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Abstract
Basal  bulb  rot  is  the  major  factor  restricting  the  production  of  lily,  caused  by Fusarium  oxysporum f.  sp. lilii.  To  systematically  analyze  the

transcriptomic and proteomic responses of lily clones to F. oxysporum, we constructed six RNA-seq libraries and four iTRAQ proteomic libraries

using lily resistant and susceptible clones sampled at 0, 24 and 48 h post-inoculation (hpi) with F. oxysporum respectively. 137,715 unigenes were

generated, of which 7,667 were differentially expressed. 1,679 and 4,051 differentially expressed genes (DEGs) between resistant and susceptible

clones were isolated from samples  collected at  0  and 48 hpi.  Four  hundred and thirty  three and 155 DEGs were identified in  resistant  clones

sampled at 24 and 48 hpi separately while 550 and 799 DEGs were isolated in the susceptible clones sampled at 24 and 48 hpi respectively. The

results of iTRAQ analysis revealed 7,482 proteins in resistant and susceptible clones. Data analysis of transcriptome and proteome indicated that

5,735  proteins  corresponded  to  mRNAs.  Three  hundred  and  sixteen  and  1,052  DEGs  had  corresponding  DEPs.  At  48  hpi,  the  resistant  clones

showed 155 DEGs and 108 corresponding DEPs, while the susceptible clones showed 799 DEGs and 316 corresponding DEPs. In general, these

results enhance comprehension of the defense response of lily resistant clones to F. oxysporum infection and provide valuable sequence data for

studying the resistance mechanism.
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 INTRODUCTION

Lily (Lilium spp.) is a floricultural crop with great ornamental
value,  playing  a  vital  role  in  global  flower  markets.  Lily  basal
bulb  rot,  caused  by  the  soil-borne  fungal  pathogen Fusarium
oxysporum f.  sp. Lilii,  is  one  of  the  most  severe  diseases  of  lily
plants  worldwide[1].  Chemical  pesticide  control  is  one  of  the
main methods to prevent and control this disease whereas the
cultivation  of Fusarium resistant  varieties  is  more  economical
and  effective  as  shown  by  numerous  field  practices.  The
resistant  cultivar,  such  as  oriental  lily  hybrid  'Casa  Blanca',  has
been  achieved  by  screening  lily  clones  with  the  toxin  of F.
oxysporum[2].  However,  the  mechanism  underlying F.
oxysporum f.  sp. lilii resistance  of  the  resistant  clones  remains
unknown.

Plants  recognize F.  oxysporum infection  by  detecting
endogenous  signals  originating  from  the  cell  wall[3,4].  Disease-
resistant enzymes, cell  wall  proteins, pathogenesis-related (PR)
proteins and phytoalexin biosynthetic enzymes play a key role
in  pathogen  defense  in  host  plants[5−8].  Pathogen/microbe-
associated  molecular  patterns  (PAMPs/MAMPs)  released  from
the microbial surface can bind to pattern recognition receptors
(PRRs)  present  in  plant  cells  and activate  them[9,10].  Plants  also
employ  chemical  defense  pathways  to  resist  pathogen
infection.  For  example,  melon  plants  induce  genes  encoding
chitinases (CHIs), β-1,3-glucanases, thaumatin-like proteins and

peroxidases  (PODs)  upon  the  infection  of F.  oxysporum[4].
Phytohormones  such  as  salicylic  acid  (SA)  and  jasmonic  acid
(JA),  as  well  as  other  antioxidants  are  also  induced  during  the
pathogen infection as a defense mechanism[6,11]. In addition to
the above factors, sugar was also reported to be involved in the
plant disease signaling pathways[12,13].

To date, only limited studies have been published about the
F.  oxysporum f.  sp. Lilii resistance  mechanism.  A  transcriptome
study on Lilium regale Wilson with the infection of F. oxysporum
revealed that  genes  encoding PR proteins,  signal  transduction
proteins,  antioxidative stress  enzymes and secondary metabo-
lism  enzymes  were  involved  in  the F.  oxysporum response[14].
Further study of L. regale identified a novel basic leucine-zipper
(bZIP)  transcription  factor LrbZIP1,  which  could  be  important
for F.  oxysporum resistance  in L.  regale as  the  transgenic  toba-
cco plants overexpressing LrbZIP1 showed increased resistance
to F.  oxysporum[15].  Besides, PR10 family  genes  related  to
defense responses to F. oxysporum f. sp. lilii were also identified
in L. regale[16].

