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Abstract
Lily is an important cut flower worldwide and prefers cool environments. The high summer temperature in China affects the quality and quantity

of cut lily–flower production. In this study, the heat stress transcription factor HsfA2 was cloned from two cultivated commercial varieties, Lilium
longiflorum 'White  Heaven'  and Lilium oriental  'Siberia',  which  have  different  responses  to  heat  stress.  An  actin-interacting  protein  3  (AIP3)

domain was found in LlHsfA2 of Lilium longiflorum 'White Heaven' but did not appear in LoHsfA2 of Lilium oriental 'Siberia' using prediction from

the simple modular architecture research tool (SMART) website. The genes LlACTIN and LoACTIN were cloned, and their amino acid sequences

were found to be the same, so they were named LACTIN. There was an interaction between LlHsfA2 and LACTIN, whereas this interaction did not

occur between LoHsfA2 and LACTIN based upon the bimolecular fluorescence complementary (BiFC) experiments. The silenced plants of LlHsfA2
and LACTIN were sensitive to heat stress treatment using barley stripe mosaic virus (BSMV) induced gene silencing in 'White Heaven', and LoHsfA2
silenced plants were also sensitive in 'Siberia'. In contrast, LACTIN silenced plants in 'Siberia' were normal. The expressions of LlHsfA2 or LACTIN
were reduced in the LACTIN or LlHsfA2 silenced 'White heaven' plants, whereas the expressions of LoHsfA2 or LACTIN were normal in the LACTIN or

LoHsfA2 silenced 'Siberia' plants. In conclusion, the diversity of protein interactions between HsfA2 and ACTIN may affect the distinctness of the

heat stress response in different lily varieties, which provides new knowledge for further study on the heat stress response in lily.
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 Introduction

Global  warming  can  directly  change  the  environmental
factors  required  for  the  growth  and  development  of  crops,
resulting  in  changes  in  their  maturity,  growth cycle  extension,
and  declines  in  yield[1−3].  The  response  of  plants  to  climate
change,  especially  high temperatures,  requires  more attention
and research as plants grow in soil that cannot rid itself of heat.
Plants have formed a relatively complex regulatory network to
cope with heat stress based on recent research in model plants
such as Arabidopsis and tomatoes[4,5]. The heat stress transcrip-
tion factor–heat shock protein (Hsf–Hsp) pathway is important
among the networks, and the Hsf transcription factor is critical
in plant responses to heat stress[3,6].

During  the  heat  stress  response,  Hsf  directly  regulates  the
expression  of  downstream  response  genes  such  as  transcrip-
tion  factors,  chaperone  proteins,  enzymes,  etc.[3,5].  The  Hsfs  in
plants  have conserved domains and can be divided into three
categories,  including  HsfA,  HsfB,  and  HsfC,  among  which  HsfA
has the largest number and plays major roles in the heat stress
response[6].  HsfA2 is  only  expressed in  stress  conditions  and is
induced  most  strongly  by  heat  stress  compared  with  other
HsfAs[7−9].  Overexpression of HsfA2 in Arabidopsis can improve
the  heat  and  anoxia  tolerance  of  transgenic  lines[8,10].  At  the
protein level, HsfA2 interacts with HsfA1 in the nucleus to acti-
vate  heat  stress  response  genes[11,12].  Recently,  HsfA2  could
activate the H3K27me3 demethylase relative of early flowering
6  (REF6),  which  represses  HsfA2  and  drives  early  flowering

transgenerational thermomemory in Arabidopsis[13]. In addition,
HsfA3  could  interact  with  HsfA2  to  form  heteromeric  com-
plexes  and  drive  transcriptional  memory  after  heat  stress  in
Arabidopsis[14].

