to the
glandular  trichomes  and  initiated  from  the  mevalonate
(MAV)/methylerythritol  4-phosphate  (MEP)  pathway  in
plants[15−17].  Then  the  terpene  synthases  (TPS)  catalyze  prenyl
pyrophosphates,  the  products  of  MVA  and  MEP  pathways,  to
the  formation  of  terpene  compounds,  and  cytochrome  P450s
(CYP450s)  further  modify  the  backbones  of  these  terpenes[17].
Recently,  some TPSs and CYP450s involved in Perilla monoter-
pene  biosynthesis  have  been  reported,  including  limonene
synthase, GL synthase, LL synthase and mono-oxygenase[18−20].
Enzymes  participated  in  PA  biosynthesis,  such  as  CYP71D18
and CYP17A7146, have been characterized[18−20] . Eight double-
bond reductases (PfDBRs) that catalyze the conversion of isopy-
rone and soyone to PK were identified by enzymatic method in
vitro[21].  The  recent  high-quality  and  chromosome-scale Perilla
genome data establishes great foundation for the characteriza-
tion of Perilla monoterpene biosynthesis[22].  Here in this study,
we  carried  out  transcriptome  analysis  of  four  different Perilla
chemotypes,  and  identified  some  TPSs  involved  in  monoter-
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pene  biosynthesis,  as  well  as  multiple  regulatory  factors
responsible  for  this  biosynthesis  pathway.  Furthermore,  the
function  of  selected  TPSs  were  characterized  by  heterologous
expression  system  and  in vitro enzyme  assay.  These  results
collectively  will  help  to  understand  the  molecular  mechanism
of  Perilla  monoterpene  biosynthesis  and  analyze  the  biosyn-
thetic pathways of terpenes in Perilla. 

Methods
 

Plant materials
The  perilla  cultivars  of  four  chemotypes,  including  PA-,  PK-,

PL- and PT-types, were selected and planted in the greenhouse
of  Guangzhou  University  of  Chinese  Medicine  (Guangzhou,
Guangdong,  China,  113°41'  E;  23°07'  N).  The  PA-type  cultivar,
with purple wrinkled leaves, belongs to P. frutescens var. crispa.
The  PK-,  PL- and  PT-type  cultivars,  with  green  non-wrinkled
leaves, belong to P. frutescens var. frutescens (Fig. 1a). The leaves
at seedling stages were collected for gas chromatography-mass
spectrometry (GC-MS) analysis and RNA extraction. All samples
are stored in liquid nitrogen immediately after sampling. 

GC-MS analysis
Perilla leaves  of  four  chemotypes  were  crushed.  Then,  0.2  g

leaves  powder  was  extracted  by  petroleum  ether  and  filtered
for  GC-MS  analysis.  Analysis  conditions  include:  RXT-5  MS
quartz capillary column (30 m × 0.25 μm × 0.25 μm); The front
column  pressure  is  63.9  kPa;  The  initial  temperature  of  the
column was 80 °C and was retained for 1 min. After the heating
rate  of  15  °C/min,  the  column  was  increased  to  300  °C  and
retained  for  15  min.  MS  conditions:  ionization  mode  EI,  fila-
ment  current  0.5mA;  Electron energy 70  eV;  Multiplier  voltage
0.86kV; Ion source 230 °C, solvent delay 1 min; Plasma/nucleus
ratio  m/z:  40~500.  The  NIST  spectrum  library  was  retrieved  by
Agilent  qualitative  software,  and the chemical  structure  analy-
sis  was  combined  to  identify  the  species  of  components.  The
relative percentage of each chemical component of volatile oil
was calculated by peak area normalization method. 

Transcriptome analysis
Total  RNA  from  12 Perilla leaves  were  extracted  using  the

RNApre Pure plant RNA extraction kit (DP432) (Tiangen, Beijing,
China).  The  mRNA  sequencing  library  was  constructed  using
the NEBNext® Ultra RNA Library Prep Kit (New England Biolabs
Inc.,  Ipswich,  MA,  USA).  Then,  the  sequencing  library  was
analyzed  using  the  Agilent  2100  Bioanalyzer  and  was
sequenced  by  an  Illumina  HiSeq™  2000  sequencing  system
(Illumina  Inc.,  San  Diego,  CA,  USA).  The  original  transcriptome
data  has  been  uploaded  to  the  NGDC  database  (National
Genomics Data Center) (Number: PRJCA021059).

