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Abstract

Galanthamine (GAL), an isoquinoline alkaloid characterized by a unique tetracyclic skeleton bearing three chiral centers, is a potent and selective
acetylcholinesterase inhibitor with established therapeutic significance. Extensive pharmacological and clinical investigations over decades have
conclusively demonstrated its efficacy and favorable safety profile as an anti-Alzheimer's agent. While the yield of GAL obtained from plant sources remains
insufficient to meet current demands, recent advances in both biosynthesis and chemical synthesis offer promising avenues to overcome these supply
constraints. This review systematically summarizes and evaluates recent progress in three central domains: (1) elucidation and engineering of biosynthetic
pathways; (2) novel strategies for the total synthesis of GAL; and (3) pharmacological profiles of GAL and its structural analogues. By synthesizing knowledge
across these disciplines, this work aims to identify persistent gaps in current understanding and highlight emerging opportunities for future research.
Particular focus is given to the mechanistic insights into GAL biosynthesis, which may inform the design of high-efficiency microbial or enzymatic
production platforms capable of supporting the growing clinical demand for this valuable plant-derived therapeutic.
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Introduction

Galanthamine (GAL), an isoquinoline alkaloid characterized by a
structurally complex and synthetically challenging framework,
consists of an aromatic ring, a heterocyclic ring, a cyclohexenol ring,
and an azepine ring!'l. GAL is recognized as a well-tolerated and
effective symptomatic treatment for Alzheimer's disease (AD). It
improves cognitive function and daily living activities in patients
with mild to moderate AD, thereby occupying a unique and signifi-
cant position among anti-AD therapeutics. In recent years, the inten-
sifying aging population has led to a rapid increase in the number of
AD patients, posing a significant challenge to the supply of GAL®.
However, in a wider context, the yield of GAL and its analogues from
plant extraction is exceedingly low, approximately 0.05%-0.2% in
the bulbs of the Narcissus genus, which falls far short of market
demand. Moreover, due to decades of overharvesting of economi-
cally valuable species within the Narcissus genus and their low
survival rates, these plants now face serious threats in their natural
habitats. Therefore, it is imperative to develop alternative methods
and sustainable production systems for GAL.

Recent advancements in genomics, transcriptomics, and
metabolomics have provided new insights into the complex organi-
zation of biosynthetic pathways. The elucidation of pathways for
several well-characterized compounds, such as tripterygium glyco-
sides, oleanolic acid, and paclitaxel, has enabled the potential for
their heterologous synthesisBl. Significant progress has been
demonstrated in the heterologous biosynthesis of natural products,
with compounds including artemisinin (25 g/L), taxadiene (1 g/L),
and tanshinone diene (3.5 g/L) reaching gram-scale production
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titers in yeast!, GAL, valued for its pronounced efficacy against AD,
has stimulated substantial research interest in securing its sustain-
able and renewable supplyl. Through extensive research, substan-
tial progress has been made in the heterologous synthesis of GAL.
Recently, the biosynthetic pathway genes for GAL and its analogues
have been elucidated. Concurrently, significant advances have been
achieved in its total synthesis, with numerous distinct strategies
now establishedB. This review summarizes recent advances in the
biosynthesis, total synthesis, and pharmacological activities of GAL
and its analogs. It is our expectation that the present consolidation
of knowledge on GAL will act as a catalyst for transcending the
present limitations in the cognition of galantamine, and for guiding
research toward a seminal breakthrough.

Biosynthesis of GAL and its analogues

The biosynthetic pathway of GAL is generally divided into two
stages. Initially, the key intermediate norbelladine is formed via the
condensation of 3,4-dihydroxybenzaldehyde (3,4-DHBA) (derived
from L-phenylalanine), and tyramine (derived from L-tyrosine).
Subsequently, norbelladine undergoes enzymatic modifications to
yield various Amaryllidaceae alkaloids (AAs), including GAL!.,

Biosynthesis of GAL

The upstream biosynthetic pathway of GAL originates from the
precursor molecules L-phenylalanine and L-tyrosine, and involves
multiple key enzymatic stepsl’). The upstream biosynthetic pathway
generates not only norbelladine—an essential intermediate in GAL
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biosynthesis—but also branch-point metabolites that contribute to
the formation of other aromatic amino acid-derived compounds.
Consequently, the identification and functional characterization of
the enzymes in this pathway are crucial for elucidating the complete
GAL biosynthetic machinery and will facilitate the development of
heterologous production platforms (Fig. 1)@,

In the upstream biosynthetic pathway of GAL, tyrosine decar-
boxylase (TYDC) catalyzes the conversion of L-tyrosine to tyramine.
This reaction represents the first committed step in the biosynthesis
of quinoline alkaloids!®!. Furthermore, phenylalanine ammonia-lyase
(PAL) catalyzes the deamination of L-phenylalanine to cinnamic acid.
This reaction constitutes the first committed step in the phenyl-
propanoid pathway. Cinnamic acid is then hydroxylated at the
4-position by cinnamate 4-hydroxylase (C4H), a cytochrome P450
monooxygenase (CYP73A), to yield p-coumaric acid.1%'1], Subse-
quently, p-coumaric acid is activated to p-coumaroyl-CoA by
4-coumarate-CoA ligase (4CL). p-Coumaroyl-CoA then serves as the
substrate for hydroxycinnamoyl transferase (HCT), which catalyzes
its conversion to p-coumaroyl shikimatel'2, Subsequently, p-
coumaroyl shikimate is hydroxylated by p-coumaroyl ester
3"-hydroxylase (C3'H) to yield caffeoyl shikimate. This intermediate is
then hydrolyzed by caffeoyl shikimate esterase (CSE) to produce
caffeic acid'3'4, In a parallel branch of the pathway, 3,4-DHBA and
tyramine undergo a condensation reaction catalyzed by noroxomar-
itidine synthase (NBS), forming norcraugsodine. Finally, norcraugso-
dine is reduced by noroxomaritidine/norcraugsodine reductase (NR)
to yield the key intermediate, norbelladinel”],

