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Abstract
Galanthamine  (GAL),  an  isoquinoline  alkaloid  characterized  by  a  unique  tetracyclic  skeleton  bearing  three  chiral  centers,  is  a  potent  and  selective

acetylcholinesterase  inhibitor  with  established  therapeutic  significance.  Extensive  pharmacological  and  clinical  investigations  over  decades  have

conclusively demonstrated its efficacy and favorable safety profile as an anti-Alzheimer's agent. While the yield of GAL obtained from plant sources remains

insufficient  to  meet  current  demands,  recent  advances  in  both  biosynthesis  and  chemical  synthesis  offer  promising  avenues  to  overcome  these  supply

constraints. This review systematically summarizes and evaluates recent progress in three central domains: (1) elucidation and engineering of biosynthetic

pathways; (2) novel strategies for the total synthesis of GAL; and (3) pharmacological profiles of GAL and its structural analogues. By synthesizing knowledge

across  these  disciplines,  this  work  aims  to  identify  persistent  gaps  in  current  understanding  and  highlight  emerging  opportunities  for  future  research.

Particular  focus  is  given  to  the  mechanistic  insights  into  GAL  biosynthesis,  which  may  inform  the  design  of  high-efficiency  microbial  or  enzymatic

production platforms capable of supporting the growing clinical demand for this valuable plant-derived therapeutic.
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 Introduction
Galanthamine  (GAL),  an  isoquinoline  alkaloid  characterized  by  a

structurally  complex  and  synthetically  challenging  framework,
consists of an aromatic ring, a heterocyclic ring, a cyclohexenol ring,
and  an  azepine  ring[1].  GAL  is  recognized  as  a  well-tolerated  and
effective  symptomatic  treatment  for  Alzheimer's  disease  (AD).  It
improves  cognitive  function  and  daily  living  activities  in  patients
with mild to moderate AD, thereby occupying a unique and signifi-
cant position among anti-AD therapeutics. In recent years, the inten-
sifying aging population has led to a rapid increase in the number of
AD  patients,  posing  a  significant  challenge  to  the  supply  of  GAL[2].
However, in a wider context, the yield of GAL and its analogues from
plant  extraction  is  exceedingly  low,  approximately  0.05%–0.2%  in
the  bulbs  of  the Narcissus  genus,  which  falls  far  short  of  market
demand.  Moreover,  due  to  decades  of  overharvesting  of  economi-
cally  valuable  species  within  the Narcissus  genus and  their  low
survival  rates,  these plants  now face serious threats  in their  natural
habitats.  Therefore,  it  is  imperative to develop alternative methods
and sustainable production systems for GAL.

Recent  advancements  in  genomics,  transcriptomics,  and
metabolomics have provided new insights into the complex organi-
zation  of  biosynthetic  pathways.  The  elucidation  of  pathways  for
several  well-characterized  compounds,  such  as  tripterygium  glyco-
sides,  oleanolic  acid,  and  paclitaxel,  has  enabled  the  potential  for
their  heterologous  synthesis[3].  Significant  progress  has  been
demonstrated in the heterologous biosynthesis of natural products,
with  compounds  including  artemisinin  (25  g/L),  taxadiene  (1  g/L),
and  tanshinone  diene  (3.5  g/L)  reaching  gram-scale  production

titers in yeast[4]. GAL, valued for its pronounced efficacy against AD,
has  stimulated  substantial  research  interest  in  securing  its  sustain-
able and renewable supply[5].  Through extensive research, substan-
tial  progress  has  been  made  in  the  heterologous  synthesis  of  GAL.
Recently, the biosynthetic pathway genes for GAL and its analogues
have been elucidated. Concurrently, significant advances have been
achieved  in  its  total  synthesis,  with  numerous  distinct  strategies
now  established[3].  This  review  summarizes  recent  advances  in  the
biosynthesis,  total  synthesis,  and  pharmacological  activities  of  GAL
and its analogs. It  is our expectation that the present consolidation
of  knowledge  on  GAL  will  act  as  a  catalyst  for  transcending  the
present limitations in the cognition of galantamine, and for guiding
research toward a seminal breakthrough.

 Biosynthesis of GAL and its analogues
The  biosynthetic  pathway  of  GAL  is  generally  divided  into  two

stages. Initially, the key intermediate norbelladine is formed via the
condensation  of  3,4-dihydroxybenzaldehyde  (3,4-DHBA)  (derived
from  L-phenylalanine),  and  tyramine  (derived  from  L-tyrosine).
Subsequently,  norbelladine  undergoes  enzymatic  modifications  to
yield various Amaryllidaceae alkaloids (AAs), including GAL[6].

 Biosynthesis of GAL
The  upstream  biosynthetic  pathway  of  GAL  originates  from  the

precursor  molecules  L-phenylalanine  and  L-tyrosine,  and  involves
multiple key enzymatic steps[7]. The upstream biosynthetic pathway
generates  not  only  norbelladine—an essential  intermediate  in  GAL
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biosynthesis—but also branch-point metabolites that contribute to
the  formation  of  other  aromatic  amino  acid-derived  compounds.
Consequently,  the  identification  and  functional  characterization  of
the enzymes in this pathway are crucial for elucidating the complete
GAL  biosynthetic  machinery  and  will  facilitate  the  development  of
heterologous production platforms (Fig. 1)[8].

In  the  upstream  biosynthetic  pathway  of  GAL,  tyrosine  decar-
boxylase (TYDC)  catalyzes  the conversion of  L-tyrosine to tyramine.
This reaction represents the first committed step in the biosynthesis
of quinoline alkaloids[9]. Furthermore, phenylalanine ammonia-lyase
(PAL) catalyzes the deamination of L-phenylalanine to cinnamic acid.
This  reaction  constitutes  the  first  committed  step  in  the  phenyl-
propanoid  pathway.  Cinnamic  acid  is  then  hydroxylated  at  the
4-position  by  cinnamate  4-hydroxylase  (C4H),  a  cytochrome  P450
monooxygenase  (CYP73A),  to  yield p-coumaric  acid[7,10,11].  Subse-
quently, p-coumaric  acid  is  activated  to p-coumaroyl-CoA  by
4-coumarate-CoA ligase (4CL). p-Coumaroyl-CoA then serves as  the
substrate  for  hydroxycinnamoyl  transferase  (HCT),  which  catalyzes
its  conversion  to p-coumaroyl  shikimate[12].  Subsequently, p-
coumaroyl  shikimate  is  hydroxylated  by p-coumaroyl  ester
3'-hydroxylase (C3'H) to yield caffeoyl shikimate. This intermediate is
then  hydrolyzed  by  caffeoyl  shikimate  esterase  (CSE)  to  produce
caffeic acid[13,14].  In a parallel branch of the pathway, 3,4-DHBA and
tyramine undergo a condensation reaction catalyzed by noroxomar-
itidine synthase (NBS), forming norcraugsodine. Finally, norcraugso-
dine is reduced by noroxomaritidine/norcraugsodine reductase (NR)
to yield the key intermediate, norbelladine[7].

