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Abstract
Broad application of  plant  transformation remains challenging because the efficiency of  plant  regeneration and regeneration-based transfor-
mation  in  many  plant  species  is  extremely  low.  Many  species  and  genotypes  are  not  responsive  to  traditional  hormone-based  regeneration

systems.  This  regeneration  recalcitrance  hampers  the  application  of  many  technologies  such  as  micropropagation,  transgenic  breeding,  and

gene editing in various plant species, including ornamental flowers, shrubs, and trees. Various developmental genes have long been studied for

their ability to improve plant meristematic induction and regeneration. Lately, it was demonstrated that the combined and refined expression of

morphogenic  regulator  genes WUSCHEL and BABY  BOOM could  alleviate  their  pleiotropic  effects  and  permit  transformation  in  recalcitrant

monocots.  Moreover,  ectopic expression of plant growth-regulating factors (GRFs)  alone or in combination with GRF-interacting factors (GIFs)

improved  the  regeneration  and  transformation  of  dicot  and  monocot  species.  Fine-tuning  the  expression  of  these  genes  provides  new

opportunities to improve transformation efficiencies and facilitate the application of new breeding technologies in ornamental plants.
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 Introduction

Ornamental  plants,  including herbaceous flowers,  ornamen-
tal  grasses,  shrubs,  and  woody  plants,  form  an  important  and
rapidly  growing  sector  of  the  green  industry[1].  In  addition  to
desirable  aesthetic  attributes,  these  crops  enhance  environ-
mental  quality,  provide  ecosystem  services,  increase  property
values, and are major economic drivers with annual direct sales
of $156 billion in 2018[2].  Consumers and the industry demand
new  and  attractive  elite  cultivars  with  enhanced  biotic  and
abiotic  resistance.  Complementary  to  the  traditional  cross-
hybridization,  ploidy  manipulation,  and  mutation  breeding
techniques,  genetic  modification  via  genetic  engineering  and
gene  editing  hold  tremendous  promise  for  ornamental  trait
improvement.  These  bioengineering  technologies  can  intro-
duce unique genetic variations that are not available in current
genetic  resources  and  obtain  improved  traits  in  one  or  a  few
generations.

To date, about 50 ornamental species have been genetically
transformed[1],  and  about  20  ornamental  species  have  been
gene-edited[3].  However,  only  three  transgenic  ornamental
species  (i.e.,  carnation,  rose,  and  petunia)  have  been  deregu-
lated and approved for commercialization in a limited number
of countries[1]. For example, the 'Moon' carnation varieties, with
various  flower  colors,  are  commercially  available  in  Australia,
Norway,  Japan,  Colombia,  Malaysia,  European  Union,  and  the
U.S. The blue rose 'Applause' has been approved for marketing
in Australia, Japan, and the U.S. and is restricted to greenhouse
production for the export purposes in Colombia. A Petunia-CHS
co-suppression transgenic event with altered flower color (from

purple  to  white)  has  been  approved  for  commercialization  in
China but is not on the market yet (www.isaaa.org/gmapproval
database).  The  accidentally  released  'orange'  petunia  varieties
containing  a  maize A1-DFR transgene[4] have  been  approved
for  sale  in  Canada  and  deregulated  recently  in  the  U.S.
(www.aphis.usda.gov/aphis/newsroom/stakeholder-info/
SA_By_Date/SA-2021/SA-01).  Detailed  information  for  geneti-
cally  engineered  crops  is  available  in  the  International  Service
for  the  Acquisition  of  Agri-biotech  Applications  (ISAAA)  data-
base (www.isaaa.org/gmapprovaldatabase).

Considering  the  large  number  of  ornamental  plant  species,
genetic engineering and gene editing in these crops are limited
and lag behind major crops. There are multiple reasons for the
slow  development  of  bioengineered  ornamental  plants,  e.g.,
limited  resources,  high  deregulation  cost,  etc.  Scientifically,
plant  transformation  and  regeneration  difficulty  are  the  main
bottlenecks  in  applying genetic  engineering and genome edi-
ting  for  trait  improvement  in  specialty  crops,  including  orna-
mental  crops[5−7].  Fortunately,  recent  evidence  shows  that  the
use  of  growth  and  developmental  regulator  genes WUSCHEL
(WUS), BABY  BOOM (BBM),  and  growth-regulating  factors
(GRFs)–GRF-interacting factors (GIFs) can greatly improve trans-
formation  efficiency  and  speed  up  the  process  by  promoting
regeneration[6,8] (Fig.  1).  We  anticipate  that  these  genes  and
other  growth  and  developmental  regulator  genes  could
improve transformation efficiency and facilitate the application
of new breeding technologies in ornamental plants. This review
discusses  the  recent  advances  in  the  use  of WUS, BBM, GRFs,
and GRFs–GRFs in  plant  regeneration  and  their  potential  for
ornamental crop transformation.
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 Opportunity and difficulty in genetic
transformation of ornamental crops

