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Abstract
Rosa  rugosa is  a  multifunctional  species  with  various  applications  in  fragrance  extraction  and  ornamental,  medical,  and  edible  purposes.

Compared  to  other  species  of Rosa, R. rugosa exhibits  greater  resistance  to  salt  stresses;  however,  the  mechanisms  underlying  its  salinity

tolerance are still unclear. Thus, we assessed the salt tolerance of 16 R. rugosa germplasms based on the changes in morphology and physiology

under  different  salt  concentrations.  Among  them,  two  cultivars  ('Zizhi'  and  'Fenzizhi')  were  chosen  for  transcriptome  sequencing.  The

differentially  expressed  genes  (DEGs)  associated  with  phytohormone  synthesis  and  signalling  pathways,  ROS  production,  carbohydrate

metabolism and transport, stress response and resistance were identified as responding to salt stress in R. rugosa.  PPI network analysis further

identified two DEGs, SCL28 and E2F1, which exhibited the most interactions with other DEGs. Consequently, this research contributes to a greater

understanding of salinity tolerance mechanism in R. rugosa and could provide gene resources for breeding salt-tolerant cultivars in Rosa.
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 Introduction

The  natural  environment  exposes  plants  to  diverse  abiotic
stresses,  including  extreme  temperatures,  waterlogging,  and
high  salt  concentrations,  with  soil  salinization  being  the
worst[1].  Soil  salinization worsens due to environmental  degra-
dation,  climate  change,  poor  irrigation  practices,  poorly  regu-
lated  fertilizer  use,  and  industrial  pollution[2,3].  Salinization
affects approximately 20% of irrigated land and is projected to
grow about 50% by the mid-21st century[4,5]. Salt stress severely
limits  plant  growth,  quality,  and  yield.  Two  primary  strategies
for  mitigating  soil  salinity  include  restoring  damaged  soil  or
breeding and cultivating salt-tolerant cultivars, the latter being
more secure and effective[6,7].

Rosa rugosa,  a  diploid  species  belonging  to  the  Rosaceae
family that is indigenous to East Asia, has high economic value
due  to  its  multifunctional  properties. R. rugosa has  the  poten-
tial to be utilized for various purposes, such as fragrance extrac-
tion and ornamental, medical, and edible purposes. The essen-
tial  oil  extracted  from R.  rugosa is  the  most  precious  plant
essential  oil  in  the  world,  known  as  'liquid  gold'. R.  rugosa
displays  superior  resistance  to  both  biotic  and  abiotic  factors
when compared to other species of Rosa.  Some wild R.  rugosa
are distributed in coastal sandy or gravel soils and a few specific
cultivars  have  been  widely  cultivated  as  ornamental  plants  in
coastal  cities  with soils  with high salt  content,  which indicates
that there are types of cultivars with strong salt tolerance. Due
to its remarkable adaptability, R. rugosa is an invasive species in
northern Europe.

Salinity  affects  the  physiological,  morphological  and  mole-
cular  processes  of  plants,  which  eventually  disrupts  normal

growth and metabolism[8].  The process  of  salt  stress  is  charac-
terized  by  two  stages:  osmotic  stress  in  the  early  phase  and
ionic  toxicity  in  the  later  phase[9].  Prolonged  saline  conditions
lead  to  an  increase  in  active  oxygen,  such  as  mono-oxygen,
superoxides,  hydroxyl  radicals,  and  hydrogen  peroxide[10].
Excessive ROS damage the plant cell membranes and DNA and
affect  vital  biological  activities,  such  as  protein  synthesis  and
photosynthetic  pigment  reduction[11].  Subsequently,  plants
transmit  specific  stress  signals  and  adopt  several  adaptive
strategies to adapt to saline environments. The plant response
to salt stress involves multiple processes, such as ion transport,
osmotic  adjustment,  phytohormone  regulation,  antioxidant
regulation, and salt stress-responsive gene regulation[12].

In  this  study,  we  assessed  the  salt  tolerance  of  16 R. rugosa
germplasms by examining their morphological and physiologi-
cal  characteristics  under  varying  levels  of  salinity.  Then,  two
cultivars,  i.e.,  'Zizhi'  and  'Fenzizhi',  were  selected  for  further
study  due  to  their  significant  contrast  in  salt  resistance  and
similarity  in  terms  of  morphology.  To  investigate  the  mecha-
nisms  underlying  salt  tolerance,  we  performed  RNA-sequenc-
ing  of  roots  in  the  'Zizhi'  and  'Fenzizhi'  cultivars  and  analysed
the  DEGs  related  to  salt  stress.  The  aim  of  this  study  was  to
deepen  our  knowledge  of  the  mechanisms  underlying  salt
tolerance in R. rugosa.

 Materials and methods

 Plant materials and treatments
Two-year-old R. rugosa cutting seedlings were collected from

the  Rosaceae  Germplasm  Nursery  located  in  the  Forestry
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Experimental  Station  of  Shandong  Agricultural  University,
Tai'an, China (36°10'15" N, 117°09'25" E)'. A total of 16 different
germplasm-cutting  seedlings  were  planted  in  a  plastic  con-
tainer with a diameter of 260 mm and 3.4 kg of garden soil.