The Perilla genome  data  came  from  the  National  Center  for
Biotechnology  Information  (NCBI,  Accession  No.:
GCA_019511825.2)[22].  Trimmomatic  software  is  used  for  qual-
ity  control  of  transcriptome  data[23].  STAR(v2.7.10a)  software
was used to build an index and clen data was compared to the
Perilla genome[24].  The  Python  module  HTseq  is  used  for P.
frutescens transcriptome  data  quantification[25].  Gene  expres-
sion  levels  of  fragments  per  kilobase  of  transcript  per  million
mapped  reads  (FPKM)  were  calculated.  Then  differentially
expressed  genes  (DEGs)  were  identified  using  DESeq2[26].
Genes  with  |log2  (Fold  change)  |≥1|and P <  0.01  were  consid-
ered  DEGs.  The  online  tool  eggnog  (http://eggnog-

mapper.embl.de/)  was  used  to  annotate  the  whole  genome
protein  of Perilla[27].  R  package  ClusterProfiler  was  used  for
GO(Gene  ontology)  and  KEGG(Kyoto  Encyclopedia  of  Genes
and Genomes) enrichment analysis of differential genes[28]. 

Identification and characteristic analysis of
metabolosynthetic genes

The  two  hidden  Markov  models  (HMM)  of  TPS
(Terpene_synthase,  PF01397  and  Terpene_synthase_C,
PF03936) were downloaded from Pfam (http://pfam.xfam.org/)
and the Perilla genome were searched[29].  The identified PfTPS
proteins  were  further  determined  by  online  HMMER
(www.ebi.ac.uk/Tools/hmmer/)  and  constructed  phylogenetic
tree  using  Neighbor-Joining  method  in  MEGA  X  (Bootstrap
1000)[30]. Heat maps of candidate genes were drawn by TBtools
(v1.112)  (https://github.com/CJ-Chen/TBtools)[31].  Interge-
nomic  collinearity  analysis  using  MCScanX[32].  Chromosomal
localization  and  collinearity  results  were  visualized  using
TBtools. According to the Annotation information of Metabolic
pathway  synthase  in  KEGG  and  eggnog,  the  encoded  gens
were  identified  in  MVA/MEP  pathway  in Perilla.  The  Python
script  is  used  to  calculate  the  correlation  coefficient  between
genes expression, using the Pearson correlation coefficient[33]. 

Real-time PCR analysis and cloning of related
genes

The full-length transcripts of PfTPSs genes were derived by 5'
RACE-PCR  and/or  3'  RACE-PCR.  Then  the  PCR  products  were
ligated  to  PLB  vector  (Tiangen)  and  sequenced  by  Sangon
Biotech.  Primer3Plus  (www.primer3plus.com/index.html)  was
used  to  design  primers  for PfTPS genes.  The  primers  used  for
genes  cloning  were  listed  in Supplemental  Table  S1.  The  fluo-
rescence quantitative reaction system was referred to Wu et al.,
three replicates were used in each group, and PfActin was used
as the key gene for analysis[34]. For data analysis, refer to 2−ΔΔCᴛ

method[35]. 

Functional characterization in heterologous
expression system

All the cloned PfTPSs genes were introduced into the heterol-
ogous expression vector  pETDuet-1.  Then the expression plas-
mids  were  transformed  into  C41 Escherichia  coli (E.  coli)  strain.
The positive  colony were firstly  cultivated in  TB medium at  37
°C  to  an  initial  OD600 of  0.4-0.6,  and  then  the  cultures  were
induced by 1 mM IPTG for another incubation of 72 h at 16 °C.
After the cultivation, the cultures were extracted for three times
by  equal  volume  of  n-hexane,  and  then  the  extracts  were
concentrated  by  rotary  evaporation  instrument  for  gas  chro-
matography-mass spectrometry (GC-MS) detection. 