Actin is an important protein that widely exists in eukaryotic
cells  and  forms  microfilaments  to  maintain  the  stability  of  the
cell's cytoskeleton structure to ensure that a cell  can complete
the  normal  physiological  metabolism  processes[15].  ACTIN  is
often used as  a  control  gene to  compare the different  expres-
sions  of  target  genes  in  various  conditions  or  tissues,  as  its
stable  expression  makes  it  a  housekeeping  gene[16].  ACTIN
genes have been cloned, and their function has been studied in
many  plants,  such  as  Arabidopsis,  rice,  maize,  soybean,
etc.[17,18].  At  the  cellular  level,  actin  can  coordinate  the  estab-
lishment  of  cell  polarity,  participate  in  cell  wall  synthesis  and
plasma membrane stability, regulate plasmodesmata transport,
and  direct  dynamic  cytoplasmic  streaming[19,20].  Actin  also
plays an important role in plant cell  morphogenesis,  including
cell  division,  cell  elongation  and  expansion,  and  stomatal
movement[21−23].  There  are  many  actin-interacting  proteins,
such  as  actin-binding  protein  (ABP),  LIM  domain-containing
protein  (LIM1),  and  villins  (VLNs),  that  have  been  found  in  the
research of pollen tube tip growth[24−26].  Although few reports
involve  actin  in  stress  responses,  several  research  studies
showed that  actin-interacting proteins  could respond to  diffe-
rent  stresses.  As  an  ABP,  actin  depolymerizing  factors  (ADFs)
ADF7  and  ADF4  were  reported  to  be  involved  in  osmotic  and
pathogen  stress  responses  in  Arabidopsis[27,28].  In  addition,
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members  of  the  ADF  family  participate  in  different  stress
responses such as aluminum stress, osmotic, heat, cold, salinity,
and  drought  in  pigeon  pea  or  Zea  maize  using  genome-wide
identification and qRT-PCR analysis[29,30].  These ABPs can regu-
late  actin  dynamics  to respond to different  stresses,  which are
also  associated  with  the  reactive  oxygen  species  (ROS)  and
calcium pathways[31,32].  However,  the molecular  mechanism of
actin in the plant heat stress response is rarely reported.

Lily  is  an  important  cut  and  potted  flower  worldwide  and
occupies an important part of the flower market[33,34].  Most lily
varieties  prefer  cool  environments  based  on  their  native  habi-
tat.  However,  most  areas  in  China  are  becoming  hotter  in  the
summer  overtime,  which  seriously  affects  the  quality  and
annual  production  of  cut  lily  flowers[35].  Therefore,  improving
the  heat  resistance  of  lily  is  a  flower  industry  and  scientific
problem  that  needs  to  be  solved  urgently.  Previously,  we
focused  on  the  molecular  mechanism  of  heat  stress  transcrip-
tion factors regulating the lily heat stress response and cloned
several HsfAs from Lilium  longiflorum 'White  Heaven',  such  as
LlHsfA1, LlHsfA2, LlHsfA3A, LlHsfA3B,  and LlHsfA4[12,36−38].  During
this  research  process,  we  found  that Lilium  longiflorum 'White
Heaven'  showed  more  tolerance  than Lilium oriental  hybrids
'Siberia'  with  the  same  heat  stress  treatment;  however,  the
regulatory  mechanism  of  heat  resistance  differences  between
these  two  varieties  has  not  been  explored[37].  In  this  study,
HsfA2 was  cloned  from  these  two  cultivars,  and  it  was  found
that LlHsfA2 has an AIP3 domain from Lilium longiflorum 'White
Heaven', but LoHsfA2 did not contain an AIP3 domain from the
Lilium oriental  hybrids  'Siberia'.  Further,  LlHsfA2  could  interact
with  LACTIN,  whereas  LoHsfA2  could  not  interact.  In  addition,
LlHsfA2 or LACTIN silenced  plants  were  sensitive  to  heat  stress
treatment  using  barley  stripe  mosaic  virus  (BSMV)  induced
gene  silencing  in  'White  Heaven'  and  silenced  LoHsfA2  were
sensitive to heat stress in 'Siberia'. We found a new pathway by
which  HsfA2  regulates  the  plant  heat  stress  response  at  the
protein level and provided new theoretical support for solving
the molecular mechanism of lily heat resistance.

 Materials and methods

 Plant materials and growth conditions
Longiflorum  hybrid  'White  heaven'  (Lilium  longiflorum)  and

Oriental  hybrid  'Siberia'  (Lilium oriental)  commercial  bulbous
plants  were  cultured  in  pots  containing  peat  and  vermiculite
(1:1)  in  a  greenhouse  with  conditions  of  25/20  °C  with  a  16  h
light/8 h dark photoperiod. Nicotiana benthamiana plants were
cultured in a greenhouse with the conditions of a 16 h light/8 h
dark photoperiod at 22 °C.

 Gene cloning and sequence analysis
Total  RNA  was  extracted  from  'White  heaven'  and  'Siberia'

leaves  using  the  RNAprep  Pure  Plant  Kit  (Vazyme,  Nanjing,
China)  according  to  the  manufacturer's  instructions.  Then,
reverse transcription of 1 µg of RNA using HiScript Q RT Super-
Mix Kit (Vazyme, Nanjing, China). The full−length sequences of
LoHsfA2, LlACTIN, and LoACTIN were cloned using reverse tran-
scription production by designing primers (Supplemental Table
S1)  according  to  transcriptome  sequence.  A  homologous
comparison of amino acid sequences was performed using the
DNAMAN  (Version  7)  software,  and  the  conserved  domain
prediction was carried out using the DNAMAN (Version 7) soft-
ware and the SMART website (http://smart.embl.de/).