Containers with holes at the bottom and trays were used and
placed  in  the  Shandong  Agricultural  University  Horticultural
Greenhouse  in  March.  After  three  months  of  growth,  1,152
seedlings  from  16  germplasms  ('Zizhi':  ZZ;  'Fenzhongguan':
FZG; 'Ciguo': CG; 'Zhongke-2': ZK-2; 'Hunchun': HC; 'Tangfen': TF;
'Tangzi':  TZ;  'Xizi':  XZ;  'Henan-2':  HN-2;  'Baizizhi':  BZZ;  'Fenzizhi':
FZZ;  'Saixizi':  SXZ;  'Zhulongyoukong':  ZLYK;  'Henan-1':  HN-1;
'Tanghong':  TH;  'Zhuzishuanghui':  ZZSH)  were  selected  for
further  experiments.  Salinity  stress  was  induced  in  the  16
germplasms  using  NaCl  solutions  with  varying  concentrations
(0.3%, 0.5%, and 0.7%). The control groups were irrigated with
water only,  but the stress groups were irrigated with salinated
water  of  corresponding  salt  concentrations.  The  solution  was
divided  equally  and  watered  over  three  days  to  avoid  a  salt
shock reaction. Following the achievement of the final concen-
tration, the treatment period was recorded.

 Salt injury indices
The morphology of plants was observed at 0, 4, 7, 10, and 16 d

after stress (DAS) of 0.3%, 0.5%, and 0.7% salt treatment. The salt
tolerance  of R. rugosa was  classified  into  six  salt  injury  indices
(SIIs): 0 (no injury); 1 (10% of the leaves are yellow); 2 (30% of the
leaves are yellow, and leaves wilting or curling slightly); 3 (50% of
leaves  are  yellow,  and leaves  wilting or  curling even with  a  few
leaves falling off);  4  (80% of  leaves are scorched,  large numbers
of leaves fall off); and 5 (the plant is dead).

 Growth and physiological indices
Net growth of new branch length (ΔL = L10 − L0), leaf relative

water content (LRWC), and plant biomass were measured at 10
DAS  in  the  0,  0.3%,  and  0.5%  NaCl  treatments. ΔL  (L10 −  L0)  is
the growth of branch length at 10 DAS.

The  third  and  fourth  leaves  from  the  top  in  the  control
groups  and  the  0.3%  and  0.5%  NaCl-treated  groups  were
collected  at  10  DAS  for  physiological  measurements.  Each
sample  had  three  replicates.  The  measurement  of  relative
conductivity (REC) was carried out[13]. The leaching method was
used to measure the chlorophyll (Chl) content[14]. The anthrone
method was utilized to determine soluble sugar (SS) content[15].
The Coomassie brilliant blue technique was employed to ascer-
tain  the  reference  soluble  protein  (SP)  level.  Malondialdehyde
(MDA)  was  calculated  using  the  TBA  technique[16].  Nitroblue
tetrazolium  photoreduction  was  used  to  evaluate  superoxide
dismutase  (SOD)  activity[17].  The  guaiacol  technique  was  used
to determine peroxidase (POD) activity[17].

 Transcriptome library construction and Illumina
sequencing

Two  cultivars,  salinity-tolerant  'Zizhi'(ZZ)  and  salinity-sensi-
tive  'Fenzizhi'(FZZ),  were  selected  for  transcriptome  analysis.
Twelve  samples  of  roots  from  the  control  and  0.5%  NaCl-
treated groups at 4 DAS were collected for extracting total RNA
with the Plant Total RNA Isolation Kit (Vazyme, Nanjing, China).
The quality, purity, and integrity of the RNA were then assessed.
cDNA  libraries  were  prepared,  normalized,  and  sequenced
using  a  NovASeq  4000  (Illumina,  CA,  USA).  The  library  com-
prised four samples (in triplicate): Z-CK (roots control in ZZ), Z-
NaCl  (4d  salinity  stress  of  roots  in  ZZ),  F-CK  (roots  control  in
FZZ), and F-NaCl (4d salinity stress of roots in FZZ).

 Screening and functional analysis of DEGs
The acquired clean reads were aligned using HISAT2 v2.1.0 to

the R. rugosa genome  database  (http://eplantftp.njau.edu.cn/
Rosa_rugosa/)  to  comprehend  their  functionalities.  StringTie
1.1.3b  was  used  to  accomplish  new  transcript  prediction.  The
gene  expression  level  was  assessed  by  quantifying  the  reads
using  the  fragments  per  kilobase  of  exon  model  per  million
mapped  fragments  (FPKM)  methodology.  The  differentially
expressed  (DEGs)  were  identified  by  setting  the  log2|fold
changes|  ≥ 2  and  p-value  ≤ 0.05  as  criteria  allowed  for  the
examination of  differential  expression between samples.  Gene
Ontology  (GO)  annotation  and  Kyoto  Encyclopedia  of  Genes
and Genomes (KEGG)  enrichment  analyses  were  performed to
gain  further  insights  into  the  functions  of  DEGs.  Finally,  we
generated a protein-protein interaction (PPI) network graph by
using  the  STRING  database  (https://cn.string-db.org/cgi/input?
sessionId=bnwcGhIHpZEW&input_page_show_search=on)
combined with Cytoscape software.

 qRT-PCR verification
The  primers  of  12  DEGs  were  designed  and  are  listed  in

Supplemental  Table  S1.  The  qRT-PCR  experiments  were
performed  using  the  SYBR  Green  qPCR  kit  (Accurate  Biology,
China),  and  a  CFX96  Real-time  System  was  used  for  all  proce-
dures. RrGADPH served as an internal control during the 2−ΔΔCᴛ

analysis  of  the  expression  patterns.  Each  sample  was  biologi-
cally replicated three times.