Recent  investigations  have  led  to  the  identification  of  key
upstream  genes  involved  in  the  GAL  biosynthetic  pathway.  Conse-
quently, the amino acid sequences of several pivotal enzymes have
been cloned from diverse Amaryllidaceae species, and their catalytic
functions have been experimentally validated.  For example,  a 2018

study by Li  et  al.  identified two genes integral  to GAL biosynthesis:
LrPAL3, which catalyzes the deamination of L-phenylalanine to yield
trans-cinnamic  acid,  and  LrC4H,  which  catalyzes  the  regioselective
para-hydroxylation  of  trans-cinnamic  acid  to  produce p-coumaric
acid[11].  In  2019,  Wang  et  al.  demonstrated  that LaTYDC1 partici-
pates  in  the  biosynthesis  of  GAL  in Lycoris  aurea and  confirmed  its
catalytic  function  in  converting  tyrosine  to  tyramine[9].  Recent
research by Zhang et al. has advanced the understanding of Amaryl-
lidaceae alkaloid biosynthesis. In a 2020 study, the group employed
transcriptomic and differential  gene expression analyses to identify
seven genes implicated in the GAL biosynthetic pathway. In 2021, Li
et  al.  treated Lycoris  longituba with  exogenous  methyl  jasmonate
(MeJA) to investigate its effect on GAL biosynthesis. Integrated anal-
ysis  of  transcriptomic  and  metabolomic  data  revealed  that  MeJA
upregulates  the  GAL  biosynthetic  pathway[15].  In  2024,  Karimzade-
gan et al.  utilized the Leucojum aestivum transcriptome to validate
four  genes  implicated  in  the  GAL  biosynthetic  pathway,  including
cinnamate 4-hydroxylase (C4H)  and coumaroyl  ester  3'-hydroxylase
(C3'H).  Among  these, LaeC4H and LaeC3'H exhibit  high  sequence
conservation with  their  orthologs  previously  characterized in  other
species[7].  Similarly,  Singh  et  al.  demonstrated  that  noroxomariti-
dine  synthase  (NpNBS)  catalyzes  the  condensation of  tyramine and
3,4-DHBA to form norbelladine[16].  In 2022,  Tousignant et  al.  identi-
fied  a  LaNBS  protein  through  transcriptomic  analysis  of Leucojum
aestivum and  validated  its  ability  to  to  catalyze  the  condensation
between  3,4-dihydroxybenzaldehyde  and  tyramine  to  form
norcraugsodine.  Concurrently,  they  determined  through  fluores-
cent  localization  that  LaNBS  resides  in  the  cytoplasm[17].  Although
the  condensation  of  tyramine  and  3,4-DHBA,  catalyzed  by  noroxo-
maritidine  synthase  (NBS),  followed  by  noroxomaritidine/
norcraugsodine  reductase  (NR),  yields  norbelladine,  the  reaction
efficiency  remains  low.  This  limitation  is  primarily  due  to  the

 

Fig. 1  Biosynthesis of GAL.
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incomplete elucidation of the catalytic mechanisms governing both
NBS and NR.  In 2023, Majhi et al.  demonstrated through subcellular
localization studies that both NBS and NR are localized in the cyto-
plasm  and  nucleus.  Furthermore,  co-expression  experiments  in
yeast  revealed  that  NBS  and NR exhibit  mutual  interaction[18].
Combined, NBS and NR catalyze the conversion of tyramine and 3,4-
DHBA  into  norcraugsodine,  which  is  subsequently  reduced  to
produce  norbaldine.  This  two-step  enzymatic  cascade  results  in  a
reaction  efficiency  that  is  12-fold  higher  than  that  achieved  with
NpNBS alone.

The downstream metabolic pathway of galantamine initiates with
norbelladine.  This  intermediate  is  first  methylated by S-adenosyl-L-
methionine-dependent  4'-O-methyltransferase  (OMT)  to  yield
4'-O-methylnorbelladine[19].  Subsequently,  4'-O-methylnorbelladine
undergoes  oxidative  coupling  catalyzed  by  cytochrome  P450
enzymes  of  the CYP96T subfamily.  This  reaction  can  proceed  via
para-para'  (p-p'), para-ortho'  (p-o'),  or ortho-para'  (o-p')  coupling
modes,  generating  distinct  Amaryllidaceae  alkaloid  skeletons.
(Fig. 2)[20].  Among these, pathway p-o' yields demethylnarwedine, a
key  precursor  to  GAL.  This  intermediate  is  primarily  reduced  to
narwedine by the concerted action of NMT and an aldehyde-ketone

reductase  (AKR).  Alternatively,  demethylnarwedine  can  be  first
reduced  by AKR to  form  norgalanthamine,  which  is  subsequently
methylated by NMT to yield GAL[6].