In vitro enzymatic reaction
The  selected PfTPSs genes  were  introduced  into pET28a

vector and transformed into E.  coli strain BL21 (DE3).  The posi-
tive colony were incubated in LB medium at 37 °C to the initial
OD600 of  0.4−0.6,  and  then  the  cultures  were  induced  by  0.5
mM IPTG for another 12 h of cultivation. The cultured cells were
harvested and resuspended in lysis buffer (50 mM Tris-HCl, 500
mM NaCl, 20 mM imidazole, 20 mM β-mercaptoethanol, pH 8.0)
for 30 min at 4 °C. Then the cells were disrupted by ultrasonica-
tion and the lysate was centrifuged at 13,000 g and 4 °C for 30
min.  The  crude  proteins  were  inside  the  supernatant.  For  the
soluble PfTPSs proteins, the crude proteins were purified by HIS
nickel column.
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For  in vitro enzymatic  reaction,  crude  or  purified  PfTPSs
proteins were added to the reaction buffer containing 200 mM
Tris-HCl (pH 7.5), 40 mM MgCl2, 10% glycerol and 1 mM geranyl
pyrophosphate (GPP) as the precursor. After incubation at 30 °C
for 30 min, the reaction system was extracted equal volume of
n-hexane and then detected by GC-MS. 

Results
 

Identification of essential oil components
The  volatile  essential  oils  components  of  leaves  from  four

Perilla cultivars were analyzed using GC-MS analysis (Fig. 1a, b).
A  total  of  35  terpenes,  including  22  monoterpenes  and  13
sesquiterpenes,  were  detected  in  these  cultivars.  The  main
monoterpenes are consistent with their  chemotypes classifica-
tion.  68.01%  of  PA  was  identified  as  the  main  compounds  in
PA-type cultivars, while 71.65% of PL, 88.76 % of PK and 61.20%
of  PT  are  the  main  compounds  in  PL-type,  PK-type,  PT-type
varieties,  respectively  (Fig.  1b).  The  GL  (0.07%−0.68%)  and  LL
(0.03%−1.77%)  were  the  ubiquitous  and  trace  metabolites
existed in these Perilla cultivars.  Besides these main chemicals,
other  monoterpenes  and  sesquiterpenes  were  also  identified,
including limonene, borneol, thujone, verbenol, citral, carvone,
trans-shisool,  terpine,  thymol  2-pinen-4-on,  caryophyllene,

germacrene, farnesene, trans-nerlidol etc.  (Fig.  1c; Supplemen-
tal Table S2). 

Transcriptome analysis
To  explore  the  molecular  mechanism  involved  in  different

monoterpenes  biosynthesis,  the  transcriptome  analysis  was
performed  for  the  leaves  of  four  chemotype  cultivars.  After
sequence and data filtration, a total of 579 million clean reads,
comprising of  86.90 Gb nucleotide bases with average 46.26%
GC  were  obtained  (Supplemental  Table  S3).  The  average  98%
clean  reads  were  assembled  to  the Perilla genome
(GCA_019511825.2)  (Supplemental  Table  S4).  Then,  the  gene
annotation and differential expression analysis were carried out
among the four cultivars. For the PA type are the main medici-
nal component of Perilla according to Chinese Pharmacopoeia.
Hence,  more  attention  focused  on  the  PA-type.  Totally  236
specific  up-regulated  genes  compared  with  other  three  culti-
vars  (Fig.  2a).  In  the  specific  up-regulated  genes  of  PA-type,
phylpropanoid  and  monoterpene  biosynthesis  were  enriched
using  the  KEGG  enrichment  analysis  (Fig.  2b; Supplemental
Table  S5).  Meanwhile,  the  comparison  analysis  among  the
other  three  different  chemotype  cultivar,  the  79,  92  and  155
specific  up-regulated  genes  were  identified  in  PK -type,  PL-
type,  PT -type,  respectively  (Fig.  2c, e & g).  Genes  involved  in
terpenes,  including  monoterpene,  sesquiterpene,  diterpene
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Fig. 1    The analysis of volatile components in four perilla cultivars. (a) the phenotype of four chemical types of Perilla; (b) The GC-MS analysis
of volatile essential components from four Perilla leaves; (c) The heat map of metabolite contents in four Perilla leaves.
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Fig.  2    Different  expression  genes  and  KEGG  enrichment  analysis  of  four  chemotype Perilla cultivars.  The  intersection  of  PA,  PL,  PK,  PT4
chemotypes with the other  3  chemotypes was indicated in  the Venn diagram;  (b,  d,  f)  H:  KEGG enrichment analysis  of  special  up-expressed
genes in PA, PL, PK, PT-type, respectively.
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and triterpene,  were  enriched in  corresponding chemical  type
(Fig. 2d−f; Supplemental Tables S6−S8). 