 Results

 Morphological changes in response to salt stress
We evaluated the salt  tolerance of  16 R. rugosa germplasms

by  observing  the  morphological  changes  under  varying  salt
concentrations (0.3%, 0.5%, and 0.7%) and determined the salt
injury  index  (SII:  0−6).  The  yellowing  of  leaves  with  increasing
salt  concentration  was  accompanied  by  significantly  different
salt  tolerances  among  germplasms.  Under  0.3%  NaCl  treat-
ment,  'ZZ'  and 'FZG'  appeared with symptoms (SII1)  at  10 DAS
and  reached  SII2  at  16  DAS;  conversely,  the  other  14  germ-
plasms  reached  SII1  at  4  DAS.  Among  these  14  germplasms,
eight  germplasms  and  six  germplasms  reached  SII3  and  SII4,
respectively,  at  16  DAS.  When  exposed  to  0.5%  NaCl,  all  the
germplasms exhibited symptoms (SII1−4) at 4 DAS. Eventually,
10  germplasms  reached  SII4,  of  which  two  cultivars,  'ZZ'  and
'FZG'  showed  symptoms  (SII2)  at  10  DAS,  3  d  later  than  the
other  eight  germplasms.  Of  the  remaining  six  germplasms,
three  germplasms,  'ZZSH',  'ZLYK',  and  'HN-1'  reached  SII5  at  7
DAS  and  were  more  sensitive  to  salt  treatment.  Similar  to  the
0.5% NaCl treatment, all R. rugosa germplasms exhibited yellow
leaves  (SII1−4)  at  4  DAS  under  the  0.7%  NaCl  treatment.  'ZZ'
and  'FZG'  reached  SII4  at  16  DAS,  whereas  the  other  germ-
plasms achieved SII5 at either 7 DAS or 16 DAS (Supplemental
Table  S2).  Through  cluster  analysis  of  SII,  16 R. rugosa germ-
plasms were categorized into two distinct groups based on salt
tolerance.  The salt-tolerant  group consisted of  10  germplasms
that could be further divided into two subgroups. 'ZZ' and 'FZG'
showed  greater  salt  resistance  than  the  remaining  eight
germplasms.  The  salt-sensitive  group  was  composed  of  six
germplasms, of which 'ZLYK', 'HN-1', 'TH', and 'ZZSH' were more
sensitive (Fig. 1a).
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Fig. 1    Analysis of salt tolerance of 16 R. rugosa germplasms. (a) Cluster analysis of salt tolerance in R. rugosa according to salt injury index. (b)
Clustering heatmap of growth and physiological indicators. (c) Correlation analysis of growth and physiological indicators.
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 Growth and physiological responses to salt stress
To make a more comprehensive evaluation of salt  tolerance

in 16 R. rugosa germplasms, three growth indicators and seven
physiological  indicators  were  measured  at  10  DAS  under  0%,
0.3%,  and  0.5%  NaCl  treatments.  As  the  NaCl  concentration
increased, a significant decrease in the three growth indicators
(ΔL, LRWC, and plant biomass) and a significant increase in the
physiological indicators (REC, SS, SP, MDA, SOD, and POD) were
observed, except for Chl content, which displayed a decreasing
trend (Supplemental Table S3).

Heatmap  clustering  was  performed  using  ten  indicators  to
evaluate  the  salt  tolerance  of  sixteen  germplasms  (Fig.  1b).
These germplasms were categorized into three distinct clusters,
namely the salt-tolerant type ('ZZ' and 'FZG'), middle salt-toler-
ant  type  including  seven  germplasms  ('HC',  'CG',  'HN-2',  'TZ',
'XZ', 'BZZ' and 'TF'), and salt-sensitive type including seven culti-
vars ('NH-1', 'ZZSH', 'ZLYK', 'SXZ', 'TH', 'ZK-2' and 'FZZ'). This find-
ing is analogous to the clustering results of Fig. 1a. The strong
salt  tolerance  of  the R.  rugosa germplasms  showed  that ΔL,
LRWC,  plant  biomass,  Chl  content,  REC,  and  MDA  underwent
small  fluctuations,  while  SS,  SP,  SOD,  and POD showed signifi-
cant changes compared to the control group. The 'ZZ' and 'FZG'
cultivars exhibited the strongest salt  tolerance. These observa-
tions  clearly  demonstrate  that  the  salt  tolerance  of R. rugosa
germplasms varies significantly.

The findings depicted in Fig. 1a & b were consistent with the
results  of  principal  component  analysis  (PCA).  The  explained
variances of PC1 and PC2 are 52.31% and 13.04%, respectively
(Supplemental  Fig.  S1).  To  determine  the  practical  physiologi-
cal  parameters  that  could  pinpoint R. rugosa salt  tolerance,  a
correlation study was carried out.  All  of the indicators of treat-
ment with 0.3% and 0.5% NaCl showed a high positive connec-
tion, with Pearson correlation coefficients ranging from 0.88 to
0.99 (Fig.  1c).  Hence,  measuring only one concentration of the
indicator in further studies would suffice. Additionally, REC and
MDA exhibited inverse correlations with the rest of the indica-
tors,  whereas  other  indices  were  positively  correlated  among
themselves.

