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Abstract
Anthocyanins are crucial plant pigments that enhance plant color and bolster resistance. Grafting is an ancient cultivation technology in Malus
production,  and it  has  important  effects  on plant  phenotypes,  secondary metabolism,  biotic,  and abiotic  resistance.  However,  the underlying

genetic and regulatory mechanisms effects on anthocyanin biosynthesis are unclear. In this research, the phenotypic and transcriptome variation

in Malus crabapple cv. 'Indian Magic' (Spring-red-leaf) and Malus Crabapple cv. 'Flame' (evergreen leaf) serving as either rootstock or scion (F/I, I/F)

and self-grafted (I/I) as control were explored. The results showed that the anthocyanin accumulation in the stem of 'Flame' grafted onto 'Indian

Magic'  occurred  rather  than  being  induced  by  wounding  and  other  stresses.  Based  on  KEGG  analyses,  it  was  deduced  that  the  anthocyanin

accumulation  is  mainly  induced  by  'plant  hormone  signal  transduction',  'starch  and  sucrose  metabolism',  and  the  'MAPK  signaling  pathway'.

Moreover,  transcriptomic  analyses  also  revealed MdSAUR20 was  highly  induced  during  grafting,  potentially  playing  a  pivotal  role  in  grafting-

induced  anthocyanin  accumulation,  as  confirmed  by  transgenic  assay.  These  results  propose  new  insight  into  regulating  anthocyanin

biosynthesis and contributing signal transport in grafting, contributing to a better understanding of the selection and combination of scion and

rootstock in the grafting process.
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Introduction

Malus crabapple,  a  member  of  the  Rosaceae  family  within
the  genus Malus,  possesses  an  ornamental  apple  germplasm
collection, representing an economically significant resource[1,2].
Commercial  value  in  numerous  ornamental  plant  species  is
strongly  influenced  by  leaf  color,  and  crabapple  cultivars
exhibit  a  diverse  array  of  leaf  colors.  The  variety  of  crabapple
with  red  leaves  has  emerged  as  a  significant  breeding  objec-
tive in recent years due to its high ornamental and landscaping
value, which is widely appreciated by people.

Anthocyanins, members of the flavonoid family, play a role in
imparting red coloration to crabapple leaves.  The pathway for
anthocyanin  biosynthesis  has  been  identified,  including  chal-
cone  synthase  (CHS),  chalcone  isomerase  (CHI),  flavanone  3-
hydroxylase  (F3H),  dihydroflavonol  4-reductase  (DFR),  antho-
cyanidin  synthase  (ANS),  UDP-glucose/flavonoid  3-O-glucosyl-
transferase  (UFGT).  Meanwhile,  anthocyanin  synthesis  is  also
coordinated  regulation  by  the  MBW  complex,  consisting  of
MYB,  basic  helix-loop-helix  proteins  (bHLH),  and  WD40
proteins[3].  In  apple,  functional  assays  revealed MdMYB1,
MdMYB10,  and MdMYBA as  crucial  regulators  of  anthocyanin
biosynthesis.  This  regulation  occurs  through  their  interaction
with  bHLH3  and  WD40  proteins,  activating  the  expression  of
genes involved in anthocyanin biosynthesis[4−6].  In land plants,
anthocyanin biosynthesis is also induced by endogenous plant
hormones[7].  Ethylene response factor gene (ERF),  abscisic acid
response  factor  gene  (ABF),  and  jasmonic  acid  (JA)  response

