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Abstract
The response of Chrysanthemum japonense and C. nankingense to drought stress induced by polyethylene glycol was characterized at the level of

leaf  water  status,  leaf  surface  morphology  and  cuticular  wax  (quantity  and  composition),  the  activity  of  antioxidant  enzymes,  the  extent  of

membrane lipid peroxidation, the accumulation of proline, photosynthesis performance and abscisic acid (ABA) accumulation. The more tolerant

species C. japonense maintained its water status more effectively than C. nankingense, probably because its leaves form more cuticular wax and

are  able  to  accumulate  higher  levels  of  ABA.  Superoxide  dismutase  activity  was  higher  in C.  japonense than  in C.  nankingense,  as  was  that  of

catalase and ascorbate peroxidase during the later part of the stress episode, but levels of peroxidase were not differentiated at the end of the

stress period. Membrane damage, as measured by electrolyte leakage and malondialdehyde accumulation, was less severe in C. japonense, which

was also able to generate higher levels of free proline after a 10 h exposure to stress. Thus the superior response of C. japonense also reflects a

more adapted system of osmoprotection and antioxidation. As a result, photosynthesis was compromised less by drought stress in C. japonense
than in C. nankingense. That provides a scientific basis for the development and application of drought tolerance resources of chrysanthemum.
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 INTRODUCTION

Plant growth is seriously affected by abiotic stresses such as
drought,  low  temperature  and  soil  salinity.  Drought  is  of
particular  concern  in  view  of  the  predicted  consequences  of
global climate change[1]. Severe episodes of drought stress lead
to  a  shut  down  of  photosynthesis,  disturb  the  plant's  core
metabolism and can lead to plant death[2]. Plants have evolved
a  range  of  strategies,  such  as  physical  (leaf  surface  morpho-
logy),  biochemical  adaption  and  transcriptional  reprograming,
to combat drought stress[3,4].

In  the process of  long-term evolution,  plants  have formed a
series  of  physical  defenses  with  their  own  organizational
structures  to  resist  the  damage  of  the  external  environment,
such  as  trichome  and  waxy  cuticles[5].  Trichomes  are  hairy
appendages  on  the  surface  of  plants,  which  protect  plant
tissues  from  insects  and  ultraviolet  (UV),  and  increase  the
tolerance of plants to drought stress[6]. The development of the
cuticle, comprising a lipid layer (cutin) intermeshed and coated
with  wax,  is  one  of  the  major  adaptations  for  withstanding
short term drought stress[7]. The cutin molecule is composed of
cross-linked C16 and C18 ω-hydroxyl fatty acids, while the wax
is a complex mixture of long-chain fatty acids and their derived
alcohols,  aldehydes,  alkanes,  ketones,  and  wax  esters[8,9].  An
increased deposition of cuticular wax has been associated with
higher levels of drought tolerance in both rice and Arabidopsis
thaliana[10,11].  Under  drought  conditions,  the  phytohormone

abscisic  acid  (ABA),  a  key  regulator  of  leaf  stomatal  conduc-
tance,  is  triggered[12,13].  Due  to  increase  of  ABA  level  under
drought,  the  guard  cell  forcibly  closes  the  stomata  to  reduce
transpirational  water  loss,  and  inhibits  photosynthesis  by  pre-
venting the entry of CO2

[2,14,15]
. At the same time, the shrinkage

in cell volume caused by water shortage increases the viscosity
of the cellular content, hindering normal enzymatic function as
a  consequence[16].  A  drought  stress-induced  loss  in  photosyn-
thetic activity can also generate oxidative stress on account of
the  build-up  of  reactive  oxygen  species  (ROS)[17,18].  Under
normal conditions, plants scavenge ROS by a range of enzyma-
tic and non-enzymatic means[19]. The capacity to neutralize ROS
has  been  associated  with  the  level  of  drought  tolerance  in  a
number of plant species[20−22].  Some plant species also show a
pronounced  capacity  to  adjust  the  cellular  osmotic  environ-
ment  in  response  to  drought  stress  by  accumulating  highly
soluble  non-toxic  compounds  such  as  sugars  (sucrose,  treha-
lose  and  sorbitol),  free  amino  acids  (proline)  and  amines
(glycine betaine and polyamines)[23,24].

The  ornamental  species  chrysanthemum  (Chrysanthemum
morifolium) is widely appreciated as a source of cut flowers and
pot  plants.  Most  chrysanthemum  cultivars  are  very  vulnerable
to drought stress, but some of the wild relatives of C. morifolium
have  been  identified  as  important  reservoirs  of  genetic  varia-
tion  relevant  for  drought  tolerance  improvement[25,26].  Since
the physiological  response of Chrysanthemum spp.  to  drought
stress  is  poorly  understood,  we  set  out  to  study  leaf  surface
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morphology  and  the  response  of  key  antioxidant  enzymes,
photosynthesis  and  endogenous  levels  of  ABA  to  artificially
induced drought stress in C. nankingense and C. japonense, two
species  characterized  by  a  differential  level  of  drought
tolerance.