Critical needs and priorities for the nursery/floriculture indus-
tries  include  enhanced  disease  resistance,  non-invasiveness,
valuable  commercial  trait  improvement,  and  advanced  breed-
ing  technology  development.  With  the  completion  of  whole-
genome  sequencing  for  >  70  ornamental  plants[9],  transgenic
breeding and gene editing offer tremendous potential and are
within  reach  for  many  ornamental  crops  to  address  these
critical needs worldwide. The release of GMO rose, petunia and
carnation into the market[1] has paved the way for more gene-
tically engineered and gene-edited ornamental crops. Neverthe-
less,  the deregulation cost is  often extremely high considering
the  market  size  and  value  for  each  ornamental  species  and
variety.  Recently,  Bratlie  et  al.[10] proposed  a  relatively  flexible
regulatory  framework  to  reasonably  lower  the  regulatory
hurdles  for  certain  uses  of  GMO  crops  in  the  best  interest  of
innovation  and  agroeconomics.  Regulatory  flexibility  could
apply  to  nursery/floricultural  crops,  making  them  ideal  'test
cases' for trait engineering and improvement.

However,  for  multiple  reasons,  plant  transformation  is  a
primary  bottleneck  in  applying  advanced  biotechnologies  for
crop  trait  improvement  in  nursery/floriculture  crops. Agroba-
cterium-  and biolistic-mediated transformation approaches are
routinely  used  in  ornamental  plant  transformation[5] and  are
highly  genotype-dependent  and  ineffective  in  many  plants,
including  ornamentals.  Many  ornamental  genotypes  are  not
transformable  or  show  poor  transformability  due  to  high
genetic  diversity,  polyploidy,  complex  reproduction  systems,
aging and maturity, desire for clonal stability, and limited input
resources.  Lack  of  effort  and  funding  support  exaggerates  the
situation  since  numerous  trial-and-error  experiments  need  to
be  conducted  to  establish  an  efficient  callus  induction  and
plant  regeneration system for  a  given cultivar.  Conventionally,
different  explants,  medium  components,  and  auxin/cytokinin
ratios  should  be  tested  for  every  plant  species  or  genotype,
which  is  laborious,  time-consuming,  inefficient,  and  requires
specialized  skill  and  experience.  Efforts  to  develop  novel
strategies to improve transformation efficiency and shorten the
transformation  process  are  needed  in  ornamental  crops  and
elite cultivars.

 The use of WUS and BBM for plant transformation
and regeneration

Plant cell totipotency is the foundation of plant tissue culture
and  regeneration,  allowing  plants  to  be  developed  from  a
single  cell  via  somatic  embryogenesis  or  organogenesis[11].

Thus, plant genes, especially transcription factors (TFs) involved
in plant embryo development and meristem maintenance,  are
logical targets for engineering to improve plant transformation
and  regeneration. WUS is  a  homeodomain  transcription  factor
functioning  as  the  primary  regulator  of  stem  cell  fate  and
meristem  maintenance  in  plants[12,13].  When  screening  for
disrupted  meristem  maintenance, WUS was  first  discovered  in
an  Arabidopsis  ethyl  methanesulfonate  (EMS)  mutant[14].
Chemical-induced  activation  of WUS expression  caused  en-
hanced  somatic  embryo  formation  in  Arabidopsis[15].  Over-
expression  studies  confirmed  the  embryogenesis-enhancing
effect of WUS[16−18] and its  organogenesis-promoting outcome
in  different  species[19−20].  In  addition, BBM is  a  member  of  the
AP2/ERF family and a key regulator of plant cell totipotency[21].
BBM was  identified  during  the in  vitro microspore  embryo-
genesis  of Brassica  napus[22].  Overexpression  of BBM induced
hormone-independent  somatic  embryogenesis  in  Arabidopsis
and B.  napus[22].  Through  transgenic BBM overexpression,
improvements  in  somatic  embryogenesis  enabled  genetic
transformation  in  previously  transformation-recalcitrant  sweet
pepper[23].  Heterologous  overexpression  of  Arabidopsis  and B.
napus BBMs in  tobacco  enhanced  regeneration  via  organo-
genesis  and  induced  somatic  embryogenesis  on  a  cytokinin-
containing  medium[24].  Thereafter,  both WUS and BBM genes
have been well studied for their effects on meristematic induc-
tion  and  maintenance  and  plant  regeneration  and  transfo-
rmation in various species (Table 1).