factor gene have been identified as activating the expression of
anthocyanin  biosynthetic  genes,  thus  promoting  anthocyanin
accumulation[8−10]. Auxin and GA negatively regulate anthocya-
nin biosynthesis by triggering the degradation of auxin/indole-
3-acetic  acid  (AUX/IAA)  and  DELLA  proteins,  respectively[11,12].
There  were  several  major  classes  of  auxin-responsive  genes  in
plants that responded to changes in auxin levels, including the
Auxin/Indole-3-Acetic Acid (Aux/IAA) family, the auxin response
factor  (ARF)  family,  small  auxin  upregulated  RNA  (SAUR),  and
the auxin-responsive Gretchen Hagen3 (GH3) family[13]. Among
these SAURs are the most rapid auxin-responsive genes related
to  the  auxin  signaling  pathway[14].  Then,  the  gene  function  of
the  SAURs  family  have  been  identified  in  various  plants,
AtSAUR19–24 were  verified  as  positive  regulators  of  plant  cell
expansion[15]. MdSAUR36 was  confirmed  to  participate  in  the
negative  regulation  of  mesocarp  cell  division  and  fruit  size  in
Malus species[16]. However, the function of anthocyanin synthe-
sis of SAUR family members still needs further study.

Grafting  in  plants,  a  conventional  technique  for  asexual
propagation  typically  involves  joining  two  plant  segments.  It
serves  to  propagate  consistent  seedlings  of  several  valuable
fruit  species,  enhance  disease  and  stress  resistance,  and
prevent  a  juvenile  state.  This  method  is  extensively  applied  in
modern  horticultural  production,  including  crops  like  apple,
citrus, pear, grape, kiwifruit, and lychee[17−20].

Grafting  involves  the  physical  connection  of  separate  plant
parts,  where  rootstock  and  scion  share  an  interconnected
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vascular  system.  Within  this  system,  several  small  peptides,
proteins and RNA molecules have been identified as mobile in
xylem or phloem, capable of triggering physiological variations
through  the  graft  junction,  leading  to  enhanced  vigor[21−23].
Studies  involving  apple  genotypes  have  demonstrated  that
oligopeptide  transporter  3  (MdOPT3)  mRNA  can  traverse  long
distances,  from  the  leaf  to  the  root,  regulating  iron  uptake[24].
Furthermore, MdCAX3 mRNA has been observed to move from
leaves  to  roots,  contributing  to  the  control  of  iron  and  zinc
homeostasis  under  iron-starvation  conditions[25].  Recent
researchers  have  also  demonstrated  that  secondary  metabo-
lites can be promoted by grafting with rootstocks in plants. For
instance, in grapevines, heterografting enhances the accumula-
tion  of  flavonoids  in  grape  berry  skin  during  development,
accompanied  by  an  increase  in  the  transcription  of  related
biosynthesis  genes[26].  However,  there is  limited available  data
concerning  the  impact  of  different  rootstocks  on  the  dynamic
changes in anthocyanin accumulation in crabapple leaves.

In  this  study,  the  focus  was  on  investigating  the  impact  of
diverse scion-rootstock combinations on physiological parame-
ters  and gene transcription in  crabapple leaves. Malus crabap-
ple cv. 'Indian Magic' (Spring-red-leaf) and Malus Crabapple cv.
'Flame'  (evergreen  leaf)  were  employed  as  either  rootstock  or
scion  (F/I,  I/F),  and  self-grafted  (I/I)  served  as  the  control.  The
aim was to identify key anthocyanin regulatory genes through
RNA-seq analysis.  The results  demonstrated a  significant  accu-
mulation  of  anthocyanin  in  the  stem  of  'Flame'  within  the  I/F
combination,  with MdSAUR20 identified as a candidate regula-
tor  during  the  grafting  process.  The  present  investigation
contributes to an enhanced understanding of the selection and
combination  of  scion  and  rootstock  in  the  grafting  process,
providing valuable insights for Malus breeding. 

Materials and methods
 

Plant materials and grafting
Malus crabapple  cv.  'Flame'  (evergreen  leaf)  and Malus

crabapple cv.  'Indian Magic'  (Spring-red-leaf)  were selected for
this  experiment.  Before  grafting, Malus plants  were  grown  in
Murashig  and  Skoog  (MS)  medium  for  1  month.  The  grafted
plants were used for phenotypic observation and sampling for
RNA-seq. Grafting of crabapple was performed using an insect
pin into the scion as previously described[27]. Grafting combina-
tions  were  as  follows:  'Flame'  as  scion  and  'Indian  Magic'  as
rootstock (F/I),  'Indian Magic'  as  scion and 'Flame'  as  rootstock
(I/F); self-grafted 'Flame'/'Flame' (F/F) and 'Indian Magic'/'Indian
Magi' (I/I) were used as control[28−30]. 