 MATERIALS AND METHODS

 Plant material and stress treatments
The  accessions  of C.  nankingense (drought-sensitive)  and C.

japonense (drought-tolerant) were obtained from the Chrysan-
themum  Germplasm  Resource  Preserving  Centre,  Nanjing
Agricultural  University,  China.  Rooted  cuttings  (six  leaf  stage)
were  grown  hydroponically  in  Hoagland  solution  (pH  5.8)
under a 12 h photoperiod (300 µmol·m−2·s−1 photosynthetically
active  radiation),  a  relative  humidity  of  70%  and  a  day/night
temperature of 25/20 °C. The material was acclimated to these
conditions  for  six  days  before  the  imposition  of  polyethylene
glycol  (PEG)-induced  drought  stress.  Following  the  method  of
Zhang  et  al.[27],  the  plants  were  transferred  for  two,  four,  six,
eight or 10 h into a solution of 20% w/v PEG 6000 dissolved in
Hoagland,  generating  a  potential  of  ~  −0.52  MPa.  Control
plants were retained in half strength Hoagland's solution (−0.01
MPa). The experiment was set out as a completely randomized
split-plot  with  three  replications  (six  plants  per  species  per
replication).  The  physiological  and  biochemical  assays  were
conducted on the third or fourth leaves below the apex of the
shoot.

 Water status
Leaf  wilting  was  rated  visually  on  a  scale  of  zero  (no  obser-

vable  wilting)  to  five  (severely  wilted)[27].  The  relative  water
content (RWC) of leaves was estimated following the methods
of  Galmés  et  al.[28].  Each  data  point  represented  the  mean  of
three independent leaves.

 Characterization of the leaf surface and its cuticular
wax

The  morphology  of  the  leaf  surface  was  observed  by
scanning electron microscopy, according to the methods of He
et al.[29]. To calculate the density of trichome and stomata, each
sample  was  observed  under  six  different  scope  visual  fields.
Cuticular  waxes  were  extracted  from  0.2  g  fully  expanded
leaves  by  incubating  in  10  ml  chloroform  for  30  s  at  room
temperature.  An  internal  standard  was  provided  by  adding
5 µg  n-tetracosane  (C24)  to  each  sample.  The  solvent  was
evaporated under a mild nitrogen stream, then redissolved in a
mixture  of  100 µl  pyridine,  100 µl  bis-N,N-(trimethylsilyl)-
trifluoroacetamide  (Macherey-Nagal,  Düren,  Germany).  After
heating  at  70  °C  for  1  h,  the  solvent  was  evaporated  again
under  nitrogen  and  the  samples  redissolved  in  200 µl  chloro-
form.  Qualitative  and  quantitative  composition  analyses
followed  the  methods  of  Lee  et  al.[30].  A  1 µl  aliquot  was
separated  by  GC–MS  (Agilent  7890A-5975C,  USA)  and
quantification was based on the internal standard.

 Enzyme assays
Leaf  samples  were  stored  at  −80  °C  after  quick  freezing  in

liquid nitrogen. The frozen leaf segments (0.25 g) were ground
to  a  powder  in  liquid  nitrogen,  and  soluble  protein  was
extracted  by  homogenization  in  1  ml  50  mM  potassium
phosphate buffer  (pH 7.0)  containing 1 mM EDTA and 1% w/v

polyvinyl pyrrolidone 40. The supernatant of centrifuged homo-
genate (12,000 g,  15 min,  4  °C)  is  directly  used for  subsequent
enzyme  analysis.  Total  protein  content  was  determined
according to  the Bradford dye-binding method[31].  Superoxide
dismutase  (SOD)  activity  assay  was  performed  following  the
method  of  Giannopolitis  &  Ries[32] with  minor  modifications.
Each 3 ml reaction mixture (50 mM potassium phosphate buffer
(pH  7.8),  13  mM  L-methionine,  75 µM  nitroblue  tetrazolium
(NBT), 2 µM riboflavin, 1 mM EDTA and 100 µl supernatant) was
illuminated  for  10  min  in  white  fluorescent  light  (100
µmol·m−2·s−1). Then the SOD activity was measured at 560 nm.
Peroxidase  (POD)  activity  was  measured  by  monitoring  the
increase  in  absorbance  at  470  nm  caused  by  the  oxidation  of
guaiacol, which was slightly modified according to the method
of Li[33]. Each 3 ml reaction was initiated by adding 20 µl 40 mM
H2O2 into  2.9  ml  50  mM  phosphate  buffered  saline  (PBS)  (pH
7.0), 50 µl 20 mM guaiacol and 30 µl supernatant. PBS was used
as  blank  control  instead  of  supernatant.  The  catalase  (CAT)
assay  was  based  on  method  of  Beers  &  Sizer[34] with  minor
modifications.  Each  3  ml  reaction  was  initiated  by  adding  50
mM potassium phosphate buffer (pH 7.0), 15 mM H2O2 and 100
µl  supernatant.  Ascorbate  peroxidase  (APX)  activity  was
assayed  following  the  method  of  Nakano  &  Asada[35] with
minor modifications. Each 3 ml reaction was initiated by adding
50 mM potassium phosphate buffer (pH 7.0), 0.5 mM ascorbate,
0.1 mM H2O2 and 100 µl supernatant.