 Subcellular localization assay
The coding sequence of LACTIN were amplified by PCR using

primers and then cloned into a pNC−Cam1304−subC vector to
generate LACTIN−GFP, which was used for subcellular localiza-
tion. LACTIN−GFP and 35S::GFP (as negative control) were trans-
formed into Agrobacterium tumefaciens strain GV3101 and cul-
tured in  Luria−Bertani  medium containing Kanamycin  B  selec-
tive  antibiotics.  The  cultivated Agrobacterium was  harvested
using centrifugation at 3,000 g for 10 min and resuspended with
the infection buffer (10 mM 2−(N−morpholino)−ethanesulfonic
acid,  10  mM  MgCl2,  0.2 µM  acetosyringone,  pH  5.6)  to  a  final
concentration at OD600 = 1.0. Then mixed along with the silen-
cing  suppressor  P19,  placed  in  the  dark  for  about  3  h,  and
infected  into Nicotiana  benthamiana plants  with  4–5  young
leaves.  After  72  h,  a  Zeiss  LSM710  META  confocal  microscope
observed the fluorescence signal and green fluorescent protein
(GFP)  images  were  acquired  at  an  excitation  of  488  nm  and
emission of 525 nm[39]. The primer sequences used for subcellu-
lar localization are listed in Supplemental Table S2.

 Bimolecular fluorescence complementation (BiFC)
assay

The  coding  sequence  of LACTIN,  LlHsfA2, and LoHsfA2 were
amplified  by  PCR  using  primers  containing SpeI  and KpnI  sites
and  then  cloned  into  pSPYCE  (YCE)  or  pSPYNE  (YNE)  to  gene-
rate  YCE−LACTIN, YNE−LlHsfA2,  and  YNE−LoHsfA2.  All  vectors
and  their  corresponding  empty  vectors  (as  negative  controls)
were  transformed  into Agrobacterium  tumefaciens strain
GV3101  and  cultured  in  Luria−Bertani  medium  containing
Kanamycin  B  selective  antibiotics.  The  cultivated  Agrobac-
terium was harvested using centrifugation at 3,000 g for 10 min
and  resuspended  with  the  infection  buffer  (10  mM  2−(N−
morpholino)−ethanesulfonic  acid,  10  mM  MgCl2,  0.2 µM  ace-
tosyringone,  pH  5.6)  to  a  final  concentration  at  OD600 =  1.0.
Different suspension combinations were mixed along with the
nuclear marker NF−YA4−mcherry and silencing suppressor P19,
placed  in  the  dark  for  about  3  h,  and  infected  into Nicotiana
benthamiana plants  with  4–5 young leaves.  After  72 h,  a  Zeiss
LSM710 META confocal microscope observed the fluorescence
signal  and  green  fluorescent  protein  (GFP)  images  were
acquired  at  an  excitation  of  488  nm  and  emission  of  525  nm,
and the mcherry images were acquired at an excitation of 543
nm and emission of 615 nm[39].  The primer sequences used for
BiFC are listed in Supplemental Table S2.

 Functional verification of HsfA2 and LACTIN in
different lily varieties using the BSMV silencing
system

The BSMV system was used to examine the function of HsfA2
and  ACTIN  in  Longiflorum  hybrid  'White  heaven'  and  Oriental
hybrid  'Siberia',  which  contains  three  vectors:  pCaBS−α,
pCaBS−β,  and  pCaBS−γ,  and  the  targeted  fragments  were
ligated  to  the  pCaBS−γ[35,40].  The  target  fragments  with  a  262
bp length of the LoHsfA2 gene and 236 bp length of the LACTIN
gene  were  cloned  into  the  pCaBS−γ ligation  independent
cloning  (LIC)  vector  and  transformed  into Agrobacterium spp.
strain  EHA105.  Agrobacterium  cells  containing  pCaBS−α,
pCaBS−β, pCaBS−γLIC, LoHsfA2−pCaBS−γLIC, or LACTIN−pCaBS−
γLIC  vectors  were  cultured  in  liquid  Luria–Bertani  medium
containing  Kanamycin  B.  The  cultivated  agrobacterium  cells
were  collected  using  centrifugation  at  3,000  g  for  10  min  and
resuspended in the infecting buffer (10 mM 2−(N−morpholino)
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ethanesulfonic  acid,  10 mM MgCl2,  0.2 µM acetosyringone,  pH
5.6)  to  a  final  concentration  at  OD600 =  1.0.  Suspensions  of
pCaBS−α, pCaBS−β, with LoHsfA2−pCaBS−γLIC, LACTIN−pCaBS−
γLIC,  or  pCaBS−γLIC  were  mixed  according  to  a  ratio  of  1:1:1
and placed in dark conditions at room temperature for 3 h. The
mixed  suspension  was  injected  into  different  leaves  of  culti-
vated varieties using syringes without needles; then, the upper
leaves were collected to verify  whether  the gene was silenced
after  injecting  10  d.  All  silenced  plants  were  used  to  examine
the heat stress phenotype by treating them at 42 °C for 24 h in
a light incubator and then allowing them to recover at 22–23 °C
for 1 d. Photographs were taken. The primers used are listed in
Supplemental Table S2.