Biosynthetic pathway of the volatile oils in P.
frutescens

The MEP and MVA pathways are the basic terpene biosynthe-
sis  pathway.  The  69  genes  encoding  17  enzymes  in  MEP  and
MVA  pathways  were  identified  in  the  four  cultivars  (Fig.  3,
Supplemental Table S9). The MEP pathway starts with pyruvate,
which is  catalyzed by DXS to form 1-deoxy-D-xylulose-5-phos-

phate. Subsequently, it are continuous catalyzed by DXR, MCT,

CMK, MDS, HDS, HDR to form MEcPP. There two encoded genes

of  DXR,  MCT,  CMK,  MDS  in Perilla and  showed  upregulated

expression  in  PA-type.  In  the  MVA  pathway,  Acetyl-CoA  are

catalyzed  by  AACT  HMGS,  HMGR,  MVK,  PMK,  MPDC  IPP  and

DMAPP to IPP. Finally, the equilibrium between IPP and DMAPP

are  controlled  by  isopentenyl  diphosphate  isomerase  (IPPI)-

encoded genes and the further  reaction synthesize by geranyl

pyrophosphate synthase (GPPS)-encoded genes to produce the
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Fig. 3    Synthesis pathway and single thread synthesis pathway of P. frutescens isoprene. The MEP pathway:1-deoxy-D-xylulose 5-phosphate
synthase  (DXS);  1-deoxy-D-xylulose-5-phosphate  reductoisomerase  (DXR);  2-C-methyl-D-erythritol  4-phosphate  cytidylyltransferase  (MCT);  4-
diphosphocytidyl-2-C-methyl-D-erythritol kinase (CMK); 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase (MDS/MECPS); (E)-4-hydroxy-3-
methylbut-2-enyl-diphosphate synthase (HDS); 4-hydroxy-3-methylbut-2-en-1-yl diphosphate reductase (HDR); The MVA pathway: acetyl-CoA
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(LMS); isopiperitenol dehydrogenase (ID); pulegone reductase (PR); alcohol dehydrogenase (AD).
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GPP in plastids (Fig. 3, Supplemental Table S10).
Moreover,  the  biosynthesis  pathway of  PA and PT  has  been

reported  in Perilla and Mentha,  respectively[18−20,36].  Limonene
is  the  common  substrate  for  the  synthesis  of  PA  and  PT.  Two
genes  encoded  limonene  synthase  (LMS)  were  identified  in
Perilla.  For  the  biosynthesis  of  PA,  limonene  is  catalyzed  by
CYP71D18  and  CYP17A7146.  Two  genes  encoded  CYP71D18
were  found  and  up-expressed  in  PA-type,  while  four  paralogs
encoded CYP17A7146 were identified and one of them showed
upregulated expression in PA-type (Fig.  3, Supplemental Table
S11).  The  biosynthesis  of  PT  by  isopiperitenol  dehydrogenase
(ID)  and  pulegone  reductase  (PR)  were  identified  in Perilla,
which possess three and four encoded genes and shows differ-
ent  expression  in  four  cultivars,  respectively.  (Fig.  3, Supple-
mental  Table  S11.  Moreover,  geraniol  is  catalyzed  by  GL
synthase  (GLS).  Two  encode  genes  encoded  GLS  and  showed
upregulated  expression  in  PL.  GL  were  further  catalyzed  by
alcohol  dehydrogenase  (AD)  to  produce  citral,  which  is  the
precursor of PL and PK. Besides them, LL synthase (LLS) are also
the common monoterpene compounds in Perilla.  Two encode
genes  encoded  LLS  and  up-expressed  in  PA-type  were  identi-
fied in Perilla (Figure 3). 

Identification and characterization analysis of TPS
family

The  terpene  synthases  (TPS)  use  prenyl  pyrophosphates  as
the  substrate  to  synthesize  terpenes,  which  are  important  for
various chemotype formation in Perilla. In Perilla, totally 109 TPS
family  members  were  identified  using  HMM  search.  The  puta-
tive  PfTPS  proteins  ranged  from  230  to  817  amino  acids  in
length (Supplemental Table S12), with the exon number from 3
to  15  (Fig.  4b).  All  members  contained  N-terminal  (PF01397)
and C-terminal (PF03936) conserved domains of TPS genes (Fig.
4c),  and  RRX8W  domain  existed  in  the  N-terminal,  while  the
typical  DDXXD  conserved  domain,  as  well  as  the  typical  func-
tional domain RXR, existed in the C-terminal (Fig. 4d). The PfTPS
genes  displayed  obviously  different  expression  trend  in  the
four chemotypes (Fig. 4e).