Transcriptional  analysis  has  been  applied  to  investigate  the
mechanism  underlying  plant  disease-resistance[17−19].  The
iTRAQ technology enables high-throughput analysis of proteins
with  high  sensitivity,  providing  highly  reliable  results[20].  Thus,
the  successful  application  of  RNA-seq  and  iTRAQ  technologies
offers  a  great  opportunity  to  isolate  genes  responsible  for F.
oxysporum resistance in lily[21].
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In  this  study,  we  sequenced  six  RNA-seq  libraries  prepared
from F. oxysporum resistant and susceptible lily clones sampled
at  0,  24  and  48  h  post-inoculation  (hpi)  with F.  oxysporum by
the Illumina sequencing platform, and analyzed four proteome
libraries  of  these  clones  sampled  at  0  and  48  hpi  using  ITRAQ
technology.  Additionally,  qRT-PCR was used to verify the RNA-
seq data and to evaluate the transcriptional variation between
the lily resistant and susceptible clones. The results of this study
reinforce  the  understanding  of  lily  molecular  mechanism
resistance to F. oxysporum.

 MATERIALS AND METHODS

 Plant materials
Lily  resistant  and  susceptible  clones  were  obtained  by

screening  oriental  lily  hybrid  'Casa  Blanca'  with  the  toxin  of F.
oxysporum. The resistant and susceptible clones were grown in
the same culture chamber at 25 °C with the 14 h light/10 h dark
photoperiod  and  robust  tissue  culture  rooted  seedlings  were
selected  for  further  analysis;  rooted  seedlings  are  8  cm  high,
with a root length of 5 cm.

 Cultivation and inoculation of Fusarium oxysporum f.
sp. lilii

Fusarium oxysporum f.  sp. lilii was isolated from the infected
lily.  The  isolated  pathogen  was  purified  and  identified
according to the spore and mycelium morphology. The verified
strain was then cultured iteratively using potato sucrose liquid
medium every 15 d on a shaker (25 °C,  100 rpm).  The cultured
spores were filtered by gauze and resuspended, then diluted to
a final concentration at approximately 1.0 × 106 spores mL−1 by
microscopic count.  The root tips of in  vitro lily  clones were cut
off  2  cm  and  inoculated  by  the  spore  suspension.  The
inoculated clones were then transferred to climate chambers at
25 °C with the 14 h light/10 h dark photoperiod.

 Sample collection
Based  on  our  previous  results[1],  plant  samples  were

collected from regions surrounding the inoculation spots  at  0,
24 and 48 hpi for transcriptomic analysis and at 0 and 48 hpi for
proteomic  analysis.  Three  independent  biological  replicates
were  assayed  at  24  and  48  hpi.  Total  RNA  was  extracted  with
Trizol and was treated with DNase. The quality of total RNA was
identified  by  2100  Bioanalyzer.  Library  construction  and
sequencing was carried out in accordance with Hao et al.[22]

 RNA-seq data analysis and de novo assembly
Raw  sequence  reads  were  removed  to  obtain  clean  reads.

Then, de novo transcriptome assembly was carried out[23]. RNA-
Seq by RSEM software was used to analyze the gene expression
level[24,25].

 Functional annotation of unigenes
The  identified  unigene  sequences  were  aligned  and

annotated using the following databases (E-value ≤ 10−5): NCBI
nonredundant  protein  sequences,  NCBI  nucleotide  sequences,
Swiss-Prot[26],  Gene  Ontology[27],  Kyoto  Encyclopedia  of  Genes
and  Genomes[28],  Cluster  of  Orthologous  Groups  of  proteins
and euKaryotic Ortholog Groups[29], Protein family (Pfam).