 Identification of differentially expressed genes by
transcriptome sequencing

Transcriptome sequencing was carried out to investigate the
mechanical  response  to  salinity  stress  using  root  samples  of
two cultivars (salinity-tolerant 'ZZ' and salinity-sensitive 'FZZ') at
0 and 4 DAS after 0.5% NaCl treatment. The raw data are avail-
able  at  the  NCBI  Sequence  Read  Archive  with  the  accession
numbers  SRR25020864~SRR25020875.  Twelve  RNA  libraries
were generated from the RNA sequencing data,  with Q20 and
Q30 values  greater  than 98.11% and 94.31%,  respectively.  The
average GC content was approximately 45.14% (Supplemental
Table  S4).  Four  comparison  groups  were  constructed,  namely,
Z-NaCl  vs  Z-CK,  F-NaCl  vs  F-CK,  F-CK vs  Z-CK,  and F-NaCl  vs  Z-
NaCl,  resulting  in  7,806  DEGs  found  in  at  least  one  group.
Among  these  groups,  795,  2,207,  4,673,  and  4,914  DEGs  were
identified,  respectively,  and  among  them,  most  genes  were
downregulated  (Fig.  2a).  There  were  340  genes  identified  to
exhibit  differential  expression  in  both  cultivars,  while  3,129
DEGs were discovered in the comparison of different cultivars.
Moreover, only 43 genes had different expression patterns in all
four groups (Fig. 2b).

 GO and KEGG enrichment analysis
The  DEGs  of  the  Z-NaCl  vs  Z-CK  group  were  categorized

according  to  the  GO  database  into  biological  processes  (BP,
434),  molecular  functions  (MF,  291),  and  cellular  components
(CC, 107) (Supplemental Table S5). On the other hand, the DEGs
of  F-NaCl  vs  F-CK  were  also  categorized  according  to  the  GO
database  into  BP  (477),  MF  (302),  and  CC  (117)  (Supplemental
Table  S6).  To  further  investigate  the  significance  relevance  of
the  salt  stress-responsive  DEGs,  we  analysed  the  top  10  terms
that were enriched among the three groups (Fig. 2c & d). DEGs
in ZZ and FZZ were mapped into 106 and 104 KEGG pathways,
respectively (Supplemental Tables S7 & S8). Only two metabolic
pathways (Ribosome, Ko03010, 81 genes; Oxidative phosphory-
lation, Ko00190, 34 genes) were significantly enriched (p-value
<  0.05).  There  was  no  significantly  enriched  pathway  in  FZZ,
while  ribosome  (Ko03010,  56  genes),  carbon  metabolism
(Ko01200,  56  genes),  and  plant  hormone  signal  transduction
(Ko04075, 52) had the largest number of genes (Fig. 2e & f).

 DEGs implicated in the biosynthesis, transport, and
signalling of phytohormones

Genes  involved  in  phytohormone  biosynthesis  and  signal
transduction  showed  different  expression  levels  under  salt
stress  in  the  two  cultivars  (Fig.  3).  Notably,  there  were  signifi-
cant  downregulation  trends  of  26  positive  regulatory  DEGs
associated with  auxin  biosynthesis,  transport  and signal  trans-
duction  in  one  or  both  cultivars,  including YUC (evm.model.
Chr6.539;  evm.model.Chr2.1946), PIN (evm.model.Chr7.3286;
evm.model.Chr7.3273;  evm.model.Chr7.3546;  evm.model.Chr6.
1170), genes coding auxin transporter-like protein (evm.model.
Chr2.6044)  and  auxin-induced  protein  (evm.model.Chr2.5904;
evm.model.Chr4.2260),  auxin  efflux  carrier  component  (evm.
model.Chr1.4080;  evm.model.Chr4.72;  evm.model.Chr6.6477;
evm.model.Chr6.4089), IAA14 (evm.model.Chr1.692), ARF (evm.
model.Chr5.2402), GH3.17 (evm.model.Chr1.2987), ARG7 (evm.
model.Chr6.4936),  and  eight SAUR (evm.model.  Chr6.4937;
evm.model.Chr2.4303;  evm.model.Chr2.4302;  evm.model.Chr2.
920;  evm.model.Chr4.2643;  evm.model.Chr2.664;  evm.model.
Chr5.5043;  evm.model.  Chr7.1017).  Furthermore,  one  auxin-
repressed  gene, ARP (evm.model.  Chr5.6322)  was  upregulated
under NaCl treatment in both cultivars.

Eleven  genes  coding  gibberellin-regulated  proteins  were
identified  as  DEGs,  including GA20ox (evm.model.Chr3.2679),
GA2ox (evm.model.Chr5.6683;  evm.model.Chr1.4538), RGL1
(evm.model.Chr7.1135), SCL (evm.model.Chr5.1439; evm.model.
Chr7.1860;  evm.model.Chr6.5835),  and GRP (evm.model.Chr2.
893;  evm.model.Chr6.1385;  evm.model.Chr7.406;  evm.model.
Chr6.6415).  Similar  to  DEGs  involved  in  auxin,  the  expression
patterns  of  gibberellin-related  DEGs  were  downregulated
under  salt  stress,  except  for  one  member  of GRP1 (evm.
model.Chr2.893), which was upregulated after salt treatment.