The  degree  of  wilting  of  the  silent  strain  and  the  control
group  was  counted  according  to  the  criterion  of  drooping  or
not  drooping  of  the  upper  stem  leaf  bases,  and  a  plant  with
more  than  80%  of  the  upper  stem  leaf  bases  drooping  was
considered  to  be  wilted,  and  the  formula  for  calculating  the
percentage  of  wilting  was:  Percentage  of  wilting  =  (no.  of
wilted plants/total no. of plants) × 100%.

 Gene expression
qRT−PCR was used to examine the expressions of HsfA2 and

ACTIN in  the  silenced plants  and analyze  the  expression levels
of HsfA2 and ACTIN in ACTIN−silenced or HsfA2−silenced plants.
Leaves  of  different  commercial  bulbous  plants  were  collected
10  d  after  injecting,  and  RNA  was  extracted  and  reverse  tran-
scripted  for  real−time  quantitative  RT-PCR.  The  18S  rRNA  was
used  as  an  internal  control,  which  has  been  validated  in  our
previous  studies.  The  analysis  of  qRT−PCR  results  was
performed using the 2−ΔΔCᴛ method. Each experiment included

three  technical  replicates,  and  two  biological  tests  were
performed;  at  least  one  result  is  shown  in  the  study.  All  rele-
vant primers are listed in Supplemental Table S3.

 Results

 Molecular cloning and protein domain analysis of
HsfA2 in 'White Heaven' and 'Siberia'

HsfA2 plays an important role in the heat−stress response of
plants  as  an  important  heat  stress  transcription  factor  whose
expression  is  induced  rapidly  and  abundantly  by  heat[7,9,36].  In
order  to  perform  functional  analysis  and  comparison  of  HsfA2
in different lily  varieties, Lilium  longiflorum 'White Heaven'  and
Lilium oriental hybrids 'Siberia' cultivars were used according to
their  different  heat  response  phenotypes. LlHsfA2 has  already
been  cloned  from  'White  Heaven'  in  previous  studies[36].  The
coding  sequence  of LoHsfA2 was  cloned  from  the  cDNA  of
'Siberia'  by  designing  primers  according  to  the  transcriptome
sequence. The full length of LoHsfA2 was 1,077 bp, encoding a
358 amino acid protein.

Amino  acid  sequence  alignment  between  LlHsfA2  and
LoHsfA2  showed  that  there  were  only  some  differing  amino
acids between the LlHsfA2 and LoHsfA2 protein sequences (Fig.
1a).  The  overall  homology  of  LlHsfA2  and  LoHsfA2  was  high,
and  the  conserved  domains  in  Hsfs,  such  as  the  DNA  binding
domain  (DBD),  oligomeric  domain  (HR−A/B),  nuclear  localiza-
tion  signal  (NLS),  and  activation  domain  (AHA)  and  nuclear
export signal (NES) are close to each other (Fig. 1a). The SMART
website  was  used  to  analyze  the  specific  domains  in  LlHsfA2
and LoHsfA2. The results showed that the AIP3 domain existed
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Fig.  1    Amino  acid  sequence  analysis  of  HsfA2  in  'White  Heaven'  and  'Siberia'.  (a)  Amino  acid  sequence  alignment  between  LlHsfA2  and
LoHsfA2.  The  red  boxes  indicate  the  AIP3  domain.  DBD,  DNA  binding  domain;  HR-A/B:  Oligomerization  domain;  NLS:  Nuclear  localization
sequence;  AHA1/AHA2:  Activation domains;  NES:  Nuclear export  sequence.  (b)  The SMART website predicted that LlHsfA2 of  'White Heaven'
would  contain  the  HSF  and  AIP3  domain,  and  the  position  of  the  AIP3  domain  was  from  38  to  320  amino  acids.  The  dark  green  bar  below
represents the location of the AIP3 domain. (c) The SMART website predicted that LoHsfA2 of 'Siberia' only contains the HSF domain. (d) The
SMART website comments on the AIP3 domain.
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in  LlHsfA2  from  'White  Heaven'  (Fig.  1b, d),  whereas  the  same
domain was not found in LoHsfA2 from 'Siberia' (Fig. 1c). These
results  indicate  that  differences  in  several  amino  acids  might
result  in  domain  diversity  between  homologous  genes  from
different cultivars.