 Analysis of differential expression of Unigenes
The Unigene expression level of the samples were compared,

and the generalized chi-square test was performed using IDEG6

software,  and  the  P  value  obtained  was  corrected  by  multiple
hypothesis  test  (FDR).  Then,  the  Unigenes  whose  FDR  value  is
less  than  0.01  and  the  RPKM  ratio  between  samples  is  more
than 2 times as the differentially expressed gene.

 Identification of RNA-seq data by qRT-PCR
To identify  the reliability  of  RNA-seq data,  the expression of

nine  genes,  including  five  genes  upregulated  in  lily  resistant
clones  and  four PR genes  (encoding  CHI  [gi691193462],  POD
[gi636022329],  polyphenol  oxidase  [PPO;  gi767859558]  and
PAL  [gi393793951])  was  analyzed  by  qRT-PCR.  The Actin gene
was used as an internal control gene. Primers were designed by
Primer  Premier  5  software  (Supplemental  Table  S1).  The  qRT-
PCR  was  made  by  SYBR  Premix  Ex Taq II  according  to  the
following  program:  initial  denaturation  at  95  °C  for  2  min,
followed  by  40  cycles  of  95  °C  for  10  s  and  60  °C  for  30  s.
Relative mRNA levels were calculated by the 2−ΔΔCᴛ method[30].

 Protein extraction and iTRAQ labeling
Protein extraction was conducted by the trichloroacetic acid

(TCA)/acetone method.  Protein concentration was determined
by  the  Bradford  method[31].  Then,  200 µg  of  protein  solution
was  accurately  absorbed  by  pipette  into  the  centrifuge  tube.
Add  4 µl  reducing  reagent,  reaction  at  60  °C  for  1  h;  Add  2 µl
cysteine-blocking reagent, room temperature for 10 min; it was
then transfered to a 10-K ultrafiltration tube and centrifuged at
12,000 g for 20 min. The 100 µl dissolution buffer in iTRAQ® kit
was added and centrifuged at 12,000 g for 20 min. Trypsin was
added  into  the  ultrafiltration  tube,  the  volume  of  50 µl,  37  °C
reaction overnight; The next day, the solution at the bottom of
the  tube  was  collected  after  centrifugation.  A  total  of  100 µl
samples were obtained after enzymolysis.

iTRAQ® reagent was taken from the refrigerator, balanced to
room temperature, centrifuge the iTRAQ® reagent to the tube
bottom; Add 150 µl ethanol to each iTRAQ® reagent, centrifuge
it  to  the  bottom  of  each  tube.  The  50 µl  sample  (100 µg
enzymolysis product) was transferred to a new centrifuge tube
with a pipette.  The iTRAQ® reagent was added to the sample,
vortexed,  and  centrifuge  to  the  bottom  of  the  tube,  at  room
temperature  for  2  h.  The  reaction  was  terminated  by  adding
100 µl  water.  The  mixed  labeled  samples  were  centrifuged  to
the  bottom  of  the  tube;  Vacuum  freezing  and  centrifugal
drying;  The  drained  samples  are  preserved  under  frozen
conditions for later use.

 High pH reverse-phased chromatography
High pH separation was performed according to the method

of Zhang et al.[32]

 Protein analysis by Eksigent Nano LC upgraded
REVERSE phase chromatography -TripleTOFTM 5600

The  peptides  were  resuspended  and  protein  analysis  was
carried out according to the method by Tatusov et al.[31]

 Proteomics data analysis
ProteinPilot4.5  software  (AB  SCIEX,  Foster  City,  California,

USA)  was  used  for  protein  identification  and  quantitative
analysis. The database was downloaded from the NCBI website.
Paragon algorithm was used for database retrieval. Proteinpilot
software was used to carry out FDR analysis, and protein ratios
and  P  values  are  calculated  automatically  by  Proteinpilot
software.
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 Bioinformatics analysis
Enrichment  analysis  of  the  GO  functional  classification  of

differentially  expressed  proteins  (DEPs)  was  mainly  conducted
according  to  the  enrichment  analysis  of  the  GO  functional
classification of the transcriptome. Statistical analysis of the GO
primary  functions  of  all  proteins  with  a  GO  number  was
performed. KEGG pathway enrichment analysis of the DEPs was
conducted according to the results of the Lilium transcriptome.