Twelve  genes  were  identified  as  DEGs  in  the  abscisic  acid
regulation  pathway.  Specifically,  the  study  found  that ABAH4
(evm.model.Chr2.5211)  and PYL4 (evm.model.Chr3.4190)  exhi
bited downregulation.  Moreover,  nine members of PP2C (evm.
model.Chr5.1398;  evm.model.Chr6.681;  evm.model.Chr7.1472;
evm.model.Chr3.4893;  evm.model.Chr5.1350;  evm.model.Chr5.
1020; evm.model.Chr2.6117; evm.model.Chr2.5507; evm.model.
Chr6.898)  and  one SnRK (evm.model.Chr6.3894)  gene  were
upregulated  under  salt  stress,  whereas  only  one  member  of
PP2C (evm.model.Chr2.6117) was downregulated.
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 Gene expression profile associated with salinity
tolerance

To explore the mechanism behind salt tolerance in R. rugosa,
we examined DEGs of potential salinity tolerance genes in both
the  of  F-NaCl  vs  F-CK  and  Z-NaCl  vs  Z-CK  groups.  The  func-
tional  annotation  showed  that  many  DEGs  may  be  related  to
salt stress and they showed interesting patterns.

In our analysis, we detected 14 DEGs related to ROS produc-
tion,  including  eight  peroxidase-encoding  genes,  one  peroxy-
genase-encoding gene, three iron transporter genes, one ferri-
tin  gene,  and  one  patatin-like  protein-encoding  gene.  Among
them, POD (evm.model.Chr6.2566;  evm.model.Chr2.1569;  evm.

model.Chr6.5801;  evm.model.  Chr3.5028;  evm.model.Chr1.
2412; evm.model.Chr5.860; evm.model.Chr6.3517) were down-
regulated. PXG2 (evm.model.Chr1.280)  and POD4 (evm.model.
Chr5.858)  were  upregulated  in  NaCl  vs  CK.  Additionally, PLP2
(evm.model.Chr2.486),  with  antioxidant  activity  was  upregu-
lated. Ferritin (evm.model.Chr4.1192) could maintain the dyna-
mic  balance  of  ROS  in  plants  and  its  expression  was  greatly
increased  after  treatment.  In  contrast,  three VITs  (evm.model.
Chr1.4206;  evm.model.Chr1.4205;  evm.model.Chr6.1138)  were
correspondingly reduced (Fig. 4).

Soluble sugars can be used as osmotic regulator to maintain
osmotic  stability  when  subjected  to  salt  stress.  Four UGTs
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Fig. 2    DEG analysis of in the four comparison groups. (a) Total number of DEGs in Groups Z-NaCl vs Z-CK, F-NaCl vs F-CK, F-CK vs Z-CK, and F-
NaCl vs Z-NaCl. (b) Venn diagram of DEGs in Z-NaCl vs Z-CK, F-NaCl vs F-CK, F-CK vs Z-CK, and F-NaCl vs Z-NaCl. (c) GO enrichment analysis of Z-
NaCl vs Z-CK, and (d) F-NaCl vs F-CK. (e) KEGG enrichment analysis of Z-NaCl vs Z-CK and (f) F-NaCl vs F-CK.
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Fig. 3    Heatmap of DEGs associated with phytohormones (* log2| fold changes | ≥ 2, p-value < 0.05). ABAH: abscisic acid 8'-hydroxylase; ARF:
Auxin response factor; ARG: Auxin-related gene; ARP: auxin-repressed protein; AUX: AUXIN; GA20ox: Gibberellin 20-oxidase; GA2ox: Gibberellin
2-oxidase;  GH3: Gretchen Hagen 3;  GRP: Gibberellin-regulated protein;  IAA: Indole-3-acetic acid;  PIN:  PIN-formed; PP2C: Protein phosphatase
2C;  PYL:  Pyrabactin  resistance  1-like;  RGL1:  RGA-like  1;  SAUR:  Small  auxin-up  RNA;  SCL:  Scarcrow-like;  SnRK:  SNF1-related  protein  kinase
regulatory subunit gamma-like; YUC: YUCCA.
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(evm.model.Chr6.5343; evm.model.Chr6.2397; evm.model.Chr7.
1386;  evm.model.Chr6.5290)  exhibited  distinct  expression
patterns,  of  which  three  genes  (evm.model.Chr6.2397;  evm.
model.Chr7.1386;  evm.model.  Chr6.5290)  were  expressed  at
higher  levels  under  NaCl  treatment.  Similarly, BGL12 (evm.
model.Chr5.405), CESA (evm.model.Chr1.541), SWEET (evm.
model.Chr7.1004),  PLT6  (evm.model.Chr6.1628),  and AMY2

(evm.model.Chr2.804)  were  also  upregulated.  However,  the
TPS-encoding gene (evm.model.Chr7.1386), EG8/9 (evm.model.
Chr1.4280  and  evm.model.Chr2.6139), ERD6 (evm.model.Chr4.
510), and BGL8 were downregulated (Fig. 4).