 Cell membrane stability, malondialdehyde (MDA) and
free profine content

Cell  membrane  stability  was  determined  by  measuring
electrolyte  leakage  (EL).  Following  the  method  of  Hu  et  al.[36],
whole fully expanded leaves were sliced and incubated in 10 ml
distilled deionized water on a shaker for 24 h. The conductance
of  the  solution  at  24  h  was  taken  as  the  initial  level  (Ci).
Thereafter,  the  material  heated  to  100  °C  for  10  min,  and  the
conductance of  the solution (Cmax)  was determined again.  The
EL was calculated by the expression (Ci/Cmax)  × 100%. For lipid
peroxidation  analysis,  the  MDA  content  was  measured  using
the  thiobarbituric  acid  (TBA)  method  described  by  Heath  &
Packer[37] with minor modifications. Fresh leaf tissue (0.5 g) was
ground and extracted in 5 ml 5% w/v trichloroacetic acid (TCA).
The homogenate was centrifuged (12,000 g, 5 min), and 2 ml of
the supernatant was added to 2 ml 0.67% w/v TBA (prepared in
10% v/v TCA).  The mixture was rapidly cooled after  heating to
100°C  for  30  min,  and  centrifuged  (12,000 g,  10  min).  The
absorbance  of  the  supernatant  was  monitored  at  532  nm.
Correction  of  non-specific  turbidity  was  obtained  by  subtrac-
ting  the  absorbance  value  taken  at  600  nm.  The  level  of  lipid
peroxidation  was  expressed  as  nmol  per  g  fresh  weight.  Free
proline was extracted and determined as described by Bates et
al.[38] with minor modifications.

 Chlorophyll content and photosynthesis related
parameters

Chlorophyll (0.1 g) was extracted in 95% ethanol for 48 h and
the  absorbance  of  the  supernatant  detected  at  470,  649  and
665  nm.  The  quantity  of  total  chlorophyll  (a  +  b)  was  deter-
mined  as  described  by  Li[33].  The  net  photosynthetic  rate  (Pn),
stomatal  conductance  (Gs),  transpiration  rate  (Tr),  and  inter-
cellular  CO2 concentration  (Ci)  of  fully  expanded  leaves  were
monitored using a LI-COR 6400 portable photosynthesis system
(LI-COR,  Lincoln,  NE,  USA).  The  CO2 concentration  in  the
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chamber was 380 ± 10 µmol/mol and a photosynthetic photon
flux  density  of  1000 µmol·m−2·s−1 at  the  leaf  surface  was
provided by an LED red-blue light source (LI-COR 6400-02). The
maximum  quantum  efficiency  of  PSII  photochemistry  (Fv/Fm)
was  determined  in  the  same  intact  leaves  according  to  the
method  of  Liu  et  al.[39].  For  each  treatment,  Pn,  Gs,  Tr,  Ci  and
Fv/Fm  values  were  obtained  from  five  leaves  at  each  time
point.

 Endogenous ABA level
Frozen leaf (~1 g fresh weight) was ground in liquid nitrogen

and  homogenized  for  12  h  in  10  ml  pre-cooled  80%  v/v
aqueous  methanol  under  low  light.  The  mixture  was  centri-
fuged (12,000 g,  4 °C, 10 min) and the pellet extracted twice in
10  ml  80%  methanol  at  4  °C  under  low  light.  The  supernatant
was  filtered  through  a  Sep-Pak  C18  gel  cartridge  and  freeze
dried.  The  lyophilisate  was  redissolved  in  1  ml  methanol  and
passed  through  a  0.45 µm  filter.  Quantification  of  ABA  was
conducted by high performance liquid chromatography (HPLC)
(Agilent Technologies 1100) as described by Ciha et al.[40] with
minor  modifications.  The  separation  column  was  supplied  by
Agilent  (HC-C18,  5 µm, 250 mm × 4.6  mm).  The solvents  were
0.6%  v/v  glacial  acetic  acid  (A)  and  100%  methanol  (B);  the
initial  solvent  was  100%  A,  moving  to  50%  A,  50%  B  over  the
subsequent  10 min,  where it  was  held for  20 min.  The solvent
flow rate was 1 ml/min, the detection wavelength 254 nm and
the column temperature 30 ± 0.2 °C. Quantification was based

on  calibration  with  known  ABA  standards  (Sigma-Aldrich
Chemie, Munich, Germany).

 Statistical analysis
All  data  are  mean  ±  standard  deviation  (SD).  IBM  SPSS

Statistics  17.0  software  and  Microsoft  Excel  2007  was  used  for
statistical  analysis.  A one-way analysis  of  variance,  followed by
Duncan’s  multiple  range  test  (with  P  set  at  0.05/0.01),  was
employed  to  assess  whether  treatment  means  differed  signi-
ficantly from one another.