O-methyltransferases represent one of the most extensively stud-
ied  classes  of  tailoring  enzymes  and  play  a  crucial  role  in  the
structural  modification  of  diverse  natural  products.  The  enzyme
responsible  for  the  4'-O-methylation  step  in  the  GAL  biosynthetic
pathway  was  characterized  relatively  early.  In  2014,  Kilgore  et  al.
cloned  and  functionally  characterized NpN4OMT from  Narcissus
pseudonarcissus.  Subsequently,  Li  et  al.  characterized  an  ortholog,
LrOMT, from Lycoris radiata[19,21]. Cytochromes P450 (P450s) catalyze
a diverse array of  oxidative reactions and are pivotal  in the biosyn-
thesis of numerous complex plant alkaloids. This enzyme superfam-
ily also mediates most of the multi-step transformations in the GAL
pathway[22]. A critical reaction involves the oxidative coupling of the
key  intermediate  4'-O-methylnorbelladine,  which  is  catalyzed  by
CYP96T subfamily  enzymes.  This  catalysis  proceeds  via p-p', p-o',  or
o-p' coupling modes to generate distinct AAs skeletons[6,23]. In 2024,
Mehta  et  al.  revealed  the  biosynthetic  pathway  of  AAs  through
developmental  gradient  analysis,  demonstrating  that NtCYP96T6
catalyzes  the para-ortho' coupling  of  4'-O-methylnorbelladine  and
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Fig. 2  Three kinds of C-C coupling configurations.
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identifies NtNMT1 and NtAKR1 via co-expression analysis as the mini-
mal core gene set for GAL biosynthesis[6]. Although the core biosyn-
thetic pathway of GAL has been largely deciphered, research in this
area remains active. For instance, Liu et al. conducted a comparative
functional analysis of four distinct CYP96T enzymes in Lycoris aurea,
elucidating  their  specific  roles  in  mediating  regioselective  C-C
phenol  coupling  reactions[20].  Their  findings  indicated  that
LauCYP96T catalyzes distinct regiospecific C-C phenol coupling reac-
tions.  In  the GAL biosynthetic  pathway,  cytochrome P450 enzymes
(P450s)  are  essential  for  these  oxidative  steps,  and  their  activity  is
strictly  dependent  on  electrons  supplied  by  a  redox  partner,
cytochrome P450 reductase (CPR). Supporting this, Wu et al. identi-
fied  three  functional  CPR  isoforms  (LrCPRs)  in Lycoris  radiata and
confirmed  their  electron  transfer  capability in  vitro.  This  discovery
provides  critical  genetic  elements  for  reconstructing the GAL path-
way  in  a  heterologous  system[8].  Following  the  identification  of  a
minimal  gene  set  for  GAL  biosynthesis  by  Mehta  et  al.,  and  subse-
quent  work  by Liyanage et  al.  revealed the existence of  alternative
biosynthetic  routes[6,24].  Their  research identified a  novel  N-methyl-
transferase  and  demonstrated  that  the  intermediate  nornarwedine
can undergo divergent enzymatic processing: (i) reduction by aldo-
keto  reductase  1  (AKR1)  to  yield  norgalanthamine,  followed  by
methylation by coclaurine-N-methyltransferase (CNMT) to form GAL;
or  (ii)  methylation  by  the  newly  identified  N-methyltransferase
(NMT) to form narwedine, followed by reduction by an AKR to yield
GAL. These findings provide significant new insights into the plastic-
ity of GAL biosynthesis. Furthermore, the plant Nicotiana benthami-
ana possesses a comprehensive cellular machinery—including essen-
tial  cofactors,  subcellular  compartments,  and chaperone systems—
that supports the efficient expression and proper folding of complex
plant-derived  enzymes,  making  it  a  suitable  heterologous  host  for
pathway reconstitution studies.  In 2025,  Lamichhane et al.  success-
fully  reconstituted  the  biosynthetic  pathway  of  AAs  in Nicotiana
benthamiana via  transient  expression,  enabling  the  production  of
multiple  AAs,  including  GAL.  Furthermore,  they  demonstrated  that
two  cytochrome  P450  enzymes, LaCYP96T1 and LaCYP96T2,  can
concurrently  catalyze  three  distinct  regio-selective  C-C  coupling
reactions[25].  Despite  extensive  efforts,  the  complete  heterologous
biosynthesis of GAL in yeast has not yet been achieved. These stud-
ies elucidated key enzymatic steps and refined the GAL biosynthetic
pathway,  culminating  in  its  successful  heterologous  reconstitution.
The multidisciplinary approaches developed herein, including meta-
bolic  engineering and transient expression,  provide a paradigm for
elucidating  the  biosynthesis  of  other  high-value  natural  products,
such  as  specific  alkaloids  and  lignans.  Furthermore,  this  research
establishes a foundational framework for the sustainable biotechno-
logical production and industrial translation of these compounds.

 Biosynthesis of GAL analogues
AAs  represent  a  structurally  diverse  family  of  natural  products,

which have garnered significant research interest due to their wide
range of pharmacological activities[26].  AAs are systematically classi-
fied  according  to  their  core  biosynthetic  precursors,  characteristic
carbon  skeletons,  and  distinct  ring  systems.  Major  structural  types
within  this  family  include  norbelladine-,  lycorine-,  lycorenine-,
cherylline-,  pretazettine-,  galanthamine-,  crinine-,  and  montanine-
type alkaloids (Fig. 2a)[26]. The biosynthetic pathways of AAs share a
common route up to the formation of the key intermediate norbel-
ladine.  Downstream  of  norbelladine,  the  pathway  diverges,  and
distinct  AAs,  such  as  GAL,  are  produced  through  the  action  of
specific  enzymes[27].  Among  them,  haemanthamine  and  lycorine

have garnered significant research interest due to their pronounced
pharmacological  activities.  Consequently,  the  biosynthetic  path-
ways  of  these  compounds  have  been  extensively  investigated.
However,  the  biosynthetic  pathways  of  many  other  AAs  remain
largely  uncharacterized  and  are  primarily  inferred  from  structural
analogies, thus presenting a significant avenue for future research.

In contrast to other AAs that derive from 4'-O-methylnorbelladine,
cherylline-type  AAs,  such  as  gigantelline,  cherylline,  and  gigantelli-
nine  (isolated  from Crinum  jagus),  are  biosynthesized  from  the
earlier  pathway  intermediate  norbelladine[28].  Cherylline  is  a  4-
aryltetrahydroisoquinoline alkaloid. Its skeletal structure is proposed
to originate from the hydroxylation of the C11 position of norbella-
dine,  followed  by  bisphenol  cyclization.  Owing  to  their  structural
similarity,  gigantelline  and  gigantellinine  are  hypothesized  to  be
derivatives  of  cherylline.  Gigantelline  may  arise  from  cherylline  via
O-methylation of the para-substituted phenolic hydroxyl group and
subsequent ortho-hydroxylation.  Conversely,  gigantellinine may be
synthesized  from  cherylline  through  methylation  at  the  C7
position[28].  However,  the  enzymatic  machinery  responsible  for
these transformations remains uncharacterized (Fig. 3).

With  the  exception  of  the  structurally  distinct  cherylline-type
alkaloids,  all  other  AAs  are  classified  as  norbelladine-type
derivatives[29,30].  The  carbon  skeletons  of  pharmacologically  signifi-
cant  natural  products  such  as  GAL,  haemanthamine,  and  lycorine
are  each  formed  through  distinct  regiospecific  C-C  coupling  reac-
tions  of  the  common  precursor,  4'-O-methylnorbelladine[31].  Such
C-C coupling reactions represent crucial  transformations in special-
ized  metabolism,  notably  in  the  biosynthesis  of  alkaloids,  lignans,
and  lignin[32].  These  reactions  typically  exhibit  high  regioselectivity
and  stereoselectivity,  properties  frequently  conferred  by
cytochrome  P450  enzymes.  Notably,  several CYP96T subfamily
enzymes mediating these coupling reactions in AAs have been char-
acterized. These P450s catalyze the conversion of the key intermedi-
ate 4'-O-methylnorbelladine into diverse AAs scaffolds via o-p', p-p',
or p-o'  coupling  modes[20,23].  The  specific  skeletal  architecture  is
determined by the mode of  covalent  bond formation between the
A-ring  (C6-C1  unit)  and  the  C-ring  (C6-C2  unit).  Consequently,
CYP96T  enzymes  function  as  pivotal  gatekeepers,  directing
metabolic  flux  from  a  common  intermediate  toward  distinct  struc-
tural classes of natural products.