Constitutive  or  ectopic  expression  of  these  two  genes
commonly  results  in  pleiotropic  effects  and  subsequently
abnormal plants[6]. Multiple strategies have been developed to
use  morphogenic  genes  to  enhance  transformation  efficiency
while  maintaining  normal  plant  growth[6,7].  One  strategy  is  to
utilize  transitory  morphogenic  gene  expression  through
chemically inducible systems to control their expression. Upon
adding  or  removing  the  external  stimuli,  expression  of  the
regulator  genes  can  be  turned  on/off,  or  the  function  of
regulator genes can be post-translationally controlled,  limiting
transgene-induced  plant  dysfunction[15,24].  Another  strategy  is
to use site-specific  recombinase systems such as Cre/LoxP and
FLP/FRT to  remove  the  regulator  genes  from  the  transgenic
plant  genome following plant  regeneration.  The expression of
the recombinase genes and subsequent transgene excision can
be  controlled  by  environment-responsive  (e.g.,  heat  shock  or
desiccation)  or  development-/tissue-specific  (e.g.,  meristema-
tic)  promoters.  This  strategy  was  first  deployed in  the  Chinese
white  poplar[25].  The  overexpressed B.  campestris BcBBM gene
was  used  to  generate  transgenic  plants  that  exhibited
abnormal  phenotypes,  including  dwarfism  and  small  wrinkled

 
Fig. 1    The regeneration-promoting effect of WUS, BBM, GRFs, and GRFs–GRFs genes in plant transformation. In standard plant transformation
systems, transgene is delivered into selected explants, plant tissue culture is used to induce plant regeneration, then the final transgenic plants
are  selected  from  regenerated  plants.  Among  them,  plant  regeneration  is  often  the  bottleneck  of  the  process.  Genes WUS,  BBM,  GRFs, and
GRFs–GRFs (red) could promote plant regeneration via either organogenesis or somatic embryogenesis in various plant species.
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leaves[25].  However,  heat  shock-induced  expression  of FLP
excised the BcBBM gene in these transgenic plants, resulting in
transgenic plants with normal phenotypes[25].

Recently, an optimized procedure for using the maize ZmWUS
and ZmBBM for plant transformation has enabled the successful
transformation  in  many  transformation-recalcitrant  monocot
genotypes[26].  Lowe  et  al.[26] reported  that  the  combined
expression  of  a  weakly  expressed ZmWUS and  a  strongly
expressed ZmBBM significantly  increased  the  transformation
frequency in multiple maize inbred lines and several cultivars of
sorghum,  rice,  and  sugarcane.  Moreover,  a  drought-inducible
excision  of  transgenes  before  regeneration  directly  produced
transgenic maize plants with normal phenotypes[26]. The effecti-
veness  of  this  strategy  was  also  confirmed  in  previously  non-
transformable maize and sorghum varieties[27,28]. In yet another

iterative improvement, the maize auxin-inducible AXIG1 promo-
ter  was  used  to  drive ZmWUS2 expression,  while  the  maize
phospholipid transfer protein (PLTP) gene promoter, which has
strong expression in maize embryos and leaves, was used to drive
ZmBBM expression.  This  approach  resulted  in  direct  somatic
embryo  development  in  various  maize  varieties  and  avoided
the need for callus formation and excision of the transgenes to
generate phenotypically normal transgenic plants[29].

 The use of GRFs and GRF-GIFs in plant
transformation and regeneration

GRFs and GIFs belong to a small  family of  highly conserved,
plant-specific  TFs  in  all  land  and  charophyte  plants[30].  They
form  a  regulatory  module  with  microRNA  miR396  to  control

Table 1.    The effects of WUS, BBM, GRFs, and GRFs–GRFs on plant development and genetic transformation.

Gene* Promoter Explants Effects Ref.