An interesting discovery was that various stress response and
resistance protein coding genes had higher expression patterns
after  salt  stress,  including USP (evm.model.Chr4.2538  and
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Fig.  4    Expression  profile  of  DEGs  associated  with  salt  stress.  AMY:  Alpha-amylase;  BGL:  Beta-glucosidase;  CESA:  Cellulose  synthase-like
protein;  CNGC:  Cyclic  nucleotide-gated  ion  channel  1-like;  CS:  Cold-shock  protein;  CORA:  Cold-regulated  protein;  DREB:  Dehydration-
responsive element-binding protein; DSC: Disease resistance-like protein; EG: Endoglucanase; ERD: Early response to dehydration 6-like; ERD:
Early-responsive to dehydration; GP1: Vegetative cell wall protein gp1-like; HIPP: Heavy metal-associated isoprenylated plant protein; HSP: Heat
shock  protein;  PLP:  Patatin-like  protein;  PLT:  Polyol  transporter;  POD:  Peroxidase;  PXG:  Peroxygenase;  RPM:  Resistance  to  pseudomonas
maculicola; SWEET: Sugars will eventually be exported transporter; TPS: Trehalose-6-phosphate synthase; UGT: UDP-glucosyltransferase family
protein; USP: universal stress protein; VIT: Vacuolar iron transporter 1-like; WARK: Wall-associated receptor kinase-like.
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evm.model.Chr1.3527), DREB1 (evm.model.Chr7.1872),  low-
temperature-induced  protein  (evm.model.Chr3.4647), CORA
(evm.model.Chr 3.1544), CS120 (evm.model.Chr6.1481), disease
resistance  protein  (evm.model.Chr4.3358;  evm.model.Chr7.
2896;  evm.model.Chr4.2772), TMV resistance  protein  (evm.
model.Chr5.1366), HSP70 (evm.model.Chr7.2019), HIPP24

(evm.model.Chr7.5472)  and  CO(2)-response  secreted  protease
(evm.model.Chr2.838)  (Fig.  4).  This  finding  shows  that  plants
exhibit similar responses to different types of stressors.

Additionally,  we  identified  additional  genes  that  could
contribute  to  salt  tolerance.  Notably, CNGC1 (evm.model.Chr3.
4897  and  evm.model.Chr3.4908),  one  stress-response  A/B

a b

c d

e f

 
Fig. 5    Transcription factor statistical analysis. (a) Statistics on the number of TFs. (b)−(c) The percentage of TFs in Z-NaCl vs Z-CK, F-NaCl vs F-
CK. (d)−(f) Clustering heatmaps of TFs in MYB, NAM, and bHLH.
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barrel  domain-containing  protein  At5g22580  (evm.model.Chr
5.2782)  and GP1 (evm.model.Chr7.5120)  were  downregulated
under  salt  treatment.  Equally  noteworthy,  two WARK (evm.
model.Chr6.5259  and  evm.model.Chr6.5225)  was  upregulated
under salt stress (Fig. 4).

 Differential expression analysis of TFs
A total of 158 TFs were identified, and they mainly belonged

to the zinc  finger  protein,  AP2,  MYB,  NAM,  bHLH,  etc.,  families
(Fig. 5a). Of these TFs, 46 and 125 displayed differential expres-
sion in ZZ and FZZ, respectively. In ZZ, TFs mainly belonged to
the  AP2,  MYB,  zinc  finger  protein,  NAM,  and  WD40  families,
while  in  FZZ,  they  belonged  to  the  AP2,  zinc  finger  protein,
MYB, NAM, and bHLH families (Fig. 5b & c). The AP2 family had
the largest number of TFs in both ZZ and FZZ. As these families
are important in plant stress responses, clustering heatmaps of
TFs in MYB, NAM, and bHLH were drawn. Specifically, nine, five,
and  seven  DEGs  showed  downexpression  patterns  after  salt
treatment in MYB, NAM, and bHLH, respectively. Nine, nine, and
three DEGs were upregulated in the three families (Fig. 5d−f).

 PPI network of DEGs
To predict  the potential  functions  and relationships,  the PPI

network of DEGs was utilized (Fig. 6). SCL28 and E2F1 were core
regulators, as they had the most interactions with other genes.
SCL28 interacted with SCL14, SR45a, and HSP70 and was further
associated  with ERF13 and ERF4 through HSP70. E2F1 inter-
acted  directly  with MYB6, GTE3, MCM3,  and MCM2 and  was
further related to WRKY45 and FY.

 qRT-PCR validation of DEGs
We  confirmed  the  RNA-seq  results  through  qRT-PCR.  There-

fore,  we  screened  12  DEGs,  i.e.,  auxin-related  DEGs  (YUCCA10,

SAUR50 and ARP),  ABA-related  DEGs  (SnRK),  stress  response-
related DEGs (USP and HSP70),  DEGs related to ROS accumula-
tion (POD27 and VIT1),  DEGs related to sugar metabolism (UGT
and TPS), four TFs (E2F1, SCL28, WRKY45, MYB92), and two other
DEGs  (CNGC1 and WARK22)  (Fig.  7).  Our  findings  consistently
demonstrated  the  similarity  of  expression  patterns  between
qRT-PCR and transcriptome data for these genes.