PfTPS family members were divided into five major subfami-
lies,  including TPS-a (57  members), TPS-b (24  members), TPS-c
(12  members), TPS-e/f (8,  members),  and TPS-g (8  members)
(Fig. 4f). The number of TPS genes in Perilla (109) showed signif-
icant  expansion  compared  to  that  of Arabidopsis  thaliana[37],
Solanum  lycopersicum[38] and  other  lamiaceae  speices,  includ-
ing Mentha longifolia[39], Salvia miltiorrhiza[39], Ocimum tenuiflo-
rum[39] and Lavandula  angustifolialabiaceae[40].  Among the TPS
in Perilla,  the TPS-a and TPS-b accounts  for  the  57.29%  and
22.02%  proportion  as  main  expanded  sub-families  in Perilla.
(Supplemental Table S13). In order to explore the evolutionary
relationship  of TPS,  chromosome  mapping  and  collinear  block
analysis were carried out. The PfTPS genes unevenly distributed
on  the  18  chromosomes.  As  tetraploid  genome  of Perilla,  the
distribution  of  allele  genes  in  pairs  is  a  normal  phenomenon.
There  are  9 PfTPS genes  were  found  on  chromosome
Chr10/11/12/13,  5/8 PfTPS in Chr5/12,  and 4/6 PfTPS in Chr4/6,
which  showed  obvious  collinearity  in Perilla genome  (Fig.  4g).
Further  analysis  the  collinear  relation  between Perilla and S.
baicalensis. The collinear block in Perilla 11 chromosomes corre-
spond  with  7  chromosomes  in S.  baicalensis.  Universally,  the
TPS in Perilla showed  tandem  duplication,  containing  45  indi-
cating that there is obvious evolutionary relationship between

TPS of Perilla and S.  baicalensis.  However,  it  is  specially  that
SbChr09  has  obvious  chromosome  blocks  correspond  with
multiple chromosomes of Perilla (Fig. 4h). 

Co-expression analysis and verification of
functional TPS genes

To further  mine the  functional TPS genes  in  various  chemo-
types, the gene co-expression analysis was performed. Interest-
ingly, PfTPS18, PfTPS46, PfTPS47 and PfTPS49 as significant core
genes  were  identified.  In  order  to  present  the  significant  rela-
tionship  between  those TPSs,  the  co-expression  network  was
present  the  core TPS and  the  terpene  biosynthesis  genes  and
TFs, respectively. Firstly, PfTPS18 as core genes were significant
co-expression with 201 the terpene biosynthesis genes and TFs,
including GPPS, HMGS, HDR, AACT and ERF, MYB, NAC etc  (Fig.
5a). Similarly, the PfTPS46, PfTPS47 also were co-expression with
IPPI, HDR, GPPS, FPPS, HMGS and MPDC genes,  which is  impor-
tant rate-limiting genes in MVA/MEP biosynthesis pathway (Fig.
5b,c).  PfTPS49  were  co-expression  with  other  five PfTPSs,
including PfTPS15, PfTPS24, PfTPS38, PfTPS39 and PfTPS63,  and
associated with The GPPS, HMGS and other TFs (Fig. 5d).

Among  them,  12 PfTPS genes  and  2  MVA  pathway  genes
were  selected  for  expression  verification  using  qRT-PCR.  The
significant  coincident  gene  levels  were  identified  in  transcrip-
tome  sequencing  and  qRT-PCR  (r>0.9).  Those PfTPSs present
general transcription in four cultivars, but showed high expres-
sion  in  one  chemotype.  Such  as PfTPS18, PfTPS21, PfTPS76
showed  up-regulated  expression  in  PA-types,  especially
PfTPS49 present specific high expression level. PfTPS46, PfTPS47,
PfTPS62 showed  up-regulated  expression  in  PL-types.  The
expression levels of PfTPS87, PfTPS93 and PfTPS108 were simi-
lar in the four chemical types (Fig. 5e). 