 RESULTS

 Plant drought stress phenotype and leaf water status
The  wilting  index  of  unstressed  plants  was  zero,  and  the

stress  induced  wilting  in  both  species  (Fig.  1a).  After  2  h  of
stress,  the  wilting  index  of C.  japonense rose  to  one,  and  the
lower leaves had wilted and had begun to droop (Y1 in Fig. 1a).
Wilting set in earlier and was more severe in C. nankingense. By
2  h,  its  wilting  index  had  already  reached  two,  and  its  lower
leaves were wilted and drooping (N1 in Fig. 1a); after 10 h, the
wilting index was five and all  the leaves appeared dehydrated
and withered (N5 in Fig. 1a). At this stage, the wilting index of C.
japonense was  still  only  three  and  its  uppermost  leaves
remained turgid (Y5 in Fig. 1a).

The  RWC  of  both  species  was  maintained  at  the  same  level
under non-stressed conditions (Fig. 1b), but declined markedly

a

b

 
Fig. 1    The response of C. japonense and C. nankingense to PEG-induced drought stress. (a) The morphological response of C. japonense and C.
nankingense to PEG-induced drought stress. Y0-Y5, N0-N5: C. japonense (Y) and C. nankingense (N) plants subjected to, respectively, 0, 2, 4, 6, 8
and 10 h of stress. The wilting index ranges from 0 (no observable wilting) to 5 (severely wilted). Scale bars = 1 cm. (b) The response of leaf RWC
to PEG-induced drought stress. Y: C. japonense, N: C. nankingense, C: Control (no PEG), T: PEG treatment. ** Value significant at P ≤ 0.01. Values
given as mean ± SD (n = 3).
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as a result of the stress treatment. The decline was more acute
in C.  nankingense than  in C.  japonense.  The  RWC  in  the  leaf  of
the latter was significantly higher than in the former after only
4 h of PEG treatment, while after a 10 h exposure, the RWCs had
fallen to, respectively, 62.3% and 73.3%.

 Leaf surface morphology
A  marked  difference  in  the  appearance  of  the  leaf  surface

was  observed  between  the  two  species.  The  trichome  density
on the upper  and lower leaf  surface of  the C.  nankingense leaf
was low (0.10 and 1.79 per mm2 respectively) (Table 1), while in
contrast, C. japonense developed many trichomes especially on
the  lower  leaf  surface  -  the  density  on  the  upper  leaf  surface
was  33.45  per  mm2,  while  that  on  the  lower  surface  was  too
high  to  count.  The  abundance  of  trichomes  prevented  the
measurement  of  stomatal  density,  but  on  the  upper  leaf
surface,  stomatal  density  in  the C.  japonense was  significantly
greater  than  on  the  equivalent C.  nankingense leaf  surface
(76.57 vs 11.96  per  mm2,  respectively)  (Table  1),  and  the C.
japonense gland  cells  were  larger  than  those  on  the C.
nankingense leaf (Fig. 2d, h).

 Cuticular wax amount and composition
The  total  wax  load  on  the C.  japonense leaf  was  ~6.6  fold

greater than on the C. nankingense leaf (Fig. 3a). There was also
a  significant  difference  between  the  species  for  cuticular  wax
composition.  Fatty  alcohols  (include  primary  alcohols  and
secondary alcohols) were the predominant component (39.9%)
of the C. japonense leaf wax, followed by esters (33.1%), alkanes
(21.3%) and fatty acids (5.7%).  In C.  nankingense,  fatty alcohols
were even more predominant (49.8%), while the remainder was
composed  of  alkanes  (35.4%)  and  esters  (14.8%).  The  level  of

fatty acids in C. nankingense cuticular wax was below the level
of  detection.  Nine  components  were  specific  to  the  cuticular
wax of C.  japonense,  namely C20 and C24 fatty acids,  C14,  C22
and C24 primary alcohols, and C16, C17, C31 and C32 esters. A
C20 ester  was the only component specific  for C.  nankingense.
Eight components were shared: C26 and C28 primary alcohols,
C30  secondary  alcohol,  C17,  C24  and  C32  alkanes,  C30  ester
(although  its  content  was  greater  in C.  japonense)  and  C30
primary alcohol (the content of this component was greater in
C. nankingense) (Fig. 3b).

 Antioxidant enzyme activity
The PEG treatment enhanced the activity of SOD, POD, CAT,

and  APX  in  both  species.  SOD  activity  was  greater  in C.
japonense than  in C.  nankingense throughout  the  stress
treatment  (Fig.  4a).  In C.  japonense,  it  rose  to  2.0  fold  its
background level after 8 h exposure and to 1.6 fold after 10 h,
while in C.  nankingense,  the equivalent levels  were 1.1 and 1.2
fold.  POD  activity  tended  to  be  greater  in C.  nankingense,
although  after  4  h  of  treatment  it  reached  1.9  fold  of  the
background  level  in C.  japonense,  representing  1.3  fold  the C.
nankingense level (Fig. 4b). The background level of CAT activity
was higher  in C.  nankingense than in C.  japonense.  In  response
to  PEG  treatment,  it  increased  markedly  in  both  species  (Fig.
4c),  reaching  1.3  and  1.6  fold  of  the  background  level  in C.
nankingense after,  respectively,  2  h  and 4  h  of  treatment.  In C.
japonense, CAT  activity  rose  to  1.2  and  1.8  fold  of  the
background after 2 h and 4 h of treatment, respectively. After 6
h of exposure, activity had risen to 1.4 (C. nankingense) and 2.0
(C.  japonense)  fold  of  the  background  level,  although  these
levels  were  not  statistically  different  from  one  another.  As  the
stress was prolonged, CAT activity in C. japonense rose to nearly

Table 1.    Variation in leaf surface morphology in C. japonense and C. nankingense.