Through  the  catalytic  action  of  the  key  enzyme  CYP96T,  the  key
intermediate  diverges  into  distinct  AAs.  Specifically, p-o' coupling
yields  nornarwedine,  a  precursor  to  GAL  and  lycoramine; o-p'
coupling  produces  norpluviine,  which  serves  as  a  precursor  to
lycorine and lycoreine; and p-p' coupling leads to noroxomaritidine,
a precursor to crinine and haemanthamine (Fig. 2b)[6].

GAL,  a  signature  Amaryllidaceae  alkaloid,  is  characterized  by  a
distinctive  diphenylfuran  core  containing  two  chiral  centers.  Its
established  biosynthetic  pathway  originates  from  the  precursor  4'-
O-methylnorbelladine. This precursor undergoes para-ortho' pheno-
lic  coupling  to  form  demethylnarwedine,  which  is  subsequently
methylated  by  the  enzyme  N-methyltransferase  (NMT)  to  yield
narwedine.  The  final  biosynthetic  step  involves  the  NADPH-depen-
dent  reduction  of  the  ketone  group  in  narwedine  to  a  secondary
alcohol,  resulting in the formation of  GAL.  An alternative proposed
pathway  suggests  that O-dimethylnorbelladine  may  serve  as  a
substrate. This compound can undergo para-ortho' coupling to form
narwedine directly,  thereby bypassing the  NMT-catalyzed methyla-
tion  step.  Based  on  structural  analogies,  narwedine  is  reductively
converted to GAL. Alternatively, narwedine may also be a metabolic
branch  point,  potentially  undergoing  N-demethylation  to  form
nornarwedine or serving as a precursor to other natural products[33].

  Synthesis and pharmacology of galanthamine
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Nornarwedine  undergoes  reduction  of  its  carboxyl  group  to  a
primary alcohol, yielding norgalanthamine. This intermediate is then
a substrate  for  two divergent  pathways:  it  can be N-methylated by
the  enzyme  N-methyltransferase  (NMT)  to  form  GAL,  or  it  can  be
converted to lycoramine.  Subsequent modifications of  GAL include
the O-demethylation of  the methoxy group at  the C9 position to a
hydroxyl  group,  forming  sanguinine,  and  the  N-methylation  of  the
group  at  the  C3  position  to  form  childanthine[28].  However,  this
biosynthetic  pathway  remains  putative,  as  it  has  been  inferred
primarily  from  structural  analogies  to  known  compounds,  and
the  key  enzyme  catalyzing  its  central  reaction  has  not  yet  been
identified.

Ortho–para' coupling  can  yield  alkaloids  possessing  lycorine-
type and homolycorine-type frameworks AAs[29,30]. Kirby & Tiwari[34]

utilized  an  isotope  labeling  technique  to  examine  the  biosynthetic

conversion of  4'-O-methylnorbelladine into lycorine and lycorenine
in  Amaryllidaceae  plants[35].  Their  findings  indicated  that  4'-O-
methylnorbelladine  is  first  converted  to  the  intermediate  noroxo-
pluviine,  which  is  then  reduced  to  norpluviine[29].  Subsequently,  a
methylenedioxy  bridge  forms  between  the  hydroxyl  and  methoxyl
moieties, yielding caranine. Lycorine is ultimately produced through
hydroxylation  of  caranine.  In  addition  to  lycorine-type  alkaloids
containing a  pyrrolophenanthridine core,  ortho–para'  coupling can
also give rise to pluviine[36,37]. Ortho-hydroxylation of pluviine yields
methylpseudolycorine,  and  methoxylation  of  this  hydroxyl  group
subsequently leads to galanthine. Incartine was first isolated from L.
incarnata by  Renard-Nozaki  et  al.[38],  who  identified  it  as  a  key
biosynthetic  intermediate  in  the  formation  of  galanthine.  Subse-
quent  reduction  at  C11  of  incarnatine  introduces  a  double  bond,
concomitant with cleavage of  the oxygen-containing ring to afford

 

Fig. 3  The putative biosynthesis pathway of GAL analogues.
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narcissidine. The  homolycorine-type  framework  is  biosynthesized
via  C6-hydroxylation  of  noroxopluviine,  yielding  hydroxynorplu-
viine,  which  subsequently  serves  as  a  biosynthetic  precursor  for
various downstream alkaloids[29] (Fig. 3).

The para–para' phenolic  coupling  reaction  gives  rise  to  crinine-,
narciclasine-,  tazettine-,  and  montanine-type  AAs.  These  structural
classes  constitute  the  most  diverse  category  of  AAs  and  have
substantially  enriched  the  structural  diversity  of  the  AAs  family.
Biosynthesis of these four AA types proceeds through the common
intermediate  noroxomaritidine[6,29].  The  crinine  pathway,  for
instance,  involves  (10bS,4aR)-noroxomaritidine  and  (10bS,4aR)-
normaritidine  as  key  intermediates.  This  route  requires  the
formation  of  a  methylenedioxy  bridge  while  retaining  a  hydroxyl
group.  Alternatively,  noroxomaritidine  can  be  converted  to
haemanthamine,  which  possesses  a  methylenedioxy  bridge.
Haemanthamine  is  then  transformed  via  haemanthidine  to
ultimately  yield  tazettine[23,39].  This  finding  leads  to  the  question
of  whether  formation  or  reduction  of  the  methylenedioxy
bridge  occurs  first.  Using  isotope  labeling,  Feinstein  &  Wildman
identified  11-hydroxyvittatine  as  a  key  intermediate  in  the  biosyn-
thesis  of  montanine[40].  An  alternative  pathway  diverges  from
normaritidine to form vittatine,  which is  then hydroxylated to yield

11-hydroxyvittatine.  This  intermediate  is  subsequently  converted
into  pancracine,  and  finally  to  montanine[35,41].  It  should  be  noted,
however,  that  the  pathways  described  above  have  been  inferred
primarily from chemical structural similarities, and the key enzymes
responsible for these catalytic steps remain to be identified (Fig. 3).

Significant progress was made in 2024 with the elucidation of the
core biosynthetic pathways for GAL and haemanthamine. Heterolo-
gous  co-expression  of NtCYP96T1, NtSDR2, NtCYP71DW1, Nt2OGD,
and 4OMN in  tobacco  led  to  the  production  of  haemanthamine.
Similarly, co-expression of NtCYP96T6, NtNMT1, and NtAKR1 resulted
in  the  synthesis  of  GAL.  These  findings  have  elucidated  key  steps
and filled crucial gaps in the biosynthetic pathways of AAs[6].