Functional characterization of PfTPSs from
different chemotypes of Perilla

As PfTPS18, PfTPS46, PfTPS47 and PfTPS49 were  the  signifi-
cant  core  genes  according  to  the  co-expression  analysis,  we
selected these PfTPSs genes for further functional characteriza-
tion. Due to the expression levels of the above PfTPSs in differ-
ent  chemotypes  (Fig.  5e),  we  only  successfully  cloned  genes
with  predominant  expression  level  in  specific  chemotypes,
such  as  the  highest-expressed PfTPS18 and  specific-expressed
PfTPS49 in PA-type. Thus, the cloned PfTPSs genes were named
with  their  chemotypes  as  follows: PfTPS46-PL, PfTPS46-PK,
PfTPS18-PA, PfTPS47-PA and PfTPS49-PA, respectively. To predict
the  possible  catalytic  functions  of  these  PfTPSs,  phylogenic
analysis was performed.

To  identify  the  catalytic  functions  of  the  cloned PfTPSs,  we
ligated the CDSs of different TPS to the expression vectors and
transformed  them  into E.  coli to  characterize  the  functions  of
PfTPSs.  After  cultivated  for  3  days,  the  cultures  were  extracted
by  n-hexane  and  then  the  compounds  were  detected  by  GC-
MS  analysis.  Strain  with PfTPS46-PL produced  one  peak  in  GC-
MS  profile  compared  to  the  control  group  (strain  with  control
vector) (Fig. 6a). The product was determined to be linalool by
the  comparison  of  the  retention  time  in  total  ion  chro-
matograms  and  the  mass  spectrum  with  authentic  standard
linalool  (Fig.  6a and Supplemental  Fig.  S1a, S1b).  As  the signal
peptide (SP) region in the N terminal of PfTPS46-PL might affect
the  catalytic  activity  of  the  enzyme  inside E.  coli cells,  we
removed  this  region  in  the  CDS  of PfTPS46-PL  and  explore  its
function using the truncated variant. The strains harboring the
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truncated PfTPS46-PL brought the same linalool product in GC-
MS analysis (Fig. 6a and Supplemental Fig. S1c). Next, to further
confirm  the  catalytic  function  of  PfTPS46-PL,  we  attempted  to
purify  the PfTPS46-PL  protein  and  characterized  its  function
using  in vitro enzymatic  reaction.  We  failed  to  obtain  the
proteins  of PfTPS46-PL  due  to  its  insolubility.  Thus,  the  crude
proteins of PfTPS46-PL were used with geranyl  pyrophosphate
(GPP)  as  precursor.  Consistent  with  the  result  in  heterologous
expression system, the crude PfTPS46-PL protein also produced
the  sole  product  linalool  (Fig.  6b).  According, PfTPS46-PL  is  a
linalool synthase.

Next,  the  functions  of  other  candidate  monoterpene
synthases  were  characterized  using  the  same  strategy.  The
products  of PfTPS46-PK, PfTPS18-PA  and PfTPS49-PA  were  all
found to be linalool in heterologous expression system, as well
as  the  truncated  enzymes  (Fig.  6c; Supplemental  Figs  S2, S3).
The  crude  proteins  of PfTPS18-PA  were  selected  as  the  repre-
sentative for the in vitro enzymatic analysis. The crude proteins
also  produced  the  sole  product  linalool  (Fig.  6d and Supple-
mental  Fig.  S4).  The  results  indicated  that  these PfTPSs are

linalool synthases.
For  the  function  characterization  of PfTPS47-PA,  two  prod-

ucts  were  detected  in PfTPS47-PA  and  truncated PfTPS47-PA-
harboring  strains,  with  the  major  product  citronellol  and  the
minor  product  geraniol  (Fig.  6e; Supplemental  Figs  S5, S6).
However, the purified PfTPS47-PA protein catalyzed GPP to the
sole  product  geraniol  (Fig.  6f).  Here,  we  speculated  that  some
certain enzyme inside E.  coli cells  catalyzed geraniol,  the prod-
uct  of PfTPS47-PA,  to  citronellol.  The  results  showed  that
PfTPS47-PA was highly similar to geraniol synthase while other
PfTPSs were assigned to the linalool synthase category. Collec-
tively,  we  identified  four  linalool  synthases  and  one  geraniol
synthase in different Perilla chemotypes (Fig. 6g). 