 RESULTS

 RNA-seq read assembly
RNA-seq analysis  of  14 samples including resistant lily  clone

(RLC) and susceptible lily clone (SLC) collected at 0 hpi, referred
to as RLC-00 and SLC-00,  RLC and SLC samples collected at  24
and 48 hpi (three biological repeats for every set), referred to as
RLC-24,  RLC-48,  SLC-24  and  SLC-48,  yielded  573,692,261  raw
reads,  284,383,013  reads  from  RLC  profiles  and  289,309,248
reads from SLC profiles, contributing to 563,793,160 clean reads
after  filtration  in  total.  GC  content  of  all  the  profiles  was
approximately 50%. The percentage of reads conformed to Q20
was  over  90%  for  all  profiles  whereas  the  clean  rates  of  the
reads  were  no  less  than  94%,  indicating  the  RNA-seq  libraries
had good qualities suitable for further analyses (Table 1).

 Identification of DEGs among different profiles of RLC
and SLC

To  further  investigate  putative  genes  associated  with F.
oxysporum response, the DEGs between different profiles were
analyzed.  1,679  genes  were  differentially  expressed  between
RLC-00  and  SLC-00  profiles,  with  962  upregulated  and  717
downregulated.  There were 433 genes differentially  expressed
(260  upregulated  and  173  downregulated)  between  RLC-00
and RLC-24 profiles whereas the number of DEGs was 550 (465
upregulated and 85 downregulated) between SLC-00 and SLC-
24.  The largest number of  DEGs,  4,051 (2,035 upregulated and
2,016 downregulated)  was  presented between profiles  RLC-48
and  SLC-48  while  the  numbers  of  DEGs  were  799  (558
upregulated and 211 downregulated) between profiles SLC-00
and  SLC-48.  Interestingly,  the  DEGs  between  profiles  RLC-00
and  RLC-48  were  limited  to  155  (89  upregulated  and  66
downregulated) (Fig. 1).

 GO and KEGG enrichment analysis of DEGs
The  huge  variations  in  the  number  of  DEGs  between

different  samples  implied  diverse  defense  responses  upon F.
oxysporum infection, leading us to a further investigation of the
putative  biological  functions  of  the  identified  DEGs.  Those
DEGs  could  be  summarized  into  three  major  functional
categories  by  GO  annotation,  meaning  'biological  process',

Table 1.    Statistics of RNA-seq results of inoculated lily clones.

RNA-Seq sample Raw- reads Read1-Q20 Read2-Q20 Read1-GC Read2-GC Clean reads Clean-rates

RLC-00 34,134,751 0.912 0.970 0.497 0.507 32469458 95.12%
RLC24-1 59,345,127 0.965 0.973 0.563 0.552 59227682 99.80%
RLC24-2 40,575,087 0.926 0.954 0.519 0.523 40574457 100.00%
RLC24-3 35,961,565 0.972 0.968 0.471 0.490 35718139 99.32%
RLC48-1 41,690,524 0.953 0.958 0.491 0.502 41509375 99.57%
RLC48-2 36,600,145 0.974 0.965 0.500 0.508 34849248 95.22%
RLC48-3 36,075,814 0.909 0.962 0.534 0.540 34203976 94.81%
SLC-00 34,363,628 0.908 0.962 0.474 0.497 32609673 94.90%