 Total synthesis of GAL
The molecular  structure of  GAL is  characterized by a fused tetra-

cyclic  ring  system  and  three  stereocenters,  which  collectively  pose
significant  challenges  for  its  total  synthesis.  Key  obstacles  include:
(1)  the  construction  and  assembly  of  cyclohexanol,  heterocyclic,
aromatic,  and pyrazole  rings  into  the  tetracyclic  framework;  (2)  the
establishment  and  stereoselective  incorporation  of  quaternary

 

Fig. 4  Total synthesis of GAL.
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carbon  centers  within  the  polycyclic  architecture;  and  (3)  the
controlled introduction of chiral stereocenters[1].

Significant progress has been made in the total  synthesis of  GAL
in recent years. Numerous studies have been devoted to the synthe-
sis of GAL and its analogues, leading to the development of dozens
of  distinct  synthesis  routes.  Representative  strategies  employed  in
these  efforts  mainly  involve  transition  metal-catalyzed  reactions,
rearrangement reactions, and alkylation reactions[1] (Fig. 4).

In the biosynthesis pathway of GAL, ortho–para' phenol coupling
constitutes a crucial step, which has attracted considerable research
interest  in  its  mechanistic  and synthesis  aspects[42].  Barton was  the
first  to  recognize  that  the  biosynthesis  of  GAL  analogs  originates
from  the  key  precursor  4'-O-methylnorbelladine.  The  pathway
proceeds via ortho–para'  phenol coupling of this precursor to form
the  core  C-C  bond,  concurrently  generating  a  quaternary  carbon
center  and  a  pyrazoline  ring.  Subsequent  reduction  of  the  ketone
group  followed  by  N-methylation  of  the  amino  group  affords
GAL[43].  To  construct  the  core  skeleton,  a  biomimetic  strategy  was
employed,  involving  an  intramolecular  oxidative  coupling  reaction
of 4'-O-methylnorbelladine analogues using potassium ferricyanide
(K3Fe(CN)6)  as  an  oxidant.  This  key  step  efficiently  generated  the
pyrazole ring system, which serves as a pivotal synthesis intermedi-
ate for GAL.

Kametani  et  al.  research  group  investigated  synthesis  routes  to
GAL.  They  observed  that  substituting  amines  with  lactams  and
blocking  the  para  position  of  phenols  with  bromides  markedly
enhanced the yield of phenolic coupling products[44]. Later, Arisawa
et al. identified [bis(trifluoroacetoxy)iodo]benzene (PIFA) as an effec-
tive  oxidant  for  promoting  the  diphenol  coupling  reaction[45].
Subsequently, Krikorian et al. employed PIFA to convert amides into
tetrahydro  derivatives  and  construct  quaternary  carbon  centers,
achieving a yield of 60%[46].  In 2001, Node et al. reported a method
for  synthesizing  GAL  using  symmetric  N-formamide  as  the
substrate[47].  Following  this,  Koga's  group  accomplished  the  asym-
metric  synthesis  of  (±)-GAL:  using  five  equivalents  of  Mn(acac)3 in
acetonitrile, a quaternary carbon center was generated in 81% yield
and further elaborated into GAL[1]. More recently, Xiong et al. devel-
oped  a  synthesis  of  (–)-GAL  via  an  anodic  aryl–aryl  coupling
reaction[48].  This  approach  began  with  the  synthesis  of  methyl  D-
tyrosine  and  methyl  gallate,  followed  by  a  six-step  catalytic
sequence  to  afford  a  key  intermediate.  Subsequent  electrolysis
using  0.1  MnBu4NClO4 as  the  electrolyte,  a  reticulated  vitreous
carbon  (RVC)  anode  and  a  platinum  cathode  yielded  the  product
containing the quaternary carbon center. After optimization, a yield
of  55%  was  attained.  The  intramolecular  Heck  reaction  is  widely
employed  for  the  construction  of  quaternary  carbon  centers.  Tröst
et al.  reported a pioneering total  synthesis  of  GAL that did not rely
on  phenolic  coupling  reactions[49].  They  constructed  the  key  chiral
quaternary center with high enantioselectivity via an intramolecular
Heck reaction followed by a  palladium-catalyzed asymmetric  allylic
alkylation  (AAA),  completing  the  total  synthesis  of  GAL  in
14 steps[39]. However, this route was lengthy and afforded low over-
all  yield.  Subsequent  optimization  reduced  the  number  of  steps
to  eight[50].  Later,  the  Guillou  group  achieved  a  total  synthesis  of
GAL  in  seven  steps  using  an  intramolecular  Heck  reaction  as  a  key
transformation[51].  Together,  these  three  synthesis  approaches
established a  foundational  framework  for  subsequent  total  synthe-
ses of GAL. In 2007, Satcharoen et al.  reported the first stereoselec-
tive  total  synthesis  of  GAL[52].  This  route  employed  commercially
available isovanillin as the starting material and constructed the GAL
skeleton via Mitsunobu aryl etherification. Key steps included enyne
ring-closing  metathesis,  a  Heck  reaction,  and  N-alkylation  to

assemble  the  tetracyclic  ring  system  in  just  11  linear  steps.  Fifteen
years later, the same group reported a second-generation asymmet-
ric synthesis that achieved excellent stereocontrol in the production
of  (–)-GAL[53].  In  2012,  Chen  and  colleagues  completed  a  12-step
total  synthesis,  affording  GAL  in  20.1%  overall  yield[54].  Their  strat-
egy  featured  the  construction  of  a  benzylic  quaternary  carbon
center  via  a  palladium-catalyzed  intramolecular  reductive  Heck
cyclization  and  employed  dynamic  kinetic  resolution  (DKR)  in  a
ruthenium-catalyzed asymmetric hydrogenation. In 2015, Nugent et
al.  developed  a  novel  total  synthesis  of  GAL[55].  Their  approach
involved the preparation of the aromatic ring through a Diels–Alder
reaction, construction of the heterocycle and the associated quater-
nary  center  via  a  palladium-catalyzed  intramolecular  Alder-ene
(IMAE) reaction, and formation of the seven-membered ring using a
modified  Bischler–Napieralski  reaction,  culminating  in  a  six-step
synthesis of GAL[56].

Additionally,  Endoma-Arias  &  Hudlicky  developed  a  ten-step
chemoenzymatic synthesis of GAL starting from ethyl phenylacetate,
achieving  an  overall  yield  of  5.5%[57].  A  key  advantage  of  this
approach is the streamlined conversion of diene to narwedine via an
improved  oxidative  functionalization  reaction  using  Co(acac)2/O2.
Xue  &  Dong  proposed  a  novel  strategy  for  the  total  synthesis  of
both GAL and lycorine[58]. This concise route features a Rh-catalyzed
intramolecular  'cut-and-sew'  carbonylation  to  construct  the  tetra-
cyclic  skeleton,  followed  by  a  Pb-catalyzed  regioselective  C–H  acti-
vation to introduce the requisite double bonds.