RNA extraction, sequencing, and Differentially
Expressed Genes (DEGs) identification

Total  RNA  was  extracted  from  the  stem  of  scions  and  root-
stocks  and  seedling  samples  using  an  RNA  Extraction  Kit
(Vazyme,  Nanjing,  China)  according  to  the  manufacturer's
instructions.  Further,  RNA-seq  libraries  were  constructed  and
sequenced  on  NovaSeq  platform.  Hisat2  v2.0.5  was  used  to
align clean reads to the apple genome. Featuretsv1.5.0-p3 was
used  to  map  read  numbers  to  each  gene.  Differential  expres-
sion  analysis  was  performed  using  the  DESeq2  R  package
(1.16.1)[31].  KEGG (Kyoto Encyclopedia  of  Genes  and Genomes)
pathways were tested by KOBAS software[32]. 

Measurement of anthocyanin content
Frozen  stem  of Malus crabapple  and  seedlings  samples

(0.1  g  fresh  weight)  were  ground  in  1  mL  extraction  buffer
(methanol:formic  acid:water  =  80:1:19).  The  pH-differential
method to measure the total  content anthocyanin was carried
out as referenced by Salas et al.[33]. Total anthocyanin contents
were  quantified  spectrophotometrically  at  530  and  700  nm  as
previously described[34]. 

Gene cloning and transient transformation of
apple tissue culture seedlings

'Red Fuji'  apple  peel  cDNA was  used as  a  template  to  clone
the full-length of MdSAUR20 (MD05G1052200) (primer informa-
tion is listed in Supplemental Table S1). The MdSAUR20 coding
sequence  was  cloned  into  the  pRI101-eGFP  vector  for  gene
overexpression of  apple  tissue  culture  seedlings  (M.  domestica
cv.  'Golden  Delicious')  were  grown  in  a  subculture  medium
(MS +1 mg/L 6-BA + 0.2 mg/L NAA + 0.5 mg/L GA) under long-
day conditions (16-h light/8-h darkness, 24 °C). Transgenic seed-
lings  were  obtained  by Agrobacterium-mediated  transforma-
tion  and  vacuum  extraction.  For  detailed  transient  methods
refer to the previous study by Liu et al.[35]. 

RT-qPCR analysis
Quantitative real-time PCR analysis was proceeded with SYBR

Green  qPCR  kit  (Vazyme,  Nanjing,  China)  according  to  the
manufacturer's  instructions.  The data  were  analyzed using the
internal  control  and  the  2−ΔΔCᴛ method[36].  Primer  sequences
are listed in Supplemental Table S1. 

Results
 

Anthocyanin accumulation of scions were
affected by rootstocks in grafting

To  examine  the  impact  of  rootstock  on  scion  anthocyanin
accumulation  during  grafting,  various  scion-rootstock  combi-
nations were generated. The results revealed significant antho-
cyanin  accumulation  in  the  stem  in  the  F/I  combination,  indi-
cating the influence of rootstock on scion pigmentation. In Fig.
1a,  when  the  spring  red  cultivar  'Indian  Magic'  served  as  the
rootstock,  the  green  stem  of  the  evergreen  cultivar  'Flame'
turned red.  Meanwhile,  there  was  also  anthocyanin accumula-
tion  in  the  stem  of  'Indian  Magic'  when  'Flame'  was  used  as
rootstock. To distinguish whether anthocyanin accumulation in
the  stem  of  'Flame'  resulted  from  grafting  rather  than  other
stresses,  we  used  F/F  and  I/I  combinations  as  controls.  Antho-
cyanin  was  not  detected  in  the  stem  of  'Flame'  when  'Flame'
was  used  as  rootstock,  and  the  stem  of  'Indian  Magic'  main-
tained  a  red  color  when  'Indian  Magic'  was  used  as  rootstock.
The  results  confirmed  that  the  'Indian  Magic'  rootstock
promoted anthocyanin accumulation in the stem of the 'Flame'
scion.  Paraffin  sections  were  conducted  to  observe  the  stem's
cross-section, revealing a hollow in the vascular system, indica-
ting a vascular connection between the rootstock and scion in
F/I  (Fig.  1b).  In  summary,  the  use  of  an  anthocyanin-rich  culti-
var  as  rootstock  may  influence  anthocyanin  accumulation
through signaling mechanisms during grafting. 