SLC24-1 41,369,602 0.952 0.957 0.475 0.498 41203396 99.60%
SLC24-2 78,356,000 0.927 0.952 0.492 0.505 78354289 100.00%
SLC24-3 31,787,483 0.905 0.963 0.491 0.503 30140824 94.82%
SLC48-1 37,014,173 0.943 0.956 0.479 0.499 36919334 99.74%
SLC48-2 33,129,082 0.972 0.976 0.475 0.486 32971144 99.52%
SLC48-3 33,289,280 0.970 0.970 0.465 0.484 33042165 99.26%
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Fig. 1    DEGs identified between different resistant and susceptible lily clones.
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'molecular  function'  and  'cellular  component'.  The  top  three
subcategories  in  profile  RLC-00 vs RLC-24  were  'DNA  binding',
'monooxygenase  activity'  belonging  to  'molecular  function',
and 'cell wall' belonging to 'cellular component'. Similarly, 'DNA
binding'  and 'cell  wall'  ranked in  the  top two subcategories  in
profile  RLC-00 vs RLC-48,  and  the  third  subcategory  was
'sequence-specific  DNA  binding'.  Differing  from  RLC  samples,
the  top  three  subcategories  in  the  profile  SLC-00 vs SLC-24
were  'chloroplast',  'oxidoreductase  activity'  and  translation
whereas  'structure  constituent  of  ribosome',  'translation'  and
'ribosome'  were  the  top three  in  profile  SLC-00 vs SLC-48.  The
top  three  subcategories  in  profile  RLC-48 vs SLC-48  were
'cytoplasmic  membrane-bounded  vesicle',  'oxidoreductase
activity'  and  'carbohydrate  metabolic  process'  (Supplemental
Fig. S1).

Pathways  involved  in  plant  disease-resistant  were  revealed
by  KEGG  pathway  analysis,  including  'plant  hormone  signal
transduction',  'cutin,  suberine  and  wax  biosynthesis',  'phenyl-
propanoid  biosynthesis'  and  'phenylalanine  metabolism'.
Interestingly,  the  'plant-pathogen  interaction'  pathway  was
ranked  first  both  in  the  profile  RLC-00 vs RLC-24  and  profile
RLC-00 vs RLC-48  whereas  this  pathway  was  absent  in  SLC
samples (Fig. 2a& b). The expression patterns of genes involved
in  this  pathway  were  illustrated  in  FPKM  heat  map  (Fig.  2c).
Most of the genes were upregulated in the RLC-24 samples but
remained  unchanged  in  SLC  samples,  indicating  that  genes
involved  in  this  pathway  could  contribute  to  the  resistant
capacity of RLC. DEGs of KEGG was showed in RLC-00 vs RLC-48,
SLC-00 vs SLC-48, RLC-00 vs SLC-00, RLC-48 vs SLC-48 (Table 2).
Cysteine  and  methionine  metabolism,  protein  processing  in
endoplasmic  reticulum,  ubiquitin  mediated  proteolysis,  alpha-
Linolenic acid metabolism, phenylalanine metabolism were key
process in ET, SA, JA signal transduction, there were 16, 26, 8, 6,
5 DEGs respectively in the RLC-48 vs SLC-48.

 Verification of RNA-seq data
To  verify  the  RNA-seq  data,  the  expression  of  nine  genes

possibly involved in the plant defense system, including NADH
dehydrogenase  (ubiquinone)  activity  gene,  ATP  synthesis
coupled electron transport gene, chitin-binding gene, mitochon-
drial respiratory chain complex I gene, response to salicylic acid
gene, PPO, POD, PAL and CHI were  detected  by  qRT-PCR.  The
qRT-PCR results were consistent with the RNA-seq data (Fig. 3),
thus verifying that our RNA-seq data were credible. DN139810,
DN144416 and PAL were expressed higher in the RLC than SLC.
Notably,  the  expression  of  most  of  the  tested  genes  was
upregulated  by F.  oxysporum inoculation  in  RLC  after  24  h
rather  than  in  SLC,  implying  that  those  genes  were  possibly
associated with the resistance of RLC.

 Protein function annotation and DEP analysis
Quantitative  proteome  analysis  identified  7,482  proteins  in

total,  5,735  (76.65%)  and  3,888  (51.96%)  of  which  were
annotated using the GO and KEGG databases, respectively. GO
terms  such  as  'metabolic  process'  (3,963),  'cellular  process'
(3,531), 'single-organism process' (2,896), 'response to stimulus'
(1,061) and 'immune system process' (112) were enriched in the
biological  process  category;  'cell  part'  (3,505)  and  'cell'  (3,505)
were  enriched  in  the  cellular  component  category;  'catalytic
activity'  (3,135)  and  'binding'  (2,675)  were  enriched  in  the
molecular function category (Fig. 4).