Zhang  et  al.  accomplished  an  11-step  total  synthesis  of  GAL,
which  incorporates  a  gram-scale  Rh-catalyzed  C–C  activation  via  a
'cut-and-sew' carbonylation, and a late-stage Pd-catalyzed dehydro-
genation  through  C–H  activation[59].  This  work  represents  the  first
example  in  natural  product  synthesis  where  transition  metal-
catalyzed  C–C  activation  and  C–H  activation  are  strategically  inte-
grated.  Chang  et  al.  reported  an  efficient  formal  total  synthesis
involving  a  two-stage  process:  an  early-stage  palladium-catalyzed
carbonylative  cascade  cyclization  and  a  DDQ-mediated  regioselec-
tive  intramolecular  oxidative  lactamization  to  assemble  the  tetra-
cyclic  skeleton;  and  a  late-stage  BF3·OEt2-promoted  selective
rearrangement  of  the  bridged  system  to  afford  both  GAL  and
lycorine[60]. Majumder et al. achieved the asymmetric total synthesis
of  the  dihydrobenzofuran  core  of  GAL[50].  Their  approach  utilizes  a
novel  catalytic  enantioselective  Corey–Bakshi–Shibata  (CBS)  reduc-
tion  to  convert α-bromoketones  into  chiral  secondary  alcohols,
followed by a Johnson–Claisen rearrangement to transfer the stere-
ochemistry  to  an  all-carbon  quaternary  center,  yielding  GAL  in
14  steps.  with  7.3%  overall  yield.  Ishikawa  et  al.  developed  an  effi-
cient  route  to  GAL  intermediate  4,4-disubstituted  cyclohexane-1,3-
diones  via  a  Michael–Michael–Claisen  cascade  reaction[61].  This
method employs aromatic or aliphatic substituents to construct the
quaternary carbon center through classical enolate alkylation. Chen
et  al.  accomplished  the  asymmetric  synthesis  of  Amaryllidaceae
alkaloids via a Michael addition between α-cyano ketones and acry-
lates catalyzed by a bifunctional tertiary amine–thiourea catalyst[59].
The Tu teams synthesized GAL in 12% overall yield by introducing a
specific  allylic  alcohol  architecture  and  core  framework  through
a  sequential  semipinacol  rearrangement/desilylation/cyclization
process  and  a  modified  Saegusa–Ito  oxidation[39, 62].  Magnus  et  al.
generated GAL via intramolecular alkylation of phenolic analogs[63].
Jiang  et  al.  achieved  the  synthesis  of  GAL  through  an  SPD  (spiro-
cyclic pyrrolidine)-catalyzed asymmetric Robinson annulation, high-
lighting  the  utility  of  SPD  catalysts  in  constructing  quaternary
carbon centers and offering an alternative strategy for synthesizing
other GAL-type alkaloids[64].
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 Pharmacological activities of GAL and
its analogues

As a unique member of the Amaryllidaceae alkaloids, GAL exhibits
diverse pharmacological activities, such as antioxidant, antibacterial,
and  immunomodulatory  effects.  It  also  demonstrates  considerable
advantages  in  the  treatment  of  AD,  including  well-established
therapeutic  efficacy,  mild  side  effects,  and  a  more  potent  central
cholinesterase  inhibitory  activity  compared  to  other  AD
medications[1].  Consequently,  GAL has  emerged as  one of  the  first-
line  therapeutic  agents  for  AD[65].  Additionally,  GAL  is  employed  in
the  treatment  of  various  conditions,  including  angle-closure  glau-
coma, myasthenia gravis, post-polio syndrome, peritonitis, and post-
operative  intestinal  muscle  paralysis.  It  also  acts  as  an  inhibitor  of
tumor necrosis factor-α (TNF-α) release[66].

The development of GAL analogues into clinically applicable ther-
apeutics  has  progressed  more  slowly  than  that  of  GAL  itself.
However,  the  increasing  burden  of  human  diseases,  coupled  with
the  limited  availability  of  effective  therapies,  has  prompted  the
reevaluation of several previously overlooked natural compounds as
promising sources of drug candidates[66]. This review focuses on the
pharmacological  activities  of  GAL  and  its  analogs  to  facilitate  the
development of novel clinical  therapies.  Herein,  recent advances in
the  pharmacological  activities  of  galantamine  and  its  analogs  are
reviewed. The goal is to pinpoint compounds with significant poten-
tial and to offer a valuable resource for future studies (Fig. 5).

 Anti-Alzheimer effect
The  molecular  mechanisms  through  which  GAL  exerts  its

anti-Alzheimer's  disease  effects  are  multifaceted.  Primary  mecha-
nisms  include:  enhancing  acetylcholine  (ACh)  activity,  inhibiting

acetylcholinesterase  (AChE),  allosterically  modulating  nicotinic
acetylcholine  receptors  (nAChRs),  regulating  neurotransmitter
release,  reducing β-amyloid  (Aβ)  deposition,  and  conferring  neuro-
protection  via  anti-apoptotic  effects[67−69].  These  mechanisms
counter  three  hallmark  pathological  features  observed  in
Alzheimer's  disease brains:  amyloid plaques,  neurofibrillary tangles,
and  the  loss  of  cholinergic  neurons.  GAL  is  a  specific,  competitive,
and  reversible  cholinesterase  inhibitor.  It  binds  competitively  to
acetylcholinesterase (AChE) in the synaptic cleft, thereby effectively
blocking  acetylcholine  (ACh)  degradation[70].  In  addition  to  inhibit-
ing  AChE,  GAL  acts  as  an  allosteric  potentiating  ligand  of  nicotinic
acetylcholine  receptors  (nAChRs),  modulating  their  activity.  By
preventing ACh hydrolysis,  GAL increases the concentration of ACh
in  the  synaptic  cleft.  Furthermore,  GAL  binds  to  allosteric  sites  on
both  presynaptic  and  postsynaptic  nAChRs  of  cholinergic  neurons,
enhancing nicotinic neurotransmission. While binding of GAL alone
to presynaptic nAChRs produces limited effects[71],  co-binding with
ACh significantly amplifies the nAChR response. Thus, GAL enhances
cholinergic  signaling  by  increasing  the  probability  of  nAChR  chan-
nel  opening  and  reducing  receptor  desensitization[67].  Moreover,
through  competitive  inhibition  of  AChE,  the  primary  enzyme
responsible  for  ACh  breakdown,  GAL  prolongs  the  availability  of
ACh  in  cholinergic  synapses[72].  This  inhibition  slows  ACh  meta-
bolism, resulting in elevated synaptic ACh levels.
β-Amyloid  (Aβ)  deposition  and  neurofibrillary  tangles—resulting

from aberrant hyperphosphorylation of  microtubule-associated tau
protein—constitute  key  pathological  hallmarks  of  AD [73,74].  GAL
mitigates Aβ-induced neuronal damage by inhibiting the activation
of  the  calpain-I/calcineurin  pathway  and  the  phosphorylation  of
the  pro-apoptotic  protein  Bad.  Furthermore,  GAL  may  confer
neuroprotection  against  Aβ40-induced  injury  via  modulation  of
calpain–calcineurin  signaling  and  Bad  phosphorylation,  a  process