 Molecular cloning and sequence analysis of ACTIN
in 'White Heaven' and 'Siberia'

The AIP3 domain in  the  protein  can bind to  ACTIN to  affect
the  interaction  between  proteins  in  the  relevant  studies  of
Saccharomyces  cerevisiae[41].  Therefore,  we  speculate  that
LlHsfA2  may  interact  with  LlACTIN  to  regulate  the  heat  stress
response in lily. LlACTIN and LoACTIN were cloned by designing
primers according to the transcriptome sequence[35,42]. LlACTIN
was cloned from the cDNA of 'White Heaven', which contains a
full  length of  1,134 bp and encodes a  377 amino acid protein.
LoACTIN was cloned from the cDNA of 'Siberia', which contains
a full length of 1,134 bp and encodes a 377 amino acid protein.
The  amino  acid  sequences  of  LlACTIN  and  LoACTIN  were
homogenously  compared.  The  results  showed  that  the  amino
acid  sequences  of  LlACTIN  and  LoACTIN  are  highly  consistent
and similar,  indicating that the ACTINs are highly conserved in
different  lily  cultivars  (Fig.  2a).  The  phylogenetic  tree  analysis
showed that LACTIN was closest to ACTIN in Tulipa gesneriana,
Diospyros  lotus, Triadica  sebifera,  and Vaccinium  dunalianum
(Fig. 2b).

 HsfA2 interacts with ACTIN in 'White Heaven' but
not in 'Siberia'

In  a  previous  study  we  found  that  LlHsfA2  was  localized  in
the nucleus[12]. Here, we explored the subcellular localization of
LACTIN. LACTIN was inserted into a binary vector containing an
eGFP,  transformed  into Agrobacterium,  and  injected  into N.
benthamiana to observe the fluorescent signal. The green fluo-
rescence  of  LACTIN−GFP  was  observed  in  the  nucleus  and
cytoplasm  (Fig.  3a).  These  results  indicated  that  LACTIN  was  a
nucleoplasmic  co-localized  protein.  BiFC  was  used  to  verify
whether different HsfA2s and ACTINs from 'White Heaven' and
'Siberia'  interacted  with  each  other,  respectively.  HsfA2  and
ACTIN of two varieties were inserted into YCE and YNE vectors,
transformed into Agrobacterium, and injected into N. benthami-
ana to observe the fluorescent signal.  The results showed that
in  the  combination  of  LlHsfA2  and  LACTIN,  the  green  fluores-
cence  was  found  in  the  nucleus  and  overlapped  with  the  red
fluorescence  of  the  nuclear  localization  marker  NF−YA4−
mCherry.  However,  GFP  was  not  observed  in  the  combined
LoHsfA2  and  LACTIN  infection  or  the  control  cells  (Fig.  3b).
These results suggested that LlHsfA2 interacted with LACTIN in
the  cell  nucleus,  but  LoHsfA2  and  LACTIN  could  not  interact
with each other.

 Virus-induced gene silencing of HsfA2 and ACTIN
in two varieties

In  order  to  verify  whether  the  interaction  between  LlHsfA2
and LACTIN is involved in the heat stress response in lily, virus-
induced gene silencing was used to silence HsfA2 and ACTIN in
'White  Heaven'  and  'Siberia',  respectively,  and  the  heat  stress
phenotypes of the silenced plants were observed. In a previous
study, we silenced LlHsfA2 in 'White Heaven' and found that the
silenced  strains  were  sensitive  to  heat  stress  treatment[35].
Therefore, LoHsfA2 and LACTIN were silenced in 'White Heaven'
or  'Siberia'  using  BSMV  in  this  study. LoHsfA2 and LACTIN
fragments  were  inserted  into  BSMV  vectors  to  silence  these