A total of 2,055 DEPs with fold-change (FC) ≥ 2.0 and p-value
≤ 0.05  were  screened.  316  DEPs  (166  upregulated  and  150

downregulated)  were  identified  between  RLC  and  SLC  while
1,052  DEPs  (579  upregulated  and  473  downregulated)  were
verified  between  RLC-48  and  SLC-48  (Fig.  5a).  KEGG  pathway
enrichment  analysis  revealed  DEPs  enriched  in  different  path-
ways. Pathways with p-values < 0.05 and < 0.01 were defined as
significantly enriched pathways and very significantly enriched
pathways, respectively. One hundred and fifty seven DEPs were
significantly  enriched  in  six  pathways  between  SLC00  and
RLC00 samples, including 'metabolic pathways', 'glyoxylate and
dicarboxylate metabolism', 'porphyrin and chlorophyll metabo-
lism',  'pentose  phosphate  pathway'  and  'phenylpropanoid
biosynthesis'  (Fig.  5b ).  Five  hundred  and  fourteen  DEPs  were
significantly  enriched  in  seven  pathways  between  SLC48  and
RLC48 samples, including 'metabolic pathways', 'glyoxylate and
dicarboxylate  metabolism',  'carbon  fixation  in  photosynthetic
organisms',  'glycine,  serine  and  threonine  metabolism'  and
'alanine, aspartate and glutamate metabolism' (Fig. 5c).

 DISCUSSION

Oriental  lily  is  a  highly  heterozygous  flowering  plant  with  a
genome  size  of  approximately  36  Gb[21].  To  fully  explore  the
mechanism  of  disease  resistance  in Fusarium resistant  lily  mu-
tant  clones,  we  carried  out  comparative  studies  of  transcrip-
tome  and  proteome  simultaneously  to  achieve  complemen-
tarity  and  integration,  which  can  better  analyze  the  disease-
resistance  mechanism.  In  this  study,  137,715  unigenes  were
identified  and  annotated.  GO  enrichment  analysis  indicated
that  these  genes  are  involved  in  signal  transduction  mecha-
nism,  energy  production  and  conversion,  inorganic  ion  tran-
sport  mechanism  and  defense  mechanisms.  Simultaneously,  a
protein search library was constructed based on transcriptome
data. KEGG pathway enrichment analysis shows that DEGs and
DEPs  are  involved  in  plant  hormone  signal  transduction,  oxi-
dative  phosphorylation,  phenylalanine  metabolism,  ribosome
pathway,  glycine,  serine  and  threonine  metabolism,  alanine,
aspartate  and  glutamate  metabolism  and  other  resistance-
related metabolic pathways. These disease resistance processes
involve  all  aspects  of  plant  activities,  indicating  that  lily–F.
oxysporum interaction  is  regulated  by  a  multigene
network[33,34].

Different  mechanisms  are  underlying  the  plant-pathogen
interaction  conferring  the  plant  resistance  upon  infection  by
various  pathogens.  The  primary  difference  between  the
resistant and susceptible hosts upon pathogen invading is their
performance at the key time points, also the responding speed
and  defense  efficiency[35].  The  defense  response  of  a
susceptible host  is  slow and weak,  which allows the pathogen
to  colonize  the  plant  rapidly  and  induce  disease[8,36].  In  this
study,  both  resistant  and  susceptible  clones  were  inoculated
with F. oxysporum,  which  induced  DEGs  and  DEPs  involved  in
disease  resistance-related  metabolic  pathways.  Therefore,  our
research  focuses  on  metabolic  pathways  associated  with
disease  resistance  and  the  DEGs  and  DEPs  involved  in  these
pathways.

 Phytohormone signaling pathways
Plant  hormones  are  active  substances  produced  by  plant

cells  in  response  to  certain  environmental  factors.  These
include auxin, gibberellic acid (GA), cytokinin (CK), abscisic acid
(ABA),  ethylene  (ET),  ethephon  (ETH),  salicylic  acid  (SA),
jasmonic  acid  (JA),  brassinosteroid  (BR)  and  polyamines.  Plant
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Table 2.    DEGs of KEGG in different groups.