Discussion

The  essential  oils  of Perilla are  well-recognized  aromatic
compound  and  possess  the  multiple  pharmacological  effect.
They  are  also  the  valuable  genetic  materials  of  monoterpene
biosynthesis  and regulation for  the  multiple  kinds  of  chemical
types.  In  the  study,  there  were  four  monoterpene  chemotype
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cultivars  were  selected.  The  important  monoterpene  biosyn-
thesis  pathway  and  important  candidate  TPSs  was  analyzed
and  verified  using  the  transcriptome  sequence  and  heterolo-
gous expression verification.

Terpene  biosynthesis  initiate  from  the  MVA  and  MEP  path-
way  in  plants[16].  Compared  with Arabidopsis,  the  number  of
encoded genes in the MVA and MEP pathways increased signif-
icantly  in Perilla.  The  gene  amplification  could  induce  gene
differentiation  and  affect  the  biosynthesis  of  terpenes[38].  The
genes  encoded HMGS,  PMK and MDPC in  MVA pathway,  DXR,
MCT,  CMK  and  MDS  in  MEP  pathway,  and  IPPI  and  FPPS  in
cross-flow  pathway  was  found  obvious  expansion  in  perilla.
Interestingly,  most  MEP  pathway  genes  were  up-regulated  in
the  PA-type,  which  implied  the  high-efficiency  biosynthesis  in
PA-type of perilla.

The  various  volatile  oil  components  as  chemical  type  of
perilla has been early research. In early stage, the genetic basis
for  monoterpene  chemical  type  in Perilla were  verified  using
the  artificial  hybrids  method.  The  chemical  composition  is
controlled by a series of multiple alleles (G1, G2, g) and an inde-
pendent  pair  of  alleles  (H,  h)[41].  In  our  research,  the109 TPS
members in Perilla genomes were identified. They also showed
obviously  gene  expansion.  In  especial,  the  expansion  of TPS-a
and TPS-b,  reached 57.29% and 22.02% proportion,  more than
other  majority  of  Lamiaceae  plants.  The  expression  and  func-
tion  of  TPSs  were  also  significantly  differentiated.  In  past  few
years,  more  geraniol  synthases,  linalool  synthases  and
limonene  synthases  have  been  acquired  in  perilla[18−20].  And
the  biosynthetic  pathway  of  piperitenon  in Mentha  longifolia
was  reported.  Based  on  genome-wide  identified,  we  also
explore  more  GS,  LLS,  LMS,  and  the  PA  and  PT  biosynthesis
encoded  genes.  The  expression  trend  of  them  are  in  accor-
dance with volatile oil  components.  Such as LMS and GS were
high  expression  in  PA-types  and  LLS  were  high  expression  in
PL-types. Based on co-expression analysis, the four TPSs as core
genes  in  various  chemical  type.  The  high  expression  in  PA-
types and PL-types were selected for function verification.

The  heterologous  functional  characterization  and  in vitro
enzymatic  reaction  are  two  important  methods  for  the  func-
tional  characterization  of  TPSs.  PfTPS18,  PfTPS46,  and  PfTPS49
were characterized as linalool synthases and PfTPS47 was char-
acterized  as  geraniol  synthases,  respectively.  Linalool  and
geraniol are general compounds. The core genes in co-expres-
sion  analysis  were  characterized  as  linalool  and  geraniol
synthases.  More  research  will  be  done  to  identified  more
chemotype  related  TPSs.  Moreover,  the  genotype  in  different
cultivar  of  a  certain  species  is  unique  and  widely  used  in  the
recognition  of  different  cultivars  in  many  plants  (Fig.  S7-
S8)[42,43].  For  example,  the  polymorphic  variant  of  one
sesquiterpene  synthase, VvTPS24,  in  grape  conferred  the  culti-
var  a  different  product  in  the  chemotype,  which  was  distin-
guishable from other  grape cultivars  (Fig.  S9)[44].  However,  the
identified isozymes in different Perilla chemotypes, such as the
linalool  synthases,  including PfTPS46-PL  and PfTPS46-PK,
showed no obvious variations in their amino acid sequences. As
the constitutions of compounds in different cultivars are deter-
mined by the enzymes and their expressions, we guess that the
diverse content of linalool in different cultivars is caused by the
regulatory element. 
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