Species
Upper epidermis of leaf Lower epidermis of leaf

Trichome density (mm−2) Stoma density (mm−2) Trichome density (mm−2) Stoma density (mm−2)

C. japonense 33.45 ± 1.46A 76.57 ± 11.72 A ∞ N
C. nankingense 0.11 ± 0.12B 11.96 ± 10.81B 1.79 ± 0.47 346.94 ± 24.73

Values (given as mean ± SD) labeled with a different letters differed significantly (P ≤ 0.01) (n = 6). ∞ means too much to calculate. N means unable to observe
because of the well-developed trichome layer covering lower epidermis of leaf.

a b c d

e f g h

 
Fig. 2    Scanning electron microscopic images of the leaf surface of C. japonense (a-d) and C. nankingense (e-h). (a) and (e): upper leaf surface,
(b) and (f): lower leaf surface, (c) and (g): a single trichome, (d) and (h): a single stomate.
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two  fold  the  background  level,  but  in C.  nankingense,  the
increase was much more modest. APX activity was also greater
in C.  nankingense than  in C.  japonense under  non-stressed
conditions  (Fig.  4d).  The  PEG  treatment  rapidly  induced  APX

activity  in C.  nankingense,while  that  in C.  japonense increased
slowly. APX activity in C. nankingense reached 1.7 fold of back-
ground by 8 h,  and 1.4 fold by 10 h,  while in C.  japonense,  the
equivalent levels were 3.0 fold and 3.3 fold.

a

b

 
Fig. 3    (a) Quantity and (b) composition of cuticular wax on the C. japonense (Y) and C. nankingense (N) leaf. ** Value significant at P ≤ 0.01.
Bars indicate the SD of the mean (n = 3).

a b

c d

 
Fig. 4    Enzymatic activity (SOD (a),  POD (b),  CAT (c),  and APX (d)) in the leaf of droughted C. japonense (Y) and C. nankingense (N) plants.  C:
Control (no PEG), T: PEG treatment. *, ** Value significant at P ≤ 0.05 or 0.01. Values given as mean ± SD (n = 3). SD’s indicated by a bar.
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 EL and MDA content
Under  control  conditions,  EL  was  maintained  at  a  constant

low level in both species (Fig. 5a). However, when subjected to
PEG  treatment,  it  increased  as  the  time  of  exposure  was
lengthened. The C. nankingense EL was significantly higher than
that of C. japonense throughout the whole period. By the end of
the stress period treatment, it had reached 3.4 fold the control
level  in C.  japonense and  3.8  fold  in C.  nankingense. The  leaf
MDA content behaved in a  similar  fashion (Fig.  5b),  increasing
in  both  species  as  the  plants  were  exposed  to  stress.  The
increase  set  in  earlier  and  was  more  pronounced  in C.
nankingense. After 2 h, the MDA content in the C. japonense leaf
was  no  different  from  the  background  level,  while  in C.
nankingense it  had  risen  by  1.3  fold.  By  the  end  of  the  stress
treatment,  the  MDA  content  of  the C.  japonense and C.
nankingense leaves  were,  respectively  1.7  and  2.7  fold  that  of
the  non-stressed  controls,  indicating  that  the  membrane  lipid
of C.  nankingense was  highly  peroxidized  and  the  cell
membranes system seriously damaged.

 Free proline content
The  accumulation  of  proline  was  negligible  under  control

conditions,  but  the  PEG  treatment  induced  a  significant  accu-
mulation in proline. C.  japonense responded to water deficient
stress  more  quickly,  and  accumulated  more  proline  than C.
nankingense (Fig. 6). The proline content in the C. japonense leaf
was 1.6 and 2.4 fold of background at 2 h and 4 h respectively,
and  the  corresponding  levels  were  1.2  and  1.6  fold  in C.
nankingense.  The  proline  level  in  the C.  japonense leaf  was
higher  than  that  in  the C.  nankingense leaf  throughout  the
stress treatment.

 The effect of drought stress on photosynthetic
parameters

Pn,  Gs,  Tr,  Fv/Fm  and  chlorophyll  content  were  negatively
affected  by  drought  stress  in  both  species,  while  the  Ci  para-
meter increased. The background level of Pn in C. nankingense
was  ~8.7 µmol  CO2 m−2·s−1,  somewhat  higher  than  in C.
japonense.  In  plants  subjected  to  stress,  this  parameter
decreased more sharply in C.  nankingense than in C.  japonense
(Fig. 7a).  By 2 h, it had fallen to 0.7 (C. nankingense)  and 0.9 (C.
japonense)  fold  of  the  control,  and  remained  higher  in C.
japonense than  in C.  nankingense during  the  rest  of  the
treatment. By 10 h, it  had fallen to 0.1 fold in C. japonense and