genes  in  lily.  Using  the  silencing  system,  each  gene  obtained
five  silenced  strains  from  20  infected  plants  and  showed  the
result of two strains. The expressions of LoHsfA2 in 'Siberia' (Fig.
4b), LACTIN in  'White  Heaven'  (Fig.  4d),  and LACTIN in  'Siberia'
(Fig. 4f) were decreased compared with their expression in the
control  plants  based  on  qRT–PCR  analysis.  All  silenced  strains
were treated at 42 °C for 24 h and allowed to recover for 1 d at
room  temperature.  Compared  with  the  control  plants,  there
was  obvious  wilting  in  the  leaves  of LoHsfA2 silenced  'Siberia'
and LACTIN silenced 'White Heaven' (Fig. 4a, c & g), whereas the
LACTIN silenced  'Siberia'  did  not  have  a  different  phenotype
(Fig.  4e, g).  These  results  indicated  that  silencing  of HsfA2
decreased the thermal  tolerance of  lilies,  and LACTIN silencing
decreased  the  thermal  tolerance  of  'White  Heaven',  whereas
silencing  of LACTIN did  not  affect  the  thermal  tolerance  of
'Siberia'.

 Silencing of ACTIN or HsfA2 affected the
expression of each other in 'White Heaven'

In  order  to  examine  whether HsfA2 and ACTIN affect  each
other's  expression  at  the  gene  level,  qRT–PCR  was  used  to
detect the expression levels of ACTIN and HsfA2 in the HsfA2 or
ACTIN–silenced lines of 'White Heaven' and 'Siberia'. The results
showed  that  the  expression  of HsfA2 and ACTIN showed  a
significant  change  in  the ACTIN and HsfA2 silenced  'White
Heaven' lines (Fig. 5a, b) but not in the 'Siberia' lines (Fig. 5c, d).
Therefore, HsfA2 and ACTIN also  affected  each  other's  expres-
sion  in  'White  Heaven'  at  the  gene  level.  This  regulatory  rela-
tionship  may  form  a  positive  feedback  regulation  to  mediate
heat  tolerance  and  play  an  important  role  in  the  heat  stress
response of 'White Heaven'.

 Discussion

When plants are subjected to heat stress in the environment,
many  transcription  factors  are  induced  to  regulate  the  heat
stress  response  and  induce  the  expression  of  corresponding
stress  proteins,  thus  enhancing the heat  tolerance of  plants  in
all aspects[6]. Heat stress transcription factors play an important
role  in  all  levels  of  the  heat  stress  response  network  and
complete  strict  regulatory  processes  through  the  Hsf–Hsp
pathway[5,43,44]. In this study, we found that LlHsfA2 from 'White
Heaven'  could  interact  with  ACTIN,  which  contains  the  AIP3
domain (Figs  1 & 3b),  indicating that  HsfA2 regulates  the heat
stress  response  through  other  pathways  more  than  the
Hsf–Hsp pathway.

 The protein HsfA2 and ACTIN are conserved in
different lily varieties, 'White Heaven' and 'Siberia'

HsfA2  plays  an  important  role  in  plant  response  to  heat
stress;  in  the  early  stage  of  the  heat  stress  response,  HsfA1
regulates  the  expression  of HsfA2,  then  HsfA2  interacts  with
HsfA1  at  the  protein  level  to  regulate  other  heat  stress
responses[7,8,36].  In  a  long-term  heat  stress  environment, HsfA2
was  induced  highly  and  accumulated  continually,  which  is  an
enhancer  of  acquired  thermal  tolerance[9].  In  this  study,  we
cloned  LoHsfA2  from Lilium oriental  'Siberia'  and  found  it  was
highly  homologous  with  the  LlHsfA2  from Lilium  longiflorum
'White Heaven'[36] (Fig. 1a), indicating that HsfA2 was conserved
in  these  two  varieties.  There  were  only  a  few  amino  acid
sequences that differed, which caused the presence or absence
of  the  AIP3  domain  (Fig.  1).  This  means  that  LlHsfA2  contains
the AIP3 domain, and LoHsfA2 does not. LlHsfA2 could interact
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with  ACTIN  through  the  AIP3  domain,  whereas  LoHsfA2  could
not function because it  lacked this domain (Fig.  3),  which may
cause  differences  in  heat  resistance.  This  result  indicated  that
although  the  protein  sequence  was  highly  conserved  in  these
two varieties, differences in several amino acids could also lead
to differences in the protein domain.