 

Fig. 5  Pharmacology of GAL.
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potentially  mediated  by α7-nicotinic  acetylcholine  receptors
(α7  nAChRs).  Additionally,  GAL  ameliorates  cognitive  function
through suppression of  TNF-α and IL-6  expression,  reduction of  Aβ
deposition,  and inhibition  of  astrocyte  activation[67, 75].  Collectively,
these  mechanisms  support  the  role  of  GAL  as  a  neuroprotective
agent counteracting Aβ-related pathology.

Hyperphosphorylation  of  microtubule-associated  protein  tau,
which  leads  to  the  formation  of  neurofibrillary  tangles,  represents
another  key  pathological  hallmark  of  AD.  Studies  indicate  that
microtubule affinity-regulating kinase 4 (MARK4) plays a critical role
in this process. Specifically, MARK4 phosphorylates tau at the Ser262
residue,  prompting its  dissociation from microtubules  and facilitat-
ing  further  phosphorylation  by  other  kinases,  thereby  accelerating
AD  pathogenesis.  GAL  inhibits  MARK4  activity,  thus  attenuating
aberrant tau hyperphosphorylation, and slowing the progression of
Alzheimer's pathology[76].

 Pharmacological effects of derivatives
AAs,  a  class  of  isoquinoline  alkaloids,  are  widely  recognized  for

their  therapeutic  potential.  In  addition  to  their  putative  endoge-
nous  role  in  plant  defense  against  pathogens,  AAs  exhibit  diverse
biological  activities  relevant  to  human  health[26].  As  a  large  family
of  natural  compounds,  AAs  demonstrate  broad  pharmacological
properties,  including  antiviral,  antibacterial,  and  neuroprotective
effects. Recently, numerous novel AAs with potent pharmacological
activities have been identified[66].

Lycorine,  a  biologically  active  isoquinoline  alkaloid  isolated  from
the  bulbs  of  Lycoris  radiata,  has  been  reported  to  exhibit  non-
nucleoside  RNA-dependent  RNA  polymerase  (RdRp)  inhibitory
activity[77].  It  demonstrated  potent  anti-proliferative  effects  against
HL-60  myeloid  leukemia  cells  (IC50 =  0.6 μM)[78].  In  gastric  cancer,
lycorine  inhibits  cell  proliferation  and  resensitizes  drug-resistant
cells.  Mechanistically,  it  upregulates  the  ubiquitin  E3  ligase  FBXW7
and downregulates the anti-apoptotic protein MCL1, thereby reduc-
ing MCL1 protein stability. This leads to S-phase cell cycle arrest and
apoptosis  in  gastric  cancer  cells[79].  The  anti-tumor  efficacy  of
lycorine  is  significantly  enhanced  when  combined  with  the  BCL2
inhibitor  HA14-1.  Furthermore,  lycorine  demonstrates  notable
multidrug  resistance  (MDR)  reversal  activity  in  human  ovarian
adenocarcinoma cells (HOC)[80]. Beyond its oncological applications,
lycorine  exhibits  potent,  non-nucleoside  direct  antiviral  effects
against emerging coronaviruses by specifically inhibiting viral RdRp.
It also possesses broad pharmacological activities, including antibac-
terial,  anti-inflammatory,  and  antitumor  effects.  Its  neuroprotective
capacity,  comparable  to  that  of  GAL,  enables  it  to  counter  Aβ-
induced damage. Notably, lycorine exhibits a stronger binding affin-
ity  to  Aβ40 than  GAL,  effectively  interfering  with  Aβ40 aggregation.
This provides a mechanistic explanation for its superior efficacy over
GAL in protecting the brain from Aβ-induced neurotoxicity[81].

Lycorine,  11-hydroxyvittatine,  haemanthamine,  and  hippeastrine
have  been  reported  to  exhibit  anti-influenza  A  virus  activity  by
inhibiting  the  nuclear  export  of  viral  ribonucleoprotein  (RNP)
complexes following viral entry[82,83]. Notably, lycorine, and haeman-
thamine  demonstrate  significant  inhibitory  activity  against  human
immunodeficiency  virus  (HIV)[84].  The  newly  identified  styrene alka-
loid  2  [(+)-1-hydroxy-angustamine]  exhibits  potent  cytotoxicity
against  meningioma,  astrocytoma,  and  CHG-5  cell  lines.  Further-
more,  lycorine  and  its  analogues  show  therapeutic  efficacy  against
both chemotherapy-sensitive and drug-resistant  variants  of  human
ovarian  adenocarcinoma  cells[81, 85].  Hippeastrine  hydrobromide
represents  a  highly  promising  therapeutic  candidate  for  Zika  virus

(ZIKV)  infection,  as  it  potently  suppresses  ZIKV  replication  and
eliminates  the  virus  from  infected  human  pluripotent  stem  cell-
derived cortical neural progenitor cells (hNPCs)[86].

Dihydro-narciclasine  analogues  and  trans-dihydrolycoricidine
inhibit the replication of herpes simplex virus type 1 (HSV-1). Among
these,  the  dihydro-narciclasine  analogue  featuring  a  single  C7-OH
substitution  on  ring  A  demonstrates  particularly  potent  activity.
Both compounds activate the eukaryotic translation initiation factor
2  signaling  pathway,  the  integrated  stress  response  (ISR)  and  its
associated  networks,  as  well  as  autophagy  and  sirtuin-1  signaling
pathways.  7-Deoxy-trans-dihydrocucurbitacin  reduces β-amyloid
(Aβ)  production by lowering amyloid precursor protein (APP) levels
and delaying APP maturation. Montanine exhibits cytotoxic proper-
ties and induces apoptosis  in MOLT-4 cells  through caspase activa-
tion,  mitochondrial  depolarization,  and  Annexin  V/PI  double
staining.  As  montanine  concentration  increases,  protein  levels  of
phosphorylated Chk1 (Ser345) are upregulated in these cells[87].