 Discussion

Salt stress causes considerable damage to plant morphology,
physiology, and growth. Screening salt-tolerant plant materials
can  be  achieved via morphological  characteristics,  biomass,
and  physiological  indices[18].  By  observing  the  morphology  of
leaf damage in R. rugosa germplasms after salt stress treatment,
salt  injury  was  classified  into  six  indices.  Two  distinct  types,
namely, salt-tolerant and salt-sensitive, were identified through
cluster  analysis.  Salt  stress  severely  inhibited  plant  growth,
leading  to  reduced  growth  indicators.  The  impact  on  physiol-
ogy  was  reflected  in  multiple  factors,  including  soluble  sugars
and  proteins,  which  promote  cells  to  cope  with  osmotic
stresses under salt  stress conditions[19].  Salt  stress affects plant
photosynthesis, which is reflected in the chlorophyll content[20].
Overproduction  of  ROS  induced  by  salt  stress  damages  plant
cells  by  destroying  nucleic  acids,  lipids,  and  proteins[21].  ROS
synthesis  results  in  the  accumulation  of  MDA,  SOD,  and  POD,
which  are  antioxidant  enzymes  that  play  significant  defensive
roles[22].  Seven  physiological  indicators  were  measured  in  this
study,  including REC,  SS,  SP,  MDA,  SOD,  and POD.  The physio-
logical  indicators  significantly  increased,  except  Chl,  which
showed  a  decreasing  trend.  Although  the  trends  of  growth

 
Fig. 6    PPI network of DEGs. Genes in red and white font are DEGs in the transcriptome data of R. rugosa.
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and  physiological  changes  were  consistent  across  the  six
germplasms, the degree varied. The variation ranges of ZZ and
FZG  were  evidently  smaller  or  larger  than  those  of  other
germplasms,  indicating stronger salt  resistance in ZZ and FZG.
Heatmap  clustering  and  principal  component  analysis  con-
firmed  this  conclusion.  The  16  germplasms  were  divided  into
three  clusters:  salt-tolerant  type  ('ZZ'  and  'FZG'),  middle  salt-
tolerant  type  ('HC',  'CG',  'HN-2',  'TZ',  'XZ',  'BZZ'  and  'TF'),  and
salt-sensitive  type  ('NH-1',  'ZZSH',  'ZLYK',  'SXZ',  'TH',  'ZK-2'  and
'FZZ').

In  this  experiment,  roots  of  'Zizhi'  and  'Fenzizhi'  at  0  and  4
DAS  were  collected  for  transcriptome  sequencing.  When
comparing  the  salinity  stress  with  the  control,  the  number  of
downregulated  DEGs  was  more  frequent  than  the  number  of
upregulated DEGs in both cultivars, indicating substantial inhi-
bition  of  gene  expression  by  salt  stress.  The  comparison
between  F-NaCl  and  F-CK  revealed  a  larger  number  of  DEGs
compared  to  Z-NaCl  vs  Z-CK,  particularly  the  downregulated
genes, suggesting a greater impact of NaCl in FZZ than in ZZ.

Phytohormones  are  essential  small  chemicals.  Relevant
research  indicates  that  they  play  complex  and  efficient  roles
under varying environmental conditions[23].  The precise role of
IAA  metabolism  in  the  response  to  salt  stress  is  not  yet  fully
understood. Salt stress led to a decrease in both auxin content
and the expression level of auxin transporters, given that auxin
is  a  significant  growth-promoting  hormone[24].  Auxin  positive
regulators  including YUCCA, PIN,  genes  coding  auxin  trans-
porter-like  protein  and  auxin-induced  protein, IAA, ARF, GH3,
SAUR,  and  auxin-induced  protein ARG7-like,  were  downregu-
lated  under  salt  stress  in  one  or  both R. rugosa cultivars.  The
YUC  family  is  essential  in  auxin  biosynthesis  by  regulating  the

pathway  for  producing  indole-3-pyruvic  acid  (IPyA)[25].  Over-
expression  of YUC leads  to  higher  capacities  for  maintaining
low  ROS  levels  and  confers  resistance  to  salt  stress[26].  Auxin
influx and efflux are severely impaired under salt stress, subse-
quently affecting auxin signalling. Salt stress leads to the down-
regulation  of  PIN  proteins,  which  are  essential  for  regulating
auxin  transportation[27].  Auxin  signalling  pathway  proteins
Aux/IAA  were  found  to  be  downregulated  due  to  Nitric  Oxide
(NO)  accumulation  caused  by  salt  stress[28].  The  interaction
between the Aux/IAA proteins and ARFs enables the salt stress
response  by  regulating  cis-elements  and  posttranscriptional
processes[27].  The  GH3  family  of  enzymes  conjugates  IAA  with
amides.  Interestingly,  the  research  found  that GH3 genes  are
induced  under  salt  stress[29],  which  was  different  from  our
result.  Research  indicates  that  the SAUR gene  positively  influ-
ences  plant  root  system  architecture  and  enhances  abiotic
tolerance[30]. Additionally, in the context of salt stress, only one
ARP gene displayed upregulation. Similarly, an investigation on
Capsicum  annuum revealed  the  induction  of ARP in  the  pres-
ence of salt stress[31].

Five genes coding gibberellin-regulated proteins were differ-
entially expressed under salt stress. GA20ox, GA3ox,  and GA2ox
are  essential  for  the  synthesis  pathway  and  inactivation  of
biologically active GAs[32]. GA2oxs can enhance salt tolerance by
retarding  plant  growth[33].  Our  research  revealed  significant
downregulation  of GA20ox and GA2ox genes  in R. rugosa.
Reports  have  indicated  that  the  overexpression  of SCL can
enhance  salt  tolerance[34].  We  identified  three SCL genes,  of
which  one  was  induced  by  salt  treatment,  and  the  other  two
were  inhibited.  Both  RGL  and  GRP  proteins  belong  to  the
DELLA  family.  The  overexpression  of RGL3 can  mitigate  the
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inhibitory  impact  of  NO  deficiency  on  salt  tolerance[28].  More-
over,  the  GRP  protein  is  known  to  be  a  gibberellin  repressor
and has been identified as an allergen in fruits[35].  The concen-
tration of GRP protein was influenced by salt stress[36].  Accord-
ing to transcriptome analysis, we found that most RGL and GRP
genes were inhibited under salt stress in R. rugosa.