As  an  important  component  of  the  cytoskeleton,  actin  is
required  for  cell  differences,  cell  growth,  and  signal  transduc-
tion,  and ACTIN is  constantly  expressed  in  various  tissues  and
has  a  high  degree  of  conservation  and  homology  at  the  RNA
and  amino  acid  levels[27,32,45].  The  dynamic  conversion  of  the
actin cytoskeleton is essential for a variety of plant physiological

processes, which are regulated by ABPs and ADFs[32,46].  Several
ADFs,  such  as  ADF4  and  ADF7,  were  reported  to  regulate  the
biotic  or  abiotic  stress  response  through  actin  dynamics  and
ROS  pathways[28].  In  this  study,  we  cloned  the ACTIN from
'White  Heaven'  and  'Siberia',  respectively,  and  found  they
encode the same amino acid sequence named LACTIN (Fig. 2a),
indicating  that  the  evolution  of  ACTIN  in  these  two  varieties
was  highly  conserved,  which  was  consistent  with  previous
research  results.  In  addition,  the  phylogenetic  tree  analysis
showed  that  lily's  LACTIN  was  closest  to  the  actin  in  mono-
cotyledonous  plants  (Fig.  2b),  which  also  conforms  to  the
conservation in the evolution of actin.
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Fig.  2    Amino  acid  sequence  alignment  and  phylogenetic  tree  analysis  of  ACTIN  in  'White  Heaven'  and  'Siberia'.  (a)  Amino  acid  sequence
alignment  between  LlACTIN  and  LoACTIN.  (b)  Phylogenetic  tree  of  LlACTIN,  LoACTIN,  and  ACTIN  in  other  species.  The  ACTIN  proteins  were
from: Elaeis  guineensis EgACTIN2  (LOC105059495), Cocos  nucifera CnACTIN  (MH017421.1), Tulipa  gesneriana TgActin1  (AB456684.1), Lolium
rigidum LrACTIN2(LOC124705928), Triadica  sebifera TsACTIN7  (KY656700.1), Diospyros  lotus DlACTIN7  (LOC127809754), Cenchrus  purpureus
CpACTIN1  (MT784734.1), Triticum  aestivum TaACTIN2  (LOC123048645), Setaria  viridis SvACTIN2  (LOC117839433),  and Vaccinium  dunalianum
VdACTIN7 (OM033722.1). The phylogenetic tree was analyzed by TBtools v1.09876 and drawn by iTOL.
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Fig. 3    The interaction relationships of different HsfA2s and ACTINs from 'White Heaven' and 'Siberia'.  (a)  The subcellular localization of the
LACTIN−GFP fusion protein.  35S::GFP was  used as  the  negative  control.  Green fluorescence were  visualized using confocal  microscopy 72  h
after infiltration. Bars = 100 or 50 µm. (b) BiFC assay. LACTIN−YCE and the empty vector YNE, LlHsfA2-YNE, LoHsfA2-YNE and the empty vector
YCE  were  used  as  negative  controls.  NF−YA4−mCherry  was  used  as  the  nuclear  marker.  Green  and  red  fluorescence  were  visualized  using
confocal microscopy 72 h after infiltration. Bars = 100 µm.
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Fig. 4    Heat stress phenotype and gene expression of silenced HsfA2 and ACTIN in 'White Heaven' and 'Siberia'. (a), (c), (e) The phenotypes of
the LoHsfA2, LACTIN silenced 'White Heaven' or 'Siberia' lines before heat and recovered at room temperature for 1 d after treatment with heat
stress at 42 °C for 24 h. Bar: 10 cm. (b), (d), (f) Expression of LoHsfA2, LlACTIN silenced lines based on qRT-PCR. A T-test analysis of variance was
employed to identify treatment means that differed statistically.  Samples with different stars are significantly different:  * p <0.05,  ** p <0.01,
and  *** p <0.001.  (g)  Percentage  wilting  of  the LlHsfA2, LoHsfA2, LACTIN silenced  'White  Heaven'  or  'Siberia'  lines  and  negative  control  lines
recovered at room temperature for 1 d after treatment with heat stress at 42 °C for 24 h.
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 The different interactions between LlHsfA2 and
LACTIN lead to diverse heat stress responses in
distinct varieties