close to zero in C.  nankingense.  Gs behaved in a similar  way.  It
decreased more rapidly  in C.  nankingense than in C.  japonense
(Fig.  7b),  and  over  the  period  6−10  h,  remained  higher  in C.
japonense than in C. nankingense. Tr followed the same pattern.
Under control  conditions,  it  was higher  in C.  nankingense than
in C.  japonense (Fig.  7c),  after  2  h  of  stress  it  had  fallen  to  0.8
fold  the  background  in  both  species.  As  the  stress  was
prolonged, Tr fell in C. nankingense to 0.6 (4 h), 0.3 (6 h) and 0.1
(8  h)  fold  of  the  background  level,  and  in C.  japonense to,
respectively,  0.6,  0.4  and  0.3  fold  at  these  time  points.  Under
control  conditions,  the Ci  of C. japonense was higher than that
of C. nankingense.  It increased significantly in C. nankingense in
response to PEG treatment (Fig. 7d). In contrast, in C. japonense,
it fell  very slightly over the first four hours of stress, only rising
above the background level thereafter. Its level was higher in C.
nankingense than  in C.  japonense throughout  the  stress  treat-
ment.  Under  control  conditions,  the  Fv/Fm  ratio  remained
stable at > 0.8 (Fig.  7e);  exposure to PEG stress had a negative
effect  on  both  species,  particularly  on C.  nankingense.  By  the
end  of  the  treatment,  the  Fv/Fm  of C.  nankingense and C.
japonense were,  respectively  0.5  and  0.7  fold  that  of  the
background. Under control conditions, the chlorophyll content

 
Fig.  6    Free proline content in  droughted leaves of C.  japonense
(Y) and C. nankingense (N). C: Control (no PEG), T: PEG treatment. **
Value  significant  at  P  ≤ 0.01.  Values  given  as  mean  ±  SD  (n  =  3).
SD's indicated by a bar.

a b

 
Fig. 5    (a) Electrolyte leakage and (b) MDA content in droughted leaves of C. japonense (Y) and C. nankingense (N). C: Control (no PEG), T: PEG
treatment. ** Value significant at P ≤ 0.01. Values given as mean ± SD (n = 3).
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of the leaves of C. nankingense was significantly higher than in
those  of C.  japonense,  but  it  decreased  more  quickly  in C.
nankingense than  in C.  japonense when  the  plants  were
exposed  to  PEG  treatment  (Fig.  7f).  By  the  end  of  the  stress
treatment,  the  chlorophyll  content  of C.  nankingense was  0.6
fold and that of C. japonense was 0.8 fold the initial levels,  and
the chlorophyll content of C. japonense was significantly higher
than that of C. nankingense.

 Leaf ABA content
The  ABA  content  of  the  leaves  of  both  species  was  consis-

tently  low  under  control  conditions  (Fig.  8),  but  increased
markedly  in  response  to  PEG  treatment.  The  response  of C.
japonense plants  was  much  larger  than  that  of C.  nankingense
plants. The  ABA  content  in  the C.  japonense leaves  increased
rapidly  over  the  first  six  hours  of  stress,  and  thereafter  more
slowly.  The  ABA  content  in  the  leaves  of C.  japonense was  1.7,
2.3 and 1.5 fold higher than in the leaves of C. nankingense at 2
h, 6 h and 10 h respectively.

a b

c d

e f

 
Fig.  7    Photosynthetic  parameters  (Pn  (a),  Gs  (b),  Tr  (c),  Ci  (d),  Fv/Fm  (e)  and  chlorophyll  (a  +  b)  content  (f))  in  the  droughted  leaves  of C.
japonense (Y) and C. nankingense (N). C: Control (no PEG), T: PEG treatment. *, ** Value significant at P ≤ 0.05 or 0.01. Values given as mean ± SD
(n = 5). SD’s indicated by a bar.

 
Fig. 8    ABA content in droughted leaves of C. japonense (Y) and C.
nankingense (N).  C:  Control  (no  PEG),  T:  PEG  treatment.  **  Value
significant  at  P  ≤ 0.01.  Values  given  as  mean  ±  SD  (n  =  3).  SD's
indicated by a bar.
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 DISCUSSION

 The two Chrysanthemum spp. responded differentially
to simulated drought stress

C.  nankingense,  the  more  drought  sensitive  of  the  two
Chrysanthemum spp.,  developed  signs  of  drought-induced
damage  earlier  than C.  japonense and  the  wilting  index  of  the
former  was  consistently  higher  at  each  time  point  (Fig.  1a).  In
agreement  with  this  differential  response,  the  RWC  of C.
japonense was  greater  than  that  of C.  nankingense (Fig.  1b),
supporting the  use  of  RWC as  an  indirect  means  of  classifying
crop varieties for their drought sensitivity[41,42].