AtWUS Estrogen-inducible A. thaliana root High somatic embryo formation frequency [15]
Estrogen-inducible Nicotiana tabacum leaf Shoot formation from root tip [20]
35S Gossypium hirsutum hypocotyl Shoot formation from root tip [16]
vsp1 Medicago truncatula seedling radicle 47.75% increase in embryogenic callus

formation
[18]

ZmWUS2 ZmPLTP Zea mays immature embryo Enhanced callogenesis and embryogenesis [66]
Nos A. thaliana (seedling), Solanum lycopersicum

(seedling), N. tabacum (seedling/mature
plant), Solanum tuberosum (mature plant),
Vitis. vinifera (mature plant)

de novo meristem induction [38]

AtWUS-GR, AtSTM-GR 35S A. thaliana (floral dip) Triggered ectopic organogenesis [18]
AtWUS, CHAP3A
(PmLEC1)

Estrogen-inducible Picea glauca immature embryo Did not induce somatic embryogenesis [59]

eGFP-GhWUS1a, eGFP-
GhWUS1b

Estrogen-inducible G. hirsutum hypocotyl Inhibited embryogenic callus formation [60]

AtBBM, BnBBM 35S, inducible N. tabacum leaf Enhance the regeneration capacity [24]
BcBBM 35S Populus tomentosa calli Plant regeneration through somatic

embryogenesis
[25]

BnBBM 35S, HnUbB1 A. thaliana (floral dip) B. napus haploid
embryo

Spontaneous formation of somatic embryos
and cotyledon-like structures

[22]

BnBBM
EgAP2-1 (BBM)

35S Capsicum. annuum cotyledon Made recalcitrant pepper transformable [23]
35S A. thaliana (floral dip) Enhanced regeneration capacity [63]

GmBBM1 35S A. thaliana (floral dip) Induced somatic embryos on vegetative
organs

[64]

TcBBM 35S A. thaliana (floral dip) Enhanced/hormone-independent somatic [65]
AtBBM-GR 35S A. thaliana (floral dip) Improved plant regeneration for extended

periods of time in tissue culture
[62]

HvWUS, HvBBM ZmAxig1, ZmPLPT Hordeum vulgare Co-expression increased transformation
efficiency by 3 times

[61]

ZmBBM+ZmWUS2 ZmUbi, Nos Z. mays immature embryo, mature embryo,
seedling leaf segment; Oryza sativa calli;
Sorghum bicolor immature embryo;
Saccharum officianrum calli

Enabled transformation of recalcitrant
varieties and/or increased transformation
efficiency

[26−28]

ZmAxig1, ZmPLTP Z. mays immature embryo Established rapid callus-free transformation [29]
ZmPLTP S. bicolor immature embryo Reduced genotype dependence, accelerated

regeneration, increased transformation
efficiency

[67]

AtGRF5/BvGRF5-L 2×35S Beta. vulgaris cotyledon, hypocotyl Enabled transformation of recalcitrant
varieties. Increased transformation efficiency

[33]

AtGRF5/HaGRF5-L 2×35S Helianthus annuus cotyledon Improved transgenic shoot formation
GmGRF5-L PcUbi4-2 Glycine. max primary node Improved transgenic shoot formation
BnGRM5-L PcUbi4-2 B. napus hypocotyl Promoted callus production
ZmGRF5-L1/2 BdEF1 Z. mays immature embryo) Increased transformation efficiency ~3 times
TaGRF4-GIF1 ZmUbi Triticum aestivum immature embryo Increased regeneration efficiency 7.8 times;

shortened protocol
[34]

O. sativa calli from seeds Increased regeneration efficiency 2.1 times

ClGRF41-GIF1/VvGRF4-
GIF1

35S Citrus limon etiolated epicotyl Increased regeneration efficiency ~4.7 times

CIGRF42-GIF1 35S Citrullus lanatus cotyledon Increased transformation efficiency ~9 times [68]

*At, A. thaliana; Zm, Z. mays; Pm, Picea mariana; Gh, G. hirsutum; Bn, B. napus; Bc, B. campestris; Eg, Elaeis guineensis; Gm, G. max; Tc, Theobroma cacao; Hv, H.
vulgare; Bv, B. vulgaris; Ta, T. aestivum; Cl, 1C. limon, 2C. lanatus; Vv, V. vinifera.
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many aspects of plant growth and development, including the
development  of  leaf,  stem,  seed,  root,  and  flower,  as  well  as
plant  responses  to  environmental  stress  conditions[31].  Recent
research  on  the  members  of  this  gene  family  makes  them  a
promising  area  of  focus  for  biotechnology-based  plant  impro-
vement  for  yield  traits,  given  their  roles  in  promoting  cell
proliferation and expansion[32]. Two independent studies using
GRFs or GFR-GIF chimeras from different species demonstrated
their  enhancing effects on plant regeneration and transforma-
tion  in  various  dicot  and  monocot  species[33−34].  Interestingly,
ectopic  expression  of  these  genes  did  not  affect  typical  plant
growth  and  development,  leading  to  the  regeneration  of
transgenic lines with normal phenotypes.