Recent investigations have led to the identification of key
upstream genes involved in the GAL biosynthetic pathway. Conse-
quently, the amino acid sequences of several pivotal enzymes have
been cloned from diverse Amaryllidaceae species, and their catalytic
functions have been experimentally validated. For example, a 2018
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study by Li et al. identified two genes integral to GAL biosynthesis:
LrPAL3, which catalyzes the deamination of L-phenylalanine to yield
trans-cinnamic acid, and LrC4H, which catalyzes the regioselective
para-hydroxylation of trans-cinnamic acid to produce p-coumaric
acid''"l. In 2019, Wang et al. demonstrated that LaTYDC1 partici-
pates in the biosynthesis of GAL in Lycoris aurea and confirmed its
catalytic function in converting tyrosine to tyraminel. Recent
research by Zhang et al. has advanced the understanding of Amaryl-
lidaceae alkaloid biosynthesis. In a 2020 study, the group employed
transcriptomic and differential gene expression analyses to identify
seven genes implicated in the GAL biosynthetic pathway. In 2021, Li
et al. treated Lycoris longituba with exogenous methyl jasmonate
(MeJA) to investigate its effect on GAL biosynthesis. Integrated anal-
ysis of transcriptomic and metabolomic data revealed that MeJA
upregulates the GAL biosynthetic pathway!'>.. In 2024, Karimzade-
gan et al. utilized the Leucojum aestivum transcriptome to validate
four genes implicated in the GAL biosynthetic pathway, including
cinnamate 4-hydroxylase (C4H) and coumaroyl ester 3'-hydroxylase
(C3'H). Among these, LaeC4H and LaeC3'H exhibit high sequence
conservation with their orthologs previously characterized in other
speciesl’). Similarly, Singh et al. demonstrated that noroxomariti-
dine synthase (NpNBS) catalyzes the condensation of tyramine and
3,4-DHBA to form norbelladinel'®l. In 2022, Tousignant et al. identi-
fied a LaNBS protein through transcriptomic analysis of Leucojum
aestivum and validated its ability to to catalyze the condensation
between 3,4-dihydroxybenzaldehyde and tyramine to form
norcraugsodine. Concurrently, they determined through fluores-
cent localization that LaNBS resides in the cytoplasml'7l. Although
the condensation of tyramine and 3,4-DHBA, catalyzed by noroxo-
maritidine synthase (NBS), followed by noroxomaritidine/
norcraugsodine reductase (NR), yields norbelladine, the reaction
efficiency remains low. This limitation is primarily due to the
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incomplete elucidation of the catalytic mechanisms governing both
NBS and NR. In 2023, Majhi et al. demonstrated through subcellular
localization studies that both NBS and NR are localized in the cyto-
plasm and nucleus. Furthermore, co-expression experiments in
yeast revealed that NBS and NR exhibit mutual interactionl'sl,
Combined, NBS and NR catalyze the conversion of tyramine and 3,4-
DHBA into norcraugsodine, which is subsequently reduced to
produce norbaldine. This two-step enzymatic cascade results in a
reaction efficiency that is 12-fold higher than that achieved with
NpNBS alone.

The downstream metabolic pathway of galantamine initiates with
norbelladine. This intermediate is first methylated by S-adenosyl-L-
methionine-dependent 4'-O-methyltransferase (OMT) to yield
4'-O-methylnorbelladinel'l. Subsequently, 4-O-methylnorbelladine
undergoes oxidative coupling catalyzed by cytochrome P450
enzymes of the CYP96T subfamily. This reaction can proceed via
para-para' (p-p"), para-ortho' (p-0'), or ortho-para' (o-p") coupling
modes, generating distinct Amaryllidaceae alkaloid skeletons.
(Fig. 2)29. Among these, pathway p-o' yields demethylnarwedine, a
key precursor to GAL. This intermediate is primarily reduced to
narwedine by the concerted action of NMT and an aldehyde-ketone
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reductase (AKR). Alternatively, demethylnarwedine can be first
reduced by AKR to form norgalanthamine, which is subsequently
methylated by NMT to yield GALI©®.,