Bufanidine,  bufamide,  and  bisindole-type  alkaloids  display  affin-
ity  for  the  serotonin  transporter,  suggesting  potential  applications
for treating depression and anxiety disorders[88]. Certain crinine-type
alkaloids  exert  antitumor  effects  primarily  by  inhibiting  tumor
proliferation  and  inducing  apoptosis[89].  Specifically,  buphanidine
inhibits  glioblastoma  cell  proliferation  by  inducing  cellular
quiescence,  indicating  that  crinine-type  alkaloids  may  represent
potential  therapeutics  for  apoptosis-resistant  cancers  such  as
glioblastoma[90].  Haemanthamine  and  lycorine  exhibit  potent  acti-
vity against both trypomastigote and amastigote forms of T. cruzi, as
well  as  against  amastigotes  and  promastigotes  of L.  infantum[84].
7-Methoxy-O-methyllycorine  shows  promising  activity  against T.
cruzi trypomastigotes and L. infantum amastigotes.

A  new  homolycorine-type  alkaloid,  designated  2α-methoxy-6-O-
ethyloduline,  was  isolated  from  Lycoris  radiata  (Amaryllidaceae
family)  and  was  found  to  exhibit  weak  antiviral  activity  against
influenza  A  viruses[91,92].  Separately,  pretazettine  alkaloids,  charac-
terized  by  a  benzopyrano[3,4-c]indole  ring  system,  demonstrate
therapeutic  efficacy  against  subcutaneously  implanted  Lewis  lung
carcinoma (LLC), a representative tumor model. Pretazettine inhibits
lung metastasis and prolongs survival in this model[91].  Jonquailine,
a  novel  pretazettine-type  alkaloid,  exhibits  significant  antiprolifera-
tive  effects  against  glioblastoma,  melanoma,  uterine  sarcoma,  and
non-small  cell  lung cancer  (NSCLC)  cell  lines.  Notably,  it  acts  syner-
gistically with paclitaxel to inhibit the proliferation of drug-resistant
lung  cancer  cells.  Furthermore,  its  anticancer  activity,  which  is
substantial and a major focus of current research, is also associated
with  its  known  inhibition  of  viral  reverse  transcriptases  and  anti-
leukemic properties. A critical structural determinant for this activity
is  C-8  hydroxylation,  which  appears  to  be  independent  of  lactone
stereochemistry and acetalization status[93].

Narciclasine-type  alkaloids,  which  feature  a  lycoricidine  ring
system,  can  reverse  damage  to  renal  tubular  epithelial  cells  by
inhibiting NF-κB signaling pathway activation,  thereby suppressing
fibroblast proliferation and activation[94,95]. Narciclasine, 7-deoxynar-
ciclasine,  and  narciclasine-4-O-β-D-xylopyranoside,  isolated  from
Hymenocallis  littoralis,  exhibit  antiparasitic  activity[96].  Narciclasine
demonstrates potent anti-proliferative effects in various cancer cells
by  inducing  G2/M  phase  cell  cycle  arrest  and  apoptosis.  Further-
more, it has shown antioxidant and anti-inflammatory properties in
multiple disease models[97].  Mechanistic  studies indicate that  narci-
clasine  maintains  cell  survival  in  a  dose-dependent  manner  by
inhibiting lipid peroxidation (as assessed by BODIPY™ 581/591 C11
staining)  and  preserving  intracellular  glutathione  levels.  Addition-
ally,  narciclasine  ameliorates  mitochondrial  dysfunction  by
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inhibiting  ferroptosis  through  BNIP3-mediated  mitophagy  and
maintaining  mitochondrial  integrity,  thereby  attenuating  sepsis-
induced  myocardial  dysfunction.  These  findings  underscore  the
potential  therapeutic  value  of  narciclasine  for  the  treatment  of
sepsis-associated cardiac injury[96].

In  recent  years,  growing  interest  in  Amaryllidaceae  alkaloids  has
led to the identification of an expanding array of compounds within
this family. The continued isolation of novel alkaloids and the char-
acterization  of  their  broad  pharmacological  activities  now  under-
score the need to consolidate existing research findings to establish
a robust foundation for future clinical translation.

 Conclusions and perspectives
GAL is a first-line pharmacological treatment for AD, valued for its

favorable efficacy and safety profile. Its therapeutic mechanisms are
multifactorial:  (i)  it  functions as a reversible and competitive acetyl-
cholinesterase  inhibitor,  thereby  increasing  the  concentration  of
acetylcholine  in  the  brain;  (ii)  it  allosterically  modulates  nicotinic
acetylcholine  receptors  to  enhance  neurotransmitter  release;  (iii)  it
demonstrates  neuroprotective  and  anti-apoptotic  properties;  and
(iv)  it  inhibits  the  aggregation  of  amyloid-β peptides.  GAL  demon-
strates  high  activity  in  brain  regions  with  significant  cholinergic
deficits,  such  as  the  postsynaptic  region.  Its  favorable  pharmacoki-
netic profile,  including low protein binding and lack of interactions
with  food  or  concomitant  medications,  contributes  to  its  excellent
tolerability  and  low  incidence  of  adverse  effects.  Approved  by  the
US Food and Drug Administration (FDA) in February 2003 for mild-
to-moderate  AD,  galantamine  represents  an  important  therapeutic
option  for  the  management  of  this  condition.  Originally,  GAL  was
extracted primarily from Amaryllidaceae plants,  including Narcissus
spp.  and  Leucojum  aestivum  (summer  snowflake).  However,  its
isolation  from  natural  sources  is  inefficient  due  to  exceedingly  low
abundance  (typically  ~0.1%  by  dry  weight).  Consequently,  plant
extraction  is  insufficient  to  meet  substantial  market  demand.  This
limitation  has  motivated  researchers  worldwide  to  develop in  vitro
synthesis  routes  to  GAL,  aiming  to  establish  efficient  and  scalable
production methods. The evolution of GAL total synthesis strategies
reflects  progress  in  modern  organic  synthesis.  Reviewing  these
efforts  provides  a  valuable  platform  to  examine  the  interplay
between target-oriented synthesis  and methodological  innovation.
GAL will likely continue to serve as a testing ground and a source of
inspiration for developing novel synthesis strategies.

The  total  synthesis  of  GAL  has  been  successfully  established in
vitro.  Following  decades  of  research,  numerous  synthesis  routes  to
GAL and its analogs have been developed. Furthermore, the biosyn-
thesis pathway of GAL has been elucidated, facilitating its heterolo-
gous  production.  This  review  summarizes  recent  advances  in  both
the chemical synthesis and biosynthesis of GAL. Finally,  the current
challenges in GAL research are discussed, and potential avenues for
future investigation suggested.
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