In  a  proof-of-concept  study,  Kong  et  al.[33] used  the  over-
expressed  Arabidopsis AtGRF5 for Agrobacterium-mediated
sugar  beet  (B.  vulgaris ssp. vulgaris)  transformation  and  found
that  the  transgenic  calli  surprisingly  produced  many  shoots.
Further  tests  with AtGRF5 and its  sugar  beet  ortholog BvGRF5-
like confirmed  that GRF5 overexpression  enhanced  shoot
organogenesis  and improved transgenic  plant  regeneration in
orthodox and recalcitrant sugar beet varieties[33]. Kong et al.[33]

also extended their studies from GRF5 to different members of
the GRF family  and  from  sugar  beet  to  various  plant  species.
Overexpression  of AtGRF5, AtGRF6, AtGRF9 or  a  putative B.
napus ortholog BnGRF5-like only  increased  transgenic  callus
formation  in  canola.  However,  overexpression  of AtGRF5 or  its
orthologs  in  soybean  (GmGRF5-like)  and  sunflower  (HaGRF5-
like)  increased  transgenic  shoot  production  in  both  soybean
and  sunflower[33].  Additionally,  Kong  et  al.[33] demonstrated
that  overexpression  of  maize ZmGRF5-LIKE1 or ZmGRF5-LIKE2
enhanced  maize  transformation  through  somatic  embryo-
genesis.

Debernardi et al.[34] created a wheat GRF4-GIF1 chimeric gene
and  tested  its  effects  on  the  genetic  transformation  of  wheat,
the  most  difficult-to-transform  cereal  crop[35].  They  found  that
the wheat GRF4-GIF1 chimera increased regeneration efficiency
by  7.8-fold  and  shortened  the  transformation  process  by  a
month  in  the  wheat  varieties  tested.  The  regeneration-  and
transformation-promoting  effects  of GRF4-GIF1 chimera  were
confirmed  in  previous  transformation-recalcitrant  genotypes,
including commercial  durum, bread wheat,  and a triticale line.
The  use  of  the  wheat GRF4-GIF1 chimera  also  increased  the
robustness  and  efficiency  of  previously  developed  wheat
transformation  protocols  such  as  the  John  Innes  Centre
method[35] and  the  Japan  Tobacco  method[36].  Additionally,
GRF4-GIF1 chimera  enhanced  the  regeneration  efficiency  of
citrus  (C.  limon)  or  grape  (V.  vinifera),  indicating  the  chimera's
effectiveness in dicots[34].

 Perspectives for the use of WUS/BBM and GRF-GIF
genes for ornamental plant transformation

Recent advances in the studies of WUS, BBM, GRF5, and GRF-
GIF chimeras  have  overcome  the  regeneration  and  transfor-
mation  bottleneck  in  many  plant  species,  including  monocots
and  dicots  with  shortened  transformation  time  even  though
these  plant  species  use  varied  explants  for  transforma-
tion[26,27,33,34] (Table 1). The transformation-promoting effects of
these genes have also been demonstrated in producing gene-
edited plants[34,37,38].  With the help of these genes, marker-free
transgenic  plants  can  be  generated  –  sometimes  without  the

use  of  plant  hormones  such  as  cytokinin[34].  Thus,  the  trans-
lational  studies  of  these  genes  in  ornamental  plants  could
provide  tremendous  opportunities  for  developing  transgenic
or  gene-edited  ornamentals.  These  genes  promote  regene-
ration in  plant  transformation in  various  plants,  irrespective  of
explant type (Fig. 1; Table 1).