O-methyltransferases represent one of the most extensively stud-
ied classes of tailoring enzymes and play a crucial role in the
structural modification of diverse natural products. The enzyme
responsible for the 4'-O-methylation step in the GAL biosynthetic
pathway was characterized relatively early. In 2014, Kilgore et al.
cloned and functionally characterized NpN4OMT from Narcissus
pseudonarcissus. Subsequently, Li et al. characterized an ortholog,
LrOMT, from Lycoris radiatal'®2"1, Cytochromes P450 (P450s) catalyze
a diverse array of oxidative reactions and are pivotal in the biosyn-
thesis of numerous complex plant alkaloids. This enzyme superfam-
ily also mediates most of the multi-step transformations in the GAL
pathway?2, A critical reaction involves the oxidative coupling of the
key intermediate 4'-O-methylnorbelladine, which is catalyzed by
CYP96T subfamily enzymes. This catalysis proceeds via p-p', p-o', or
o-p' coupling modes to generate distinct AAs skeletons(623], In 2024,
Mehta et al. revealed the biosynthetic pathway of AAs through
developmental gradient analysis, demonstrating that NtCYP96T6
catalyzes the para-ortho' coupling of 4'-O-methylnorbelladine and
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identifies NENMTT and NtAKRT via co-expression analysis as the mini-
mal core gene set for GAL biosynthesis(®. Although the core biosyn-
thetic pathway of GAL has been largely deciphered, research in this
area remains active. For instance, Liu et al. conducted a comparative
functional analysis of four distinct CYP96T enzymes in Lycoris aurea,
elucidating their specific roles in mediating regioselective C-C
phenol coupling reactions2, Their findings indicated that
LauCYP96T catalyzes distinct regiospecific C-C phenol coupling reac-
tions. In the GAL biosynthetic pathway, cytochrome P450 enzymes
(P450s) are essential for these oxidative steps, and their activity is
strictly dependent on electrons supplied by a redox partner,
cytochrome P450 reductase (CPR). Supporting this, Wu et al. identi-
fied three functional CPR isoforms (LrCPRs) in Lycoris radiata and
confirmed their electron transfer capability in vitro. This discovery
provides critical genetic elements for reconstructing the GAL path-
way in a heterologous system(l. Following the identification of a
minimal gene set for GAL biosynthesis by Mehta et al., and subse-
quent work by Liyanage et al. revealed the existence of alternative
biosynthetic routesl624l, Their research identified a novel N-methyl-
transferase and demonstrated that the intermediate nornarwedine
can undergo divergent enzymatic processing: (i) reduction by aldo-
keto reductase 1 (AKRT) to yield norgalanthamine, followed by
methylation by coclaurine-N-methyltransferase (CNMT) to form GAL;
or (ii) methylation by the newly identified N-methyltransferase
(NMT) to form narwedine, followed by reduction by an AKR to yield
GAL. These findings provide significant new insights into the plastic-
ity of GAL biosynthesis. Furthermore, the plant Nicotiana benthami-
ana possesses a comprehensive cellular machinery—including essen-
tial cofactors, subcellular compartments, and chaperone systems—
that supports the efficient expression and proper folding of complex
plant-derived enzymes, making it a suitable heterologous host for
pathway reconstitution studies. In 2025, Lamichhane et al. success-
fully reconstituted the biosynthetic pathway of AAs in Nicotiana
benthamiana via transient expression, enabling the production of
multiple AAs, including GAL. Furthermore, they demonstrated that
two cytochrome P450 enzymes, LaCYP96T1 and LaCYP96T2, can
concurrently catalyze three distinct regio-selective C-C coupling
reactions[?°l. Despite extensive efforts, the complete heterologous
biosynthesis of GAL in yeast has not yet been achieved. These stud-
ies elucidated key enzymatic steps and refined the GAL biosynthetic
pathway, culminating in its successful heterologous reconstitution.
The multidisciplinary approaches developed herein, including meta-
bolic engineering and transient expression, provide a paradigm for
elucidating the biosynthesis of other high-value natural products,
such as specific alkaloids and lignans. Furthermore, this research
establishes a foundational framework for the sustainable biotechno-
logical production and industrial translation of these compounds.

Biosynthesis of GAL analogues

AAs represent a structurally diverse family of natural products,
which have garnered significant research interest due to their wide
range of pharmacological activities?6l, AAs are systematically classi-
fied according to their core biosynthetic precursors, characteristic
carbon skeletons, and distinct ring systems. Major structural types
within this family include norbelladine-, lycorine-, lycorenine-,
cherylline-, pretazettine-, galanthamine-, crinine-, and montanine-
type alkaloids (Fig. 2a)2%l, The biosynthetic pathways of AAs share a
common route up to the formation of the key intermediate norbel-
ladine. Downstream of norbelladine, the pathway diverges, and
distinct AAs, such as GAL, are produced through the action of
specific enzymes!2’. Among them, haemanthamine and lycorine
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have garnered significant research interest due to their pronounced
pharmacological activities. Consequently, the biosynthetic path-
ways of these compounds have been extensively investigated.
However, the biosynthetic pathways of many other AAs remain
largely uncharacterized and are primarily inferred from structural
analogies, thus presenting a significant avenue for future research.

In contrast to other AAs that derive from 4'-O-methylnorbelladine,
cherylline-type AAs, such as gigantelline, cherylline, and gigantelli-
nine (isolated from Crinum jagus), are biosynthesized from the
earlier pathway intermediate norbelladinel28l, Cherylline is a 4-
aryltetrahydroisoquinoline alkaloid. Its skeletal structure is proposed
to originate from the hydroxylation of the C11 position of norbella-
dine, followed by bisphenol cyclization. Owing to their structural
similarity, gigantelline and gigantellinine are hypothesized to be
derivatives of cherylline. Gigantelline may arise from cherylline via
O-methylation of the para-substituted phenolic hydroxyl group and
subsequent ortho-hydroxylation. Conversely, gigantellinine may be
synthesized from cherylline through methylation at the C7
positiont28l. However, the enzymatic machinery responsible for
these transformations remains uncharacterized (Fig. 3).

With the exception of the structurally distinct cherylline-type
alkaloids, all other AAs are classified as norbelladine-type
derivatives[2939, The carbon skeletons of pharmacologically signifi-
cant natural products such as GAL, haemanthamine, and lycorine
are each formed through distinct regiospecific C-C coupling reac-
tions of the common precursor, 4'-O-methylnorbelladinel'l. Such
C-C coupling reactions represent crucial transformations in special-
ized metabolism, notably in the biosynthesis of alkaloids, lignans,
and ligninB2. These reactions typically exhibit high regioselectivity
and stereoselectivity, properties frequently conferred by
cytochrome P450 enzymes. Notably, several CYP96T subfamily
enzymes mediating these coupling reactions in AAs have been char-
acterized. These P450s catalyze the conversion of the key intermedi-
ate 4'-O-methylnorbelladine into diverse AAs scaffolds via o-p', p-p',
or p-0' coupling modesi2023], The specific skeletal architecture is
determined by the mode of covalent bond formation between the
A-ring (C6-C1 unit) and the C-ring (C6-C2 unit). Consequently,
CYP96T enzymes function as pivotal gatekeepers, directing
metabolic flux from a common intermediate toward distinct struc-
tural classes of natural products.