KEGG
DEGs of group

SLC-00 vs SLC-48 RLC-00 vs RLC-48 RLC-48 vs SLC-48 RLC-00 vs SLC-00

Cysteine and methionine metabolism 9 16 6
Glycine, serine and threonine metabolism 3 1 16 6
Arginine biosynthesis 2 11 5
Alanine, aspartate and glutamate metabolism 7 1 14 5
Peroxisome 8 1 15 6
Tyrosine metabolism 1 1 4
Phenylalanine metabolism 1 1 5 4
Phenylalanine, tyrosine and tryptophan biosynthesis 1 1 4 2
Valine, leucine and isoleucine biosynthesis 2 3 2
PPAR signaling pathway 5 5 2
Tryptophan metabolism 3 3 3
Arginine and proline metabolism 3 6 2
Apoptosis 2 1 1
AMPK signaling pathway 5 1 7 1
Plant hormone signal transduction 2 1
Lysine biosynthesis 2 2 1
Valine, leucine and isoleucine degradation 2 1 8 1
Plant-pathogen interaction 9 1 10 3
MAPK signaling pathway - yeast 4 4 2
Endocytosis 12 1 15 1
Calcium signaling pathway 3 3
Pathogenic Escherichia coli infection 3 1
Cutin, suberine and wax biosynthesis 1 2
Oocyte meiosis 8 1 6
TGF-beta signaling pathway 2 1 2
Endocrine and other factor-regulated calcium reabsorption 6 5
cGMP-PKG signaling pathway 3 2
Ubiquitin mediated proteolysis 7 1 8
Protein processing in endoplasmic reticulum 19 3 26 9
alpha-Linolenic acid metabolism 8 1 6 3
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Fig. 3    Quantitative real-time PCR (qRT-PCR) analysis of the relative expression levels.
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hormones function at low concentrations by acting alone or in
a  synergistic  manner  to  regulate  various  physiological
processes such as cell division, cell elongation, tissue and organ
differentiation,  seed  dormancy  and  germination,  flowering,
fruit production, maturation, senescence and in vitro culture[37].
Plant hormones such as SA, JA and ET, are involved in defense
response against  various pathogens[38,39].  Studies indicate that
SA,  JA  and  ET  form  a  highly  ordered  regulatory  network  to
regulate  abiotic  stress  response.  SA  dominantly  responds  to
biological  stress  by  inducing  the  host  plant  system  to  acquire
disease resistance[40],  whereas JA and ET respond to biological

stress  by  triggering  induced  systemic  resistance  (ISR)[41,42].
Many  DEGs  and  DEPs  verified  in  this  study  were  involved  in
signal  transduction  and  plant  hormone  (JA  and  ET)  metabolic
pathways.  Our  RNA-seq  and  iTRAQ  data  indicated  that  DEGs
and  DEPs  on  response  to  SA  and  SA  metabolic  process  were
upregulated, suggesting that the response to SA in lily resistant
clones  might  be  much  stronger  than  that  in  lily  susceptible
clones.

 Plant–pathogen interactions
During the long-term exposure to pathogens, plants employ

a series of defense mechanisms such as HR, change in defense-
related  enzyme  levels  (such  as  PAL  and  POD),  production  of
phytoalexins  (PAs)  and  accumulation  of  PR  proteins[43−45].  PR
proteins are induced not only after pathogen infection but also
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in  answer  to  different  abiotic  stresses,  such  as  drought,
wounding and freezing.  Among these,  CHI  (PR3,  PR4,  PR8 and
PR11),  either  alone  or  in  combination  with beta-1,3-glucanase
(PR2),  can  effectively  enhance  disease  resistance  in  plants[46].
CHI  is  a  typical  PR  protein  that  plays  a  very  important  role  in
preventing  fungal  pathogens  from  invading  host  plants.  In
general,  CHI  expression  level  in  host  plants  is  very  low,  but
when host plants are invaded by pathogenic fungi, the level of
CHI  protein  increases  in  plant  cells.  To  date,  CHI  has  been
detected in approximately 100 plant species, and the CHI gene
of  many  host  plants  has  been  cloned.  To  enhance  disease
resistance, foreign CHI genes have been introduced into many
crop plants, such as wheat, rice and tobacco[47,48]. In this study,
we  found  that  several  genes  upregulated  in  response  to F.
oxysporum infection  were  related  to  the  chitin  catabolic
process, chitin binding and CHI activity pathway. This suggests
that PR genes  function  cooperatively  to  induce  resistance
against F. oxysporum in resistant lily clones.