Effects of ectopic expression of these genes from Arabidopsis
and  maize  could  be  readily  tested  in  target  ornamental  plant
species. While a total of 9, 29, and 13 GRF family members have
been  identified  experimentally  and in  silico in  Arabidopsis,
poplar, and rice, respectively[31],  only a few of them have been
tested.  Thus,  the  remaining GFR family  members  could  be
tested  alone  or  in  combination  with  different GIFs for  their
effects  on  regeneration  and  transformation.  Since  there  is
evidence  that  endogenous  genes  sometimes  function  better
than  homologs  from  other  species[33],  the  homologs  of  these
genes  in  ornamentals  could  be  tested  for  their  effects  on
regeneration  and  transformation  of  the  same  species.  In
addition,  it  is  worthwhile  to  fine-tune  the  expression  of WUS
and BBM in  combination  with  different GRF-GIF chimeras  for
any  additive  or  synergistic  effects  on  ornamental  transforma-
tion and regeneration.

Conditional  or  inducible  expression  could  be  further
explored in ornamental crops to minimize or eliminate the side
effects of the continuous expression of these genes – especially
WUS and BBM  – in  transgenic  plant  growth and development.
Synthetic  promoters  could  be  used  to  regulate  their
expression[39,40]. In addition, transient expression[6,41] or protein
delivery of these genes could be explored in explants cultured
on  callus  induction  medium,  protoplasts[42],  or  suspension
cells[43] of  ornamentals.  Such transformative approaches could
enhance the opportunity to deliver non-GMO engineered orna-
mental  cultivars,  reducing  regulatory  hurdles  and  enhancing
public acceptance.

In  planta (ex  vitro)  transformation  is  ideal  for  ornamentals,
especially  for  woody  plants[7].  It  has  been  demonstrated  that
gene-edited  or  transgenic  plants  could  be  rapidly  created
through de  novo meristem  induction  from  various  soil-grown
dicot plants[38]. More specifically, using Agro-injection to deliver
WUS2 and BBM or IPT,  transgenic shoots were produced in the
mature  plants  of N.  benthamiana,  potato,  and  grape.  Using
Agro-injection  to  deliver WUS2 and BBM or IPT together  with
Cas9/gRNA,  gene-edited transgenic shoots were also produced
in  the mature  plants  of  these  species[38].  This  strategy allowed
developmental  regulator  genes  to  extend in  planta transfor-
mation to a broad range of  plant species.  Exploring additional
developmental  regulator  genes and extending similar  approa-
ches to ornamental and woody plants is highly encouraged for
ornamental crop improvement.

In  addition,  more  morphogenic  genes  have  been  identified
in  plant  meristem  development  and  embryogenesis.  Some  of
these  genes,  such  as KNOTTED-1 (KN1)/SHOOT-MERISTEMLESS
(STM)[44] and LEAFY  COTYLEDON (LEC)[45],  have  been  shown  to
increase the transformation efficiency in different plants. Other
genes have not  been extensively  studied or  optimized to pro-
mote  plant  transformation.  These  include CUP-SHAPED  COTY-
LEDON (CUC)  genes[46], ENHANCER  OF  SHOOT  REGENERATION
(ESR)[47], PLETHORA[48], WIND-INDUCED  DEDIFFERENTIATIONs
(WINDs)[49], ARABIDOPSIS  RESPONSE  REGULATOR (ARR)[50],  and
WUS-related  homeobox (WOX)  genes[51], ABAINSENSITIVE  3
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(ABI3)[52], FUSCA3 (FUS3)[53], AGAMOUS  LIKE (AGL15)[54,55], LEAFY
COTYLEDON  LIKE (LIL)[56], SOMATIC  EMBRYOGENESIS  RECEPTOR-
LIKE  KINASE1 (SERK1)[57],  and RWP-RK  DOMAIN-CONTAINING  4
(RKD4)/GROUNDED (GRD)[58].  These  genes  need  to  be  tested
individually,  in combination, or with WUS, BBM and/or GRF-GIF
to  evaluate  their  potential  effects  on  the  transformation  of
ornamental plants.

 Conclusions

Traditional  plant  transformation  systems  typically  include
tissue  culture/regeneration,  molecular  cloning  of  constructs,
construct  delivery,  and  efficient  selection  of  target  events.
However,  regeneration  can  often  be  an  insurmountable  obs-
tacle  in  the  transformation  of  recalcitrant  plants,  including
many  ornamentals.  The  elucidation  and  application  of WUS/
BBM and GRF-GIF genes  have  considerable  promise  for  over-
coming  the  barrier.  In  some  cases,  the  need  for  tissue  culture
can  be  avoided  entirely  using  an Agro-injection  approach.
Further  development  of  these  approaches  will  enable  the
broad  application  of  advanced  breeding  biotechnologies  for
ornamental crops.
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