Through the catalytic action of the key enzyme CYP96T, the key
intermediate diverges into distinct AAs. Specifically, p-o' coupling
yields nornarwedine, a precursor to GAL and lycoramine; o-p’
coupling produces norpluviine, which serves as a precursor to
lycorine and lycoreine; and p-p' coupling leads to noroxomaritidine,
a precursor to crinine and haemanthamine (Fig. 2b)(,

GAL, a signature Amaryllidaceae alkaloid, is characterized by a
distinctive diphenylfuran core containing two chiral centers. Its
established biosynthetic pathway originates from the precursor 4'-
O-methylnorbelladine. This precursor undergoes para-ortho' pheno-
lic coupling to form demethylnarwedine, which is subsequently
methylated by the enzyme N-methyltransferase (NMT) to yield
narwedine. The final biosynthetic step involves the NADPH-depen-
dent reduction of the ketone group in narwedine to a secondary
alcohol, resulting in the formation of GAL. An alternative proposed
pathway suggests that O-dimethylnorbelladine may serve as a
substrate. This compound can undergo para-ortho' coupling to form
narwedine directly, thereby bypassing the NMT-catalyzed methyla-
tion step. Based on structural analogies, narwedine is reductively
converted to GAL. Alternatively, narwedine may also be a metabolic
branch point, potentially undergoing N-demethylation to form
nornarwedine or serving as a precursor to other natural productsB3,

Kang et al. Medicinal Plant Biology 2026, 5: €004
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Nornarwedine undergoes reduction of its carboxyl group to a
primary alcohol, yielding norgalanthamine. This intermediate is then
a substrate for two divergent pathways: it can be N-methylated by
the enzyme N-methyltransferase (NMT) to form GAL, or it can be
converted to lycoramine. Subsequent modifications of GAL include
the O-demethylation of the methoxy group at the C9 position to a
hydroxyl group, forming sanguinine, and the N-methylation of the
group at the C3 position to form childanthinel28. However, this
biosynthetic pathway remains putative, as it has been inferred
primarily from structural analogies to known compounds, and
the key enzyme catalyzing its central reaction has not yet been
identified.

Ortho-para' coupling can vyield alkaloids possessing lycorine-
type and homolycorine-type frameworks AAs[2930, Kirby & Tiwaril34
utilized an isotope labeling technique to examine the biosynthetic
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conversion of 4'-O-methylnorbelladine into lycorine and lycorenine
in Amaryllidaceae plantsBsl. Their findings indicated that 4'-O-
methylnorbelladine is first converted to the intermediate noroxo-
pluviine, which is then reduced to norpluviinel2?, Subsequently, a
methylenedioxy bridge forms between the hydroxyl and methoxyl
moieties, yielding caranine. Lycorine is ultimately produced through
hydroxylation of caranine. In addition to lycorine-type alkaloids
containing a pyrrolophenanthridine core, ortho-para' coupling can
also give rise to pluviineB6371, Ortho-hydroxylation of pluviine yields
methylpseudolycorine, and methoxylation of this hydroxyl group
subsequently leads to galanthine. Incartine was first isolated from L.
incarnata by Renard-Nozaki et al.’%], who identified it as a key
biosynthetic intermediate in the formation of galanthine. Subse-
quent reduction at C11 of incarnatine introduces a double bond,
concomitant with cleavage of the oxygen-containing ring to afford
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narcissidine. The homolycorine-type framework is biosynthesized
via C6-hydroxylation of noroxopluviine, yielding hydroxynorplu-
viine, which subsequently serves as a biosynthetic precursor for
various downstream alkaloids!?! (Fig. 3).

The para-para’ phenolic coupling reaction gives rise to crinine-,
narciclasine-, tazettine-, and montanine-type AAs. These structural
classes constitute the most diverse category of AAs and have
substantially enriched the structural diversity of the AAs family.
Biosynthesis of these four AA types proceeds through the common
intermediate noroxomaritidinel®29, The crinine pathway, for
instance, involves (10bS,4aR)-noroxomaritidine and (10bS,4aR)-
normaritidine as key intermediates. This route requires the
formation of a methylenedioxy bridge while retaining a hydroxyl
group. Alternatively, noroxomaritidine can be converted to
haemanthamine, which possesses a methylenedioxy bridge.
Haemanthamine is then transformed via haemanthidine to
ultimately yield tazettinel2339, This finding leads to the question
of whether formation or reduction of the methylenedioxy
bridge occurs first. Using isotope labeling, Feinstein & Wildman
identified 11-hydroxyvittatine as a key intermediate in the biosyn-
thesis of montaninel*?, An alternative pathway diverges from
normaritidine to form vittatine, which is then hydroxylated to yield

Synthesis and pharmacology of galanthamine

11-hydroxyvittatine. This intermediate is subsequently converted
into pancracine, and finally to montanine3>41], It should be noted,
however, that the pathways described above have been inferred
primarily from chemical structural similarities, and the key enzymes
responsible for these catalytic steps remain to be identified (Fig. 3).

Significant progress was made in 2024 with the elucidation of the
core biosynthetic pathways for GAL and haemanthamine. Heterolo-
gous co-expression of NtCYP96T1, NtSDR2, NtCYP71DW1, Nt20GD,
and 40MN in tobacco led to the production of haemanthamine.
Similarly, co-expression of NtCYP96T6, NtNMT1, and NtAKR1 resulted
in the synthesis of GAL. These findings have elucidated key steps
and filled crucial gaps in the biosynthetic pathways of AAs®l,

Total synthesis of GAL

The molecular structure of GAL is characterized by a fused tetra-
cyclic ring system and three stereocenters, which collectively pose
significant challenges for its total synthesis. Key obstacles include:
(1) the construction and assembly of cyclohexanol, heterocyclic,
aromatic, and pyrazole rings into the tetracyclic framework; (2) the
establishment and stereoselective incorporation of quaternary