 The association between leaf surface features and
drought tolerance

The  leaf  surfaces  of  the  two  species  differs  greatly.  Leaf
trichomes  have  been  considered  as  a  physical  barrier  against
drought  and  high  temperature  stress[43].  They  could  increase
water-use  efficiency  by  increasing  leaf  boundary-layer
resistance,  thereby  reducing  transpirational  water  loss[44].  The
more  tolerant  species  developed  a  much  higher  density  of
trichomes on its leaves (Table 1). As this trait is readily visible, it
would  be  attractive  as  an  indirect  selection  criterion  for
improving  drought  tolerance[45].  Cuticular  wax  deposition
represents  an  important  mechanism  for  limiting  non-stomatal
water  loss[46].  The  quantity  of  cuticular  wax  on  the  surface  of
the leaves of C. japonense was markedly greater than on those
of C.  nankingense (Fig.  3a),  consistent  with  their  ranking  with
respect  to  drought  tolerance.  There  were  also  significant
differences  between  the  two  species  with  respect  to  the
composition of cuticular wax (Fig. 3b), with the wax in the more
tolerant  species  being  richer  in  fatty  alcohols  and  esters.  Wax
has been reported to affect  the drought tolerance of  plants  in
many  species,  among  which,  it  has  been  reported  the  wax
content of sunflower increased under drought condition[47]. To
our knowledge,  this  is  the first  documented description of  the
composition of chrysanthemum cuticular wax.

 The association between antioxidant enzyme activity
and drought tolerance

Drought stress is often accompanied by the accumulation of
ROS,  which  induce  oxidative  stress[48].  Plants  have  evolved  a
number of means to scavenge ROS molecules, and the enzyme
SOD is considered to be part of the first line of this defence[49].
SOD,  CAT,  APX,  POD  all  reduces  superoxide.  The  activity  of  all
four of these enzymes was increased by drought stress in both
species (Fig. 4), although SOD activity was enhanced more in C.
japonense than  in C.  nankingense. Significant  increases  in  the
activity of both APX and CAT were observed in the early phase
of  the  stress  exposure,  particularly  in C.  nankingense, while
more modest increases were observed for C. japonense; enzyme
activity remained higher in C. japonense than in C. nankingense
after 6 h of stress. Experiments conducted in rice have similarly
shown  that  the  more  tolerant  cultivars  tend  to  express  higher
levels of CAT and APX activity[50]. It has been suggested that in
soybean[51] , sorghum[52] and sunflower[47], drought tolerance is
associated with enhanced POD activity. However, this does not
appear to apply to Chrysanthemum spp., since the level of POD
activity was similar in both species after 10 h of stress (Fig. 4b).
Drought  stress  induces  extensive  lipid  peroxidation,  allowing
MDA  (a  by-product  of  lipid  peroxidation)  content  to  be
exploited as an indicator of stress-induced oxidative damage to

membranes[53,54]. Finally, EL provides a measure of cell integrity,
and  so  has  been  frequently  used  as  a  surrogate  for  stress
tolerance[55,56].  The  levels  of  both  EL  and  MDA  in C.  japonense
were  uniformly  lower  than  in C.  nankingense,  at  least  over  the
first 10 h of stress treatment (Fig. 5), supporting the conclusion
that C.  japonense is  a  more  drought  tolerant  species  than C.
nankingense.

 The association between osmotic regulation and
drought tolerance

Plants  take  advantage  of  various  molecules  as  osmoregu-
lants,  in particular the amino acid proline[57]. C.  japonense with
strong  drought  tolerance  clearly  accumulated  more  proline
than C. nankingense when the plants were exposed to drought
stress  (Fig.  6),  similar  results  were  observed  in  other  species
including sunflower[47], rice[58] and Arabidopsis[24]. Proline contri-
butes to the stabilization of sub-cellular structures, the scaven-
ging of  ROS and to buffering of  cellular  redox-potential  under
stress  conditions[59].  The  enhanced  ability  of  the C.  japonense
leaf  to  accumulate  proline  thus  may  well  provide  a  more
favorable  osmotic  environment  and  a  more  stable  cell
membrane during episodes of drought stress.