A  large  number  of  studies  show  that  POD  enzymes  play  an
important  role  in  biotic  and  abiotic  stress  responses[49−51].  In
this study, the DEGs and DEPs on POD metabolic process were
induced  in  lily  resistant  clones  upon  inoculation  with F.
oxysporum.  This  implies  that  lily  resistant  clones  may  combat
the attack by F. oxysporum. Phenylpropanoid compounds, such
as lignin,  flavonoids and anthocyanins,  play a key role in plant
disease-resistance.  The  data  showed  that  genes  and  proteins
upregulated after inoculation with F. oxysporum were involved
in  the  phenylpropanoid  pathway.  POD  not  only  acts  as  a  key
antioxidant  enzyme  but  also  regulated  the  biosynthesis  of  G-,
S-  and  H-lignin  monomers[39,52].  In  this  study,  genes  encoding
POD  enzymes  were  upregulated  in  response  to F.  oxysporum
inoculation.

 Role of the cell wall in disease resistance
Plant  cells  are  encompassed  by  a  thick  cell  wall,  which  pro-

vides  mechanical  support  to  cells,  maintains  cell  morphology
and  is  involved  in  various  physiological  activities  such  as
extracellular signal recognition. The cell wall is the first physical

barrier  of  plant  cells  against  invading pathogens[33,53,54].  When
host  plants  are  infected  by  a  pathogen,  the  cell  wall  damage
signal  is  activated,  which  further  activates  the  defense  res-
ponse. This leads to the production of phenolic substances and
accumulation  of  callose  and  lignin  in  cells  surrounding  the
infection site,  thus strengthening the thickness of  the cell  wall
to  resist  pathogen  invasion[55].  In  this  study,  inoculation  of  lily
resistant  clones  with F. oxysporum spore  suspension  upregu-
lated  the  expression  of  many  genes  and  proteins  involved  in
enhancing cell wall thickness.

 Regulation mechanism of resistance to Fusarium
oxysporum

Based on our work, we put forword a hypothetical model to
illuminate the resistance of lily resistant clones to F. oxysporum.
In this model, the plants recognize PAMPs through their innate
recognition receptors, resulting in a series of cellular responses.
The  plant  RPM1  protein  recognizes  HSP90  to  activates  ETI  to
induce  plant  hypersensitive  response  (HR),  at  the  same  time,
Ca2+ activates  CNGCs  to  induce  plant  hypersensitive  response
(HR),  which  result  in  cell  death  and  hinders  further  infection.
The  expression  of  cutin,  suberine,  wax,  phenylpropanoid
biosynthesis  and  plant  hormone  signal  transduction  pathway-
related  genes  is  activated.  The  expression  of  SA-induced
disease resistance-related genes TGA increased. Glycine, serine,
threonine  chitin  metabolism  increased  significantly.  In
summary,  we  supposed  that  the  PPAR,  MAPK-plant  signalling
pathway, SA resistance pathway, SOD metabolism pathway are
involved  in  the  defence  of  lily  resistant  clones  against F.
oxysporum(Fig. 6).

Overall,  in  this  study,  we  obtained  information  on  the
transcriptomic and proteomic responses of lily to F. oxysporum
infection.  Our  results  indicated  that  a  large  number  of  DEGs
and DEPs conferring resistance to F. oxysporum were refered to
SA  and  phenylpropanoid  metabolic  pathways.  The  DEGs  and
DEPs related to for defense responses also involved antioxidant
enzymes,  POD,  PPO  and  PR  proteins  pertaining  to  various
families.  These  results  suggest  the  molecular  mechanism
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Fig. 6    Hypothetical model of the mechanism of lily resistant clone tolerance to Fusarium oxysporum.
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potential  of  the  defense  response  of  lily  against F. oxysporum
and  provide  potential  candidate  gene  targets  for  cultivar
improvement by genetic  engineering.  Additionally,  our  results
provide  new  and  key  sequence  data  for  analyzing  gene
functions and further analyzing disease resistance mechanisms
in lily.
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