Fig. 4 Total synthesis of GAL.
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Author Key steps/catalysts Strategy Main steps Yield
Derek H. R. Barton Potassium ferricyanide (KsFe(CN)s) / LIAH4 1.40%
Tetsuji Kametani Potassium ferricyanide (KsFe(CN)s) 40%
Yasuyuki Kita [Bis(trifluoroacetoxy)iodo]benzene (PIFA) Oxidative (;'C 60%
henol I coupling/quat
Dikran Krikorian [Bis(trifluoroacetoxy)iodo]benzene (PIFA) phenol coupling ernary carbon 85%
Manabu Node [Bis(trifluoroacetoxy)iodo]benzene (PIFA) center 85%
. el
Kenji Koga Mn(acac)s (L) 81%
Thomas J. Wirth MnBusNCIOs /RVC anode/ platinum cathode clectrode 55%
reaction
Intramolecular Heck reactions 14 steps
Andreas Troster . Intramolecular
Intramolecular Heck reactions . 8 steps
Heck reactions
Catherine Guillou Intramolecular Heck reactions 7 steps
. Enyne ring-closing isomerization, Heck reaction, and N-alkylation 11 steps
Eric Brown
stereocontrol /
- Reductive Heck cyclization reaction/Ruthenium-catalyzed asymmetric 12 steps,
Qilin Zhou . .
hydrogenation reaction 20.1%
. Diels-Alder reaction/intramolecular Alderene reaction (IMAE) / Bischler-
Martin G. Banwell .. . 9 steps, /
Napierki reaction Thrshiom mtal
T Sl sy Optimization of the oxidative functionalization reaction of dienes with catalyzed 10 st:ps,
Co(acac),/O; e 5.5%
Rhodium-catalyzed intramolecular “cut-and-sew” carbonylation GAL
Yibin Xu reaction/lead-catalyzed regioselective C-H activation reaction introducing synthesis /
double bonds steps/yield
Zhang Yuna "Cut and sew" carbonylation reaction /Rh-catalyzed C-C activation 11 steps
tse s Palladium catalyzed cascade cyc!lzatlon / Late-Stage reorganization of the 7 steps
cyclized skeleton
Vishnumaya Bisai  Corey-Bakshi-Shibata reduction reaction/Johnson-Crescent rearrangement 1475;:5,5’
. 0
Teruhiko Ishikawa Michael-Michael-Klassen cascade reaction Rearrangement /
Sanpeng Fan Dual-function catalysis of tertiary amine-thiourea catalysts/ reaction /
Vet T Sequential seml-parallfel Karl rearrange/desllylfatlon/cygllzatlon reaction and 12%
modified Saegusa-Ito oxidation reaction
Philip Magnus Intramolecular alkylation reaction /
Others
Yaping Zhang SPD (spirocyclic pyrrolidine)-catalyzed asymmetric Robinson annulation /
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carbon centers within the polycyclic architecture; and (3) the
controlled introduction of chiral stereocenters!'l.

Significant progress has been made in the total synthesis of GAL
in recent years. Numerous studies have been devoted to the synthe-
sis of GAL and its analogues, leading to the development of dozens
of distinct synthesis routes. Representative strategies employed in
these efforts mainly involve transition metal-catalyzed reactions,
rearrangement reactions, and alkylation reactions!"! (Fig. 4).

In the biosynthesis pathway of GAL, ortho-para’ phenol coupling
constitutes a crucial step, which has attracted considerable research
interest in its mechanistic and synthesis aspects®?l. Barton was the
first to recognize that the biosynthesis of GAL analogs originates
from the key precursor 4'-O-methylnorbelladine. The pathway
proceeds via ortho-para' phenol coupling of this precursor to form
the core C-C bond, concurrently generating a quaternary carbon
center and a pyrazoline ring. Subsequent reduction of the ketone
group followed by N-methylation of the amino group affords
GAL3l, To construct the core skeleton, a biomimetic strategy was
employed, involving an intramolecular oxidative coupling reaction
of 4'-O-methylnorbelladine analogues using potassium ferricyanide
(KsFe(CN)g) as an oxidant. This key step efficiently generated the
pyrazole ring system, which serves as a pivotal synthesis intermedi-
ate for GAL.

Kametani et al. research group investigated synthesis routes to
GAL. They observed that substituting amines with lactams and
blocking the para position of phenols with bromides markedly
enhanced the yield of phenolic coupling products“. Later, Arisawa
et al. identified [bis(trifluoroacetoxy)iodo]benzene (PIFA) as an effec-
tive oxidant for promoting the diphenol coupling reaction!*s,
Subsequently, Krikorian et al. employed PIFA to convert amides into
tetrahydro derivatives and construct quaternary carbon centers,
achieving a yield of 60%!“¢. In 2001, Node et al. reported a method
for synthesizing GAL using symmetric N-formamide as the
substrate’], Following this, Koga's group accomplished the asym-
metric synthesis of (+)-GAL: using five equivalents of Mn(acac); in
acetonitrile, a quaternary carbon center was generated in 81% yield
and further elaborated into GALU'.. More recently, Xiong et al. devel-
oped a synthesis of (-)-GAL via an anodic aryl-aryl coupling
reaction*8l, This approach began with the synthesis of methyl D-
tyrosine and methyl gallate, followed by a six-step catalytic
sequence to afford a key intermediate. Subsequent electrolysis
using 0.1 MnBuy,NCIO, as the electrolyte, a reticulated vitreous
carbon (RVC) anode and a platinum cathode yielded the product
containing the quaternary carbon center. After optimization, a yield
of 55% was attained. The intramolecular Heck reaction is widely
employed for the construction of quaternary carbon centers. Trost
et al. reported a pioneering total synthesis of GAL that did not rely
on phenolic coupling reactionst .. They constructed the key chiral
quaternary center with high enantioselectivity via an intramolecular
Heck reaction followed by a palladium-catalyzed asymmetric allylic
alkylation (AAA), completing the total synthesis of GAL in
14 stepst39). However, this route was lengthy and afforded low over-
all yield. Subsequent optimization reduced the number of steps
to eight®®9l, Later, the Guillou group achieved a total synthesis of
GAL in seven steps using an intramolecular Heck reaction as a key
transformation®'l. Together, these three synthesis approaches
established a foundational framework for subsequent total synthe-
ses of GAL. In 2007, Satcharoen et al. reported the first stereoselec-
tive total synthesis of GALPZ., This route employed commercially
available isovanillin as the starting material and constructed the GAL
skeleton via Mitsunobu aryl etherification. Key steps included enyne
ring-closing metathesis, a Heck reaction, and N-alkylation to
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assemble the tetracyclic ring system in just 11 linear steps. Fifteen
years later, the same group reported a second-generation asymmet-
ric synthesis that achieved excellent stereocontrol in the production
of (-)-GALP3L, In 2012, Chen and colleagues completed a 12-step
total synthesis, affording GAL in 20.1% overall yield®¥. Their strat-
egy featured the construction of a benzylic quaternary carbon
center via a palladium-catalyzed intramolecular reductive Heck
cyclization and employed dynamic kinetic resolution (DKR) in a
ruthenium-catalyzed asymmetric hydrogenation. In 2015, Nugent et
al. developed a novel total synthesis of GALPS], Their approach
involved the preparation of the aromatic ring through a Diels-Alder
reaction, construction of the heterocycle and the associated quater-
nary center via a palladium-catalyzed intramolecular Alder-ene
(IMAE) reaction, and formation of the seven-membered ring using a
modified Bischler-Napieralski reaction, culminating in a six-step
synthesis of GALP®I,