 The association between photosynthesis and drought
tolerance

Photosynthesis  is  very  sensitive  to  drought  stress.  The
photosynthetic  parameters  Pn,  Gs  and Tr  were  all  significantly
compromised  in  both Chrysanthemum spp.  by  drought  stress
(Fig. 7a−c).  Zhang et al.[60] has similarly reported that moisture
stressed Atractylodes  lancea suffers  a  reduction  in  photosyn-
thesis as measured by Gs and Pn. An early response to drought
stress  is  stomatal  closure,  which  serves  to  limit  transpirational
loss[61]. After 2 h of stress, C. nankingense had significant higher
Tr than C. japonense (Fig. 7c),  thus resulting in more water loss
in  leaves,  which  might  explain  faster  loss  in  RWC  of C.
nankingense than  that  in C.  japonense. Changes  in  Gs  depend
on  leaf  RWC[62],  and  Gs  and  Tr  were  both  correlated  with  leaf
RWC  in  both  species.  It  is  generally  considered  that  drought-
induced  stomatal  closure  would  certainly  have  suppressed
photosynthesis[63,64].  Gs  and  Pn  decreased  rapidly  in  both
species  under  PEG  treatment  (Fig.  7a, b).  Under  a  more  pro-
longed  period  of  moisture  deficiency,  the  leaf  tissue  becomes
increasingly dehydrated, inducing metabolic impairment and a
restriction  in  photophosphorylation  capacity[62,65].  When
stomatal conductance falls  below a threshold of 50 mmol H2O
m−2·s−1,  limitations  of  non-stomatal  processes  become  more
important[66].  Here,  Gs  remained  above  this  threshold  in  the
first  four  hours  of  stress,  but  dropped  below  it  by  6  h  in C.
nankingense but  not  in C.  japonense (Fig.  7b), suggesting  that
the photosynthetic apparatus of C. nankingense suffered earlier
and more severe damage. Ci  increased slightly in both species
under  PEG  stress  (Fig.  7d),  as  also  observed  in  cotton,  vetiver
grass  and  wheat[67−69].  An  overestimate  in  Ci  could  arise  from
heterogeneous (or  'patch')  stomatal  closure and cuticular  con-
ductance,  which  have  been  identified  as  potential  sources  of
error in the calculation of Ci in drought affected plants[70].  This
may explain why Ci rose at a time when Gs and the RWC were
low.  Dark-adapted  Fv/Fm  values  and  estimates  of  chlorophyll
content decreased in both species under PEG stress (Fig. 7e, f).
A decline in PSII quantum efficiency during periods of stress has
been  noted  in  a  number  of  plant  species[71−73].  Low  Fv/Fm
ratios  have  been  related  to  photoinhibition[74],  since  plants
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frequently  absorb  more  light  energy  than  they  require  for
photosynthesis,  particularly  under  drought  conditions.  Due  to
the  limited  reaction  capacity  of  converting  solar  energy  into
chemical  energy,  excessive  light  absorption  exacerbates  the
inactivation  of  PSII  under  drought,  freeing  electrons  for  the
formation of  ROS[75].  Both the Fv/Fm ratio  and the chlorophyll
content  decreased more sharply  for C.  nankingense than for C.
japonense. After 10 h of PEG stress, C. japonense leaves retained
a  higher  chlorophyll  content  and  a  larger  Fv/Fm  ratio  than
those of C. nankingense (Fig. 7e, f), symptomatic of C. japonense
being able to maintain a higher photosynthetic capacity under
drought stress.  Similarly,  drought tolerant bean and edamame
cultivars  have  been  reported  to  retain  a  higher  chlorophyll
content  and  a  superior  Fv/Fm  ratio  than  do  more  susceptible
ones[76,77].

 The association between ABA content and drought
tolerance

ABA, one of the most important metabolites produced under
drought  stress,  is  known  to  regulate  plant  water  balance  and
drought  stress  tolerance[78].  Analysis  of  ABA-deficient  mutants
and  -related  genes  have  shown  that  this  hormone  is  essential
for  triggering  many  of  the  important  responses  to  drought
stress[79].  Here,  it  was  obvious  that  the  ABA level  in  the  leaf  of
both  species  was  greatly  enhanced  by  the  imposition  of
drought stress (Fig. 8). The ABA content was significantly higher
in C.  japonense than  in C.  nankingense.  In  droughted-stressed
durum  wheat,  Mahdid  et  al.  have  shown  that  a  more  tolerant
cultivar accumulated more ABA than did a less tolerant one[80].
ABA  is  thought  to  increase  hydraulic  conductivity  from  the
roots  to  the  transpiring  tissues[81],  acting  in  conjunction  with
ABA-induced  stomatal  closure  to  restore  a  favorable  water
status to the leaf tissue. Gs and ABA appeared to be negatively
correlated  in  both  species.  ABA  may  also  influence  osmotic
regulation,  ion  and  solute  transport  loading  in  growing  cells,
and so play a vital role in both water retention and protein and
membrane protection[82].  Low water  potential-induced proline
accumulation in A. thaliana requires wild-type levels of ABA[83],
while drought-induced changes in the synthesis of proline have
been  shown  to  be  ABA  dependent[84].  ABA  plays  a  role  in  the
upstream of proline accumulation by regulating the expression
of  key  enzyme  genes  of  proline  biosynthesis,  which  also
improves  the  adaptation  of  rice  to  hypoxia  stress  to  a  certain
extent[85]. The present data indicate that the improved capacity
to  accumulate  proline  shown  by C.  japonense may  be
associated with its enhanced ability to accumulate ABA.

 CONCLUSIONS

Overall,  it  is  clear  that  these  two  Chrysanthemum  species
show  contrasting  responses  to  drought  stress  at  the  morpho-
logical,  physiological  and  biochemical  levels.  The  superior
tolerance of C. japonense likely flows from a combination of its
better  developed  trichome  layer,  its  higher  cuticular  wax
content, its more rapid and abundant accumulation of ABA, its
more  flexible  photosynthesis  capacity,  and  its  more  effective
osmoprotective and antioxidative system. The evaluation of the
drought  tolerance  of  the  two  chrysanthemum  species  further
enriched  the  drought  tolerance  germplasm  resource  bank  of
chrysanthemum,  clarified  the  different  physiological  and  bio-
chemical  responses of  two chrysanthemum species  with great
differences  in  drought  tolerance,  which  has  certain  guiding

significance  for  further  development  and  application  of
drought tolerance resources of chrysanthemum.
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