Actin-interacting protein (AIP) was first found to interact with
actin in  yeast[41].  In  this  study,  we found that  LlHsfA2 of Lilium
longiflorum 'White Heaven' contains the AIP3 domain and could
interact  with  actin  using  the  BiFC  assay.  Meanwhile,  the
LoHsfA2  of Lilium oriental  'Siberia'  lacks  the  AIP3  domain  and
cannot  interact  with  actin  (Figs  1 & 3).  Silencing LlHsfA2 or
ACTIN induced  heat  sensitivity  in Lilium  longiflorum,  which
means  that  LlHsfA2  and  ACTIN  can  regulate  the  heat  stress
response by interacting with each other  (Fig.  4c & g).  While  in
Lilium oriental  'Siberia'  that  was  more  sensitive  than  'White
Heaven' in heat stress, silenced LoHsfA2 plants showed sensitiv-
ity to heat stress (Fig. 4a & g), but silenced ACTIN plants have no
obvious phenotype compared with the control plants (Fig. 4e).
These results indicated that the different interactions between
LlHsfA2  and  ACTIN  affect  the  diversity  of  the  heat  stress
response  in  cultivated  varieties.  Similar  to  the  ABPs  or  ADFs,
LlHsfA2  could  affect  actin  filament  dynamics  or  Ca2+ or  ROS
signals to regulate the heat stress response by interacting with
actin[27,28].  This  regulation  mechanism  needs  further  research
on whether the HsfA2 could affect actin dynamics.

During  the  cytoskeleton  accumulation  and  actin  aggrega-
tion induced by heat stress, small HSPs bind to denatured actin
monomers or short oligomers and protect them from aggrega-
tion by forming relatively  small  and highly  soluble  complexes,
which protect the cytoskeleton and the whole cell from damage
caused by the accumulation of large insoluble aggregates[47,48].
While studying the effect of heat stress on the actin cytoskele-
ton of tobacco using two cultured cells, it was found that heat
stress  induced  the  depolymerization  of  actin  microfilaments
accompanied  by  the  accumulation  of  Hsp70  binding  protein
(BiP)[49]. In studies on plants such as tomatoes, it was found that
HsfA2  can  regulate  the  transcription  of Hsps and  interact  with
Hsps  to  regulate  their  activity  upon  exposure  to  heat  stress,
which  protects  the  proteins  from  being  misfolded  and  losing
their  functional  orientation  during  heat  stress[50−52].  In  our
study,  it  was found that in 'White Heaven', LACTIN and LlHsfA2
regulated  each  other's  transcription  (Fig.  5a, b).  However,  no
such  regulation  occurred  in  'Siberia'  (Fig.  5c, d).  Therefore,  we
speculate that LACTIN may regulate the transcription of LlHsfA2
or interact with LlHsfA2 to affect its protein activity under heat
stress,  and  then  LlHsfA2  regulates  the  transcription  of Hsps or
interacts  with  Hsps  to  regulate  the  activity  of  Hsps  to  prevent
LACTIN aggregation and cell  damage, forming a positive feed-
back regulation mode of Hsf–Hsp–ACTIN. In addition, actin also
plays  an  important  role  in  guarding cell  turgor  regulation and
shape changes[20,53,54],  influencing the process of programmed
cell  death[55],  altering  the  cytosolic  calcium  level[56,57],  altering
ROS  signaling[58],  changing  organelle  morphology[59],  and
controlling  stomatal  movement[60].  The  interaction  of  LlHsfA2
and  LACTIN  may  also  activate  LACTIN  and  protect  cells  from
heat  stress  damage  in  these  aspects.  However,  the  specific
molecular mechanisms of these assumptions need to be further
explored.

 Conclusions

LlHsfA2  and  LACTIN  can  interact  at  the  protein  level  and
mediate  the  gene  expression  of  each  other  in Lilium  longiflo-
rum 'White Heaven', which protects cells in 'White Heaven' from
heat stress damage. In contrast, this interaction and regulatory
relationship was not found in 'Siberia',  which may be a reason
for  the  difference  in  heat  resistance  between  these  two  varie-
ties. This conclusion provides a new area for further research on
the  response  of  lily  to  heat  stress  and  the  cultivation  of  heat-
resistant lily varieties.
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Fig. 5    The expressions of ACTIN and HsfA2 in the HsfA2 or ACTIN-
silenced lines of 'White Heaven' and 'Siberia'. (a) The expression of
LACTIN in  the LlHsfA2 silenced  'White  Heaven'  line.  (b)  The
expression of LlHsfA2 in the LACTIN silenced 'White Heaven' line. (c)
The expression of LACTIN in the LoHsfA2 silenced 'Siberia'  line.  (d)
The  expression  of LoHsfA2 in  the LACTIN silenced  'Siberia'  line.  A
T-test  analysis  of  variance  was  employed  to  identify  treatment
means  that  differed  statistically.  Samples  with  different  stars  are
significantly different: * p <0.05, ** p <0.01; ns: non-significance.
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