Additionally, Endoma-Arias & Hudlicky developed a ten-step
chemoenzymatic synthesis of GAL starting from ethyl phenylacetate,
achieving an overall yield of 5.5%F7. A key advantage of this
approach is the streamlined conversion of diene to narwedine via an
improved oxidative functionalization reaction using Co(acac),/O,.
Xue & Dong proposed a novel strategy for the total synthesis of
both GAL and lycorinel>8l. This concise route features a Rh-catalyzed
intramolecular 'cut-and-sew' carbonylation to construct the tetra-
cyclic skeleton, followed by a Pb-catalyzed regioselective C-H acti-
vation to introduce the requisite double bonds.

Zhang et al. accomplished an 11-step total synthesis of GAL,
which incorporates a gram-scale Rh-catalyzed C-C activation via a
‘cut-and-sew' carbonylation, and a late-stage Pd-catalyzed dehydro-
genation through C-H activation®. This work represents the first
example in natural product synthesis where transition metal-
catalyzed C-C activation and C-H activation are strategically inte-
grated. Chang et al. reported an efficient formal total synthesis
involving a two-stage process: an early-stage palladium-catalyzed
carbonylative cascade cyclization and a DDQ-mediated regioselec-
tive intramolecular oxidative lactamization to assemble the tetra-
cyclic skeleton; and a late-stage BF;-OEt,-promoted selective
rearrangement of the bridged system to afford both GAL and
lycorinel®®. Majumder et al. achieved the asymmetric total synthesis
of the dihydrobenzofuran core of GALPY, Their approach utilizes a
novel catalytic enantioselective Corey-Bakshi-Shibata (CBS) reduc-
tion to convert a-bromoketones into chiral secondary alcohols,
followed by a Johnson-Claisen rearrangement to transfer the stere-
ochemistry to an all-carbon quaternary center, yielding GAL in
14 steps. with 7.3% overall yield. Ishikawa et al. developed an effi-
cient route to GAL intermediate 4,4-disubstituted cyclohexane-1,3-
diones via a Michael-Michael-Claisen cascade reactionl®'l, This
method employs aromatic or aliphatic substituents to construct the
quaternary carbon center through classical enolate alkylation. Chen
et al. accomplished the asymmetric synthesis of Amaryllidaceae
alkaloids via a Michael addition between a-cyano ketones and acry-
lates catalyzed by a bifunctional tertiary amine-thiourea catalyst(>9.
The Tu teams synthesized GAL in 12% overall yield by introducing a
specific allylic alcohol architecture and core framework through
a sequential semipinacol rearrangement/desilylation/cyclization
process and a modified Saegusa-Ito oxidation!3% 62, Magnus et al.
generated GAL via intramolecular alkylation of phenolic analogs(®3l.
Jiang et al. achieved the synthesis of GAL through an SPD (spiro-
cyclic pyrrolidine)-catalyzed asymmetric Robinson annulation, high-
lighting the utility of SPD catalysts in constructing quaternary
carbon centers and offering an alternative strategy for synthesizing
other GAL-type alkaloids[®4l.
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Pharmacological activities of GAL and
its analogues

As a unique member of the Amaryllidaceae alkaloids, GAL exhibits
diverse pharmacological activities, such as antioxidant, antibacterial,
and immunomodulatory effects. It also demonstrates considerable
advantages in the treatment of AD, including well-established
therapeutic efficacy, mild side effects, and a more potent central
cholinesterase inhibitory activity compared to other AD
medications!l. Consequently, GAL has emerged as one of the first-
line therapeutic agents for ADI®5], Additionally, GAL is employed in
the treatment of various conditions, including angle-closure glau-
coma, myasthenia gravis, post-polio syndrome, peritonitis, and post-
operative intestinal muscle paralysis. It also acts as an inhibitor of
tumor necrosis factor-a (TNF-) releasel66l,

The development of GAL analogues into clinically applicable ther-
apeutics has progressed more slowly than that of GAL itself.
However, the increasing burden of human diseases, coupled with
the limited availability of effective therapies, has prompted the
reevaluation of several previously overlooked natural compounds as
promising sources of drug candidates(®l, This review focuses on the
pharmacological activities of GAL and its analogs to facilitate the
development of novel clinical therapies. Herein, recent advances in
the pharmacological activities of galantamine and its analogs are
reviewed. The goal is to pinpoint compounds with significant poten-
tial and to offer a valuable resource for future studies (Fig. 5).

Anti-Alzheimer effect

The molecular mechanisms through which GAL exerts its
anti-Alzheimer's disease effects are multifaceted. Primary mecha-
nisms include: enhancing acetylcholine (ACh) activity, inhibiting
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acetylcholinesterase (AChE), allosterically modulating nicotinic
acetylcholine receptors (nAChRs), regulating neurotransmitter
release, reducing f-amyloid (Af) deposition, and conferring neuro-
protection via anti-apoptotic effectsl®’-69, These mechanisms
counter three hallmark pathological features observed in
Alzheimer's disease brains: amyloid plaques, neurofibrillary tangles,
and the loss of cholinergic neurons. GAL is a specific, competitive,
and reversible cholinesterase inhibitor. It binds competitively to
acetylcholinesterase (AChE) in the synaptic cleft, thereby effectively
blocking acetylcholine (ACh) degradation?, In addition to inhibit-
ing AChE, GAL acts as an allosteric potentiating ligand of nicotinic
acetylcholine receptors (nAChRs), modulating their activity. By
preventing ACh hydrolysis, GAL increases the concentration of ACh
in the synaptic cleft. Furthermore, GAL binds to allosteric sites on
both presynaptic and postsynaptic nAChRs of cholinergic neurons,
enhancing nicotinic neurotransmission. While binding of GAL alone
to presynaptic nAChRs produces limited effects’"], co-binding with
ACh significantly amplifies the nAChR response. Thus, GAL enhances
cholinergic signaling by increasing the probability of nAChR chan-
nel opening and reducing receptor desensitization®’l. Moreover,
through competitive inhibition of AChE, the primary enzyme
responsible for ACh breakdown, GAL prolongs the availability of
ACh in cholinergic synapses72. This inhibition slows ACh meta-
bolism, resulting in elevated synaptic ACh levels.