Salt  stress  induces  ABA  synthesis,  which  is  the  most  impor-
tant  stress  response  hormone.  ABAH  is  an  essential  enzyme
involved  in  the  oxidative  degradation  of  ABA,  thus  negatively
regulating  its  accumulation[37].  Salt  stress  was  found  to
suppress the expression of ABAH4 in R. rugosa.  Moreover,  ABA
signalling  pathway  activation  results  in  an  elevation  of  ABA
levels[38]. In the ABA signalling pathway, PYR/PYL/RCARs recep-
tors  sense  ABA,  resulting  in  the  inhibition  of PP2C activity,
which  activates SnRK2[39].  Our  transcriptome  analysis  showed
that there were 11 ABA signalling-related DEGs, including PYL4,
SnRK,  and  nine PP2Cs.  The  expression  profile  of SnRK in R.
rugosa under  salt  stress  conditions  aligns  with  previous  find-
ings  and  acts  as  the  most  crucial  node  of  ABA  signalling[40].
Among  the  nine PP2Cs,  only  one  member  showed  lower
expression  under  salt  treatment,  possibly  acting  as  a SnRK
inhibitor.

Certain  proteins  exhibit  responses  to  multiple  stresses,  as
many  features  are  shared  across  these  stresses.  For  instance,
DREB can  be  induced  by  various  stressors,  including  both
abiotic  and  biotic  factors[41].  Moreover,  pretreatment  with  salt
could  prime  a  plant's  response  to  infection  by  biotic
pathogens[42].  Salinity  causes  substantial  stress  by  leading  to
osmotic  stress  and  ionic  toxicity,  which  impacts  various
biochemical processes and may even result in cell death. In our
current  research,  we  found  that  the  expression  of  multiple
stress  response  protein-coding  genes  was  changed  signifi-
cantly  by  salt  stress  in R. rugosa,  including  genes  coding USP,
DREB1, CORA1, CS120 and  so  on.  This  observation  further
supports  the  idea  that  the  response  and  adaptation  mecha-
nisms  of  plants  to  various  stresses  share  many  common
elements.

As  previously  mentioned,  excessive  ROS  can  disrupt  the
permeability  of  the  plasma  membrane  and  damage  DNA  and
proteins. Plant antioxidant systems consist of various enzymes,
such  as  POD  and  SOD.  Additionally,  glutathione-S-transferase
(GST)  is  also  included  in  these  systems[43,44].  Fourteen  DEGs
related  to  ROS  production  were  identified,  with  eight POD
genes being the largest group. Seven of these POD genes were
downregulated,  with  a  greater  reduction  in  FZZ  compared  to
ZZ.  Hence, POD may  serve  as  a  pivotal  regulatory  gene  in
antioxidant system of R. rugosa,  controlling its response to salt
stress. In the present experiment, PXG2 and ferritin were upreg-
ulated  under  salt  stress,  which  is  consistent  with  findings  in
Avena chinensis and Oryza sativa[45,46].  This  suggests that these
two  genes  may  play  roles  in  the  salt  stress  response  in R.
rugosa.

Soluble  sugars  fulfil  a  dual  role  by  serving  as  an  energy
source  for  cellular  activities  and  as  regulators  of  intracellular
osmotic  pressure[47].  Fourteen  DEGs  (TPS, SWEET, PLT6,  and
ERD6)  associated  with  carbohydrate  metabolism  and  trans-
portation were detected, among which nine genes were upre-
gulated, which was consistent with soluble sugar content. Four
UGT coding  genes  exhibited  differential  expression  patterns,
and  three  of  them  were  upregulated  under  NaCl  treatment.
Research  has  demonstrated  the  positive  impact  of UGT on
enhancing  plant  salt  tolerance  by  promoting  flavonoid

accumulation[48]. In addition, salt stress has also been shown to
activate  the  expression  of TPS and  sugar  transporter  genes
(SWEET and PLT6)[49−51].  Sugar  metabolism  plays  an  important
role in the response to salt stress. Five genes showed downreg-
ulation, with the expression levels of EG8 and EG9 exhibiting a
significant decrease in FZZ compared to ZZ.

The PPI network indicated that the core regulators SCL28 and
E2F1 had  the  most  interactions  with  multiple  genes.  SCL  tran-
scription  factors  are  members  of  the  GRAS  protein  family  and
are  crucial  for  plant  stress  resistance.  Cruz  et  al.  found  the
involvement  of SCL28 in  stress  responses  induced  by  ABA[52].
However,  limited  findings  have  been  reported  regarding  their
involvement  in  the  plant's  salt  stress  response  mechanism.
SCL13 can  improve  plant  growth  and  increase  salt  tolerance
when  overexpressed  in  both Arabidopsis  thaliana and Tamarix
hispida[53,54].  E2F  transcription  factors  interact  with  MYB-type
transcription factors  under  salt  stress  conditions  to  coordinate
cell  cycles and regulate normal plant growth[55].  Previous find-
ings suggest that these genes may interact to regulate the salt
stress response mechanism in R. rugosa. However, further verifi-
cation is necessary to clarify the molecular mechanism underly-
ing these genes.
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