S-Amyloid (Af) deposition and neurofibrillary tangles—resulting
from aberrant hyperphosphorylation of microtubule-associated tau
protein—constitute key pathological hallmarks of AD 7374, GAL
mitigates AS-induced neuronal damage by inhibiting the activation
of the calpain-l/calcineurin pathway and the phosphorylation of
the pro-apoptotic protein Bad. Furthermore, GAL may confer
neuroprotection against Af,-induced injury via modulation of
calpain-calcineurin signaling and Bad phosphorylation, a process
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potentially mediated by a7-nicotinic acetylcholine receptors
(a7 nAChRs). Additionally, GAL ameliorates cognitive function
through suppression of TNF-a and IL-6 expression, reduction of AS
deposition, and inhibition of astrocyte activation’- 731, Collectively,
these mechanisms support the role of GAL as a neuroprotective
agent counteracting Aj-related pathology.

Hyperphosphorylation of microtubule-associated protein tau,
which leads to the formation of neurofibrillary tangles, represents
another key pathological hallmark of AD. Studies indicate that
microtubule affinity-regulating kinase 4 (MARK4) plays a critical role
in this process. Specifically, MARK4 phosphorylates tau at the Ser262
residue, prompting its dissociation from microtubules and facilitat-
ing further phosphorylation by other kinases, thereby accelerating
AD pathogenesis. GAL inhibits MARK4 activity, thus attenuating
aberrant tau hyperphosphorylation, and slowing the progression of
Alzheimer's pathology!7¢l.

Pharmacological effects of derivatives

AAs, a class of isoquinoline alkaloids, are widely recognized for
their therapeutic potential. In addition to their putative endoge-
nous role in plant defense against pathogens, AAs exhibit diverse
biological activities relevant to human healthi26l. As a large family
of natural compounds, AAs demonstrate broad pharmacological
properties, including antiviral, antibacterial, and neuroprotective
effects. Recently, numerous novel AAs with potent pharmacological
activities have been identified!(0],

Lycorine, a biologically active isoquinoline alkaloid isolated from
the bulbs of Lycoris radiata, has been reported to exhibit non-
nucleoside RNA-dependent RNA polymerase (RdRp) inhibitory
activity’’, It demonstrated potent anti-proliferative effects against
HL-60 myeloid leukemia cells (IC5, = 0.6 uM)78. In gastric cancer,
lycorine inhibits cell proliferation and resensitizes drug-resistant
cells. Mechanistically, it upregulates the ubiquitin E3 ligase FBXW?7
and downregulates the anti-apoptotic protein MCL1, thereby reduc-
ing MCL1 protein stability. This leads to S-phase cell cycle arrest and
apoptosis in gastric cancer cellsl’?, The anti-tumor efficacy of
lycorine is significantly enhanced when combined with the BCL2
inhibitor HA14-1. Furthermore, lycorine demonstrates notable
multidrug resistance (MDR) reversal activity in human ovarian
adenocarcinoma cells (HOC)%, Beyond its oncological applications,
lycorine exhibits potent, non-nucleoside direct antiviral effects
against emerging coronaviruses by specifically inhibiting viral RdRp.
It also possesses broad pharmacological activities, including antibac-
terial, anti-inflammatory, and antitumor effects. Its neuroprotective
capacity, comparable to that of GAL, enables it to counter AS-
induced damage. Notably, lycorine exhibits a stronger binding affin-
ity to AB,, than GAL, effectively interfering with AfS,, aggregation.
This provides a mechanistic explanation for its superior efficacy over
GAL in protecting the brain from Af-induced neurotoxicity8'l.

Lycorine, 11-hydroxyvittatine, haemanthamine, and hippeastrine
have been reported to exhibit anti-influenza A virus activity by
inhibiting the nuclear export of viral ribonucleoprotein (RNP)
complexes following viral entry[82831. Notably, lycorine, and haeman-
thamine demonstrate significant inhibitory activity against human
immunodeficiency virus (HIV)B4, The newly identified styrene alka-
loid 2 [(+)-1-hydroxy-angustamine] exhibits potent cytotoxicity
against meningioma, astrocytoma, and CHG-5 cell lines. Further-
more, lycorine and its analogues show therapeutic efficacy against
both chemotherapy-sensitive and drug-resistant variants of human
ovarian adenocarcinoma cellsi®' 851, Hippeastrine hydrobromide
represents a highly promising therapeutic candidate for Zika virus
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(ZIKV) infection, as it potently suppresses ZIKV replication and
eliminates the virus from infected human pluripotent stem cell-
derived cortical neural progenitor cells (RNPCs)!86],

Dihydro-narciclasine analogues and trans-dihydrolycoricidine
inhibit the replication of herpes simplex virus type 1 (HSV-1). Among
these, the dihydro-narciclasine analogue featuring a single C7-OH
substitution on ring A demonstrates particularly potent activity.
Both compounds activate the eukaryotic translation initiation factor
2 signaling pathway, the integrated stress response (ISR) and its
associated networks, as well as autophagy and sirtuin-1 signaling
pathways. 7-Deoxy-trans-dihydrocucurbitacin reduces f-amyloid
(Ap) production by lowering amyloid precursor protein (APP) levels
and delaying APP maturation. Montanine exhibits cytotoxic proper-
ties and induces apoptosis in MOLT-4 cells through caspase activa-
tion, mitochondrial depolarization, and Annexin V/Pl double
staining. As montanine concentration increases, protein levels of
phosphorylated Chk1 (Ser345) are upregulated in these cells87),

Bufanidine, bufamide, and bisindole-type alkaloids display affin-
ity for the serotonin transporter, suggesting potential applications
for treating depression and anxiety disorders(®8], Certain crinine-type
alkaloids exert antitumor effects primarily by inhibiting tumor
proliferation and inducing apoptosis®. Specifically, buphanidine
inhibits glioblastoma cell proliferation by inducing cellular
quiescence, indicating that crinine-type alkaloids may represent
potential therapeutics for apoptosis-resistant cancers such as
glioblastomal®?l. Haemanthamine and lycorine exhibit potent acti-
vity against both trypomastigote and amastigote forms of T. cruzi, as
well as against amastigotes and promastigotes of L. infantum!84,
7-Methoxy-O-methyllycorine shows promising activity against T.
cruzi trypomastigotes and L. infantum amastigotes.

A new homolycorine-type alkaloid, designated 2a-methoxy-6-O-
ethyloduline, was isolated from Lycoris radiata (Amaryllidaceae
family) and was found to exhibit weak antiviral activity against
influenza A viruses®92, Separately, pretazettine alkaloids, charac-
terized by a benzopyrano[3,4-clindole ring system, demonstrate
therapeutic efficacy against subcutaneously implanted Lewis lung
carcinoma (LLC), a representative tumor model. Pretazettine inhibits
lung metastasis and prolongs survival in this model®'.. Jonquailine,
a novel pretazettine-type alkaloid, exhibits significant antiprolifera-
tive effects against glioblastoma, melanoma, uterine sarcoma, and
non-small cell lung cancer (NSCLC) cell lines. Notably, it acts syner-
gistically with paclitaxel to inhibit the proliferation of drug-resistant
lung cancer cells. Furthermore, its anticancer activity, which is
substantial and a major focus of current research, is also associated
with its known inhibition of viral reverse transcriptases and anti-
leukemic properties. A critical structural determinant for this activity
is C-8 hydroxylation, which appears to be independent of lactone
stereochemistry and acetalization status[®3l,

Narciclasine-type alkaloids, which feature a lycoricidine ring
system, can reverse damage to renal tubular epithelial cells by
inhibiting NF-«B signaling pathway activation, thereby suppressing
fibroblast proliferation and activation®4%5, Narciclasine, 7-deoxynar-
ciclasine, and narciclasine-4-O-f-D-xylopyranoside, isolated from
Hymenocallis littoralis, exhibit antiparasitic activity®®. Narciclasine
demonstrates potent anti-proliferative effects in various cancer cells
by inducing G2/M phase cell cycle arrest and apoptosis. Further-
more, it has shown antioxidant and anti-inflammatory properties in
multiple disease models!®7). Mechanistic studies indicate that narci-
clasine maintains cell survival in a dose-dependent manner by
inhibiting lipid peroxidation (as assessed by BODIPY™ 581/591 C11
staining) and preserving intracellular glutathione levels. Addition-
ally, narciclasine ameliorates mitochondrial dysfunction by
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inhibiting ferroptosis through BNIP3-mediated mitophagy and
maintaining mitochondrial integrity, thereby attenuating sepsis-
induced myocardial dysfunction. These findings underscore the
potential therapeutic value of narciclasine for the treatment of
sepsis-associated cardiac injury!®,

In recent years, growing interest in Amaryllidaceae alkaloids has
led to the identification of an expanding array of compounds within
this family. The continued isolation of novel alkaloids and the char-
acterization of their broad pharmacological activities now under-
score the need to consolidate existing research findings to establish
a robust foundation for future clinical translation.

Conclusions and perspectives

GAL is a first-line pharmacological treatment for AD, valued for its
favorable efficacy and safety profile. Its therapeutic mechanisms are
multifactorial: (i) it functions as a reversible and competitive acetyl-
cholinesterase inhibitor, thereby increasing the concentration of
acetylcholine in the brain; (ii) it allosterically modulates nicotinic
acetylcholine receptors to enhance neurotransmitter release; (iii) it
demonstrates neuroprotective and anti-apoptotic properties; and
(iv) it inhibits the aggregation of amyloid-f peptides. GAL demon-
strates high activity in brain regions with significant cholinergic
deficits, such as the postsynaptic region. Its favorable pharmacoki-
netic profile, including low protein binding and lack of interactions
with food or concomitant medications, contributes to its excellent
tolerability and low incidence of adverse effects. Approved by the
US Food and Drug Administration (FDA) in February 2003 for mild-
to-moderate AD, galantamine represents an important therapeutic
option for the management of this condition. Originally, GAL was
extracted primarily from Amaryllidaceae plants, including Narcissus
spp. and Leucojum aestivum (summer snowflake). However, its
isolation from natural sources is inefficient due to exceedingly low
abundance (typically ~0.1% by dry weight). Consequently, plant
extraction is insufficient to meet substantial market demand. This
limitation has motivated researchers worldwide to develop in vitro
synthesis routes to GAL, aiming to establish efficient and scalable
production methods. The evolution of GAL total synthesis strategies
reflects progress in modern organic synthesis. Reviewing these
efforts provides a valuable platform to examine the interplay
between target-oriented synthesis and methodological innovation.
GAL will likely continue to serve as a testing ground and a source of
inspiration for developing novel synthesis strategies.

The total synthesis of GAL has been successfully established in
vitro. Following decades of research, numerous synthesis routes to
GAL and its analogs have been developed. Furthermore, the biosyn-
thesis pathway of GAL has been elucidated, facilitating its heterolo-
gous production. This review summarizes recent advances in both
the chemical synthesis and biosynthesis of GAL. Finally, the current
challenges in GAL research are discussed, and potential avenues for
future investigation suggested.
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