Overview of the transcriptomic data between
grafting combinations

To gain an in-depth comprehension of the regulatory mech-
anism of anthocyanin accumulation during grafting, the stems
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of scions (-S) and rootstocks (-R) in F/I, I/F, I/I combinations were
used as materials for transcriptome sequencing. Three biologi-
cal  replicates  for  each  combination  were  investigated,  and
clean  reads  ranged  from  38,688,774  to  52,734,680,  between
85.3% to 88.71% of the sequenced reads aligned with the apple
reference  genome.  All  18  libraries  exhibited  Q30  percentages
surpassing 93% (Table 1). Pearson correlation analysis and prin-
ciple component analysis demonstrated highly correlated tran-
scriptome  characteristics  among  the  biological  replicates  in
differential grafting combinations (R2 = 0.747 − 0.962) (Fig. 2a).
A principle component analysis also indicated that F-I-S and I-F-
R  were  more  separated  from  other  samples  (Fig.  2b).  These
findings suggest that the main differences induced by grafting
occur in the scion of 'F/I' and the rootstock of 'I-F'. 

Identification of genes showing differential
expression during grafting

To  detect  differentially  expressed  genes  in  scion  and  root-
stock across F/I, I/F, I/I combinations, comparisons were conduc-
ted as follows:  F-I-S vs I-F-R,  F-I-R vs I-I-R,  and I-F-S vs I-I-S,  and
the sequenced genes were filtered using |log2(foldchange)| > 0
and rate (FDR) < 0.05 as the screening criteria.  In F-I-S vs I-F-R,
145 DEGs were found that met the filtering criteria, comprising
85 up-regulated and 60 down-regulated DEGs (Fig. 3a). For F-I-
R vs I-I-R, 205 DEGs were filtered, comprising 188 up-regulated
and 17 down-regulated DEGs (Fig. 3b). In I-F-S vs I-I-S, 747 DEGs
were filtered, with 433 DEGs up-regulated and 314 DEGs down-
regulated (Fig. 3c). The maximum number of DEGs in I-F-S vs I-I-
S suggests that grafting in different rootstocks results in signifi-
cant differential gene expression.

To  elucidate  the  clustering  pattern  of  DEGs,  KEGG  analyses
was conducted for the three grafting combinations: F-I-S vs I-F-
R, F-I-S vs I-I-R, and I-F-S vs I-I-S. KEGG analysis aimed to discern
the  biological  functions  of  the  identified  DEGs  through  pair-
wise comparisons. Compared F-I-S with I-F-R, these DEGs were

with  enrichment  in  the  following  pathways:  'Plant  hormone
signal  transduction',  'Starch  and  sucrose  metabolism',  'MAPK
signaling  pathway',  'Arginine  and  proline  metabolism',  'Diter-
penoid  biosynthesis'  (Fig.  4a).  F-I-R  in  contrast  to  I-I-R,  the
results  confirmed that  DEGs were  enrichment  in  the following
pathways:  'Amino  sugar  and  nucleotide  sugar  metabolism',
'Plant  pathogen  interaction',  'MAPK  signaling  pathway',  'Plant
hormone  signal  transduction'  (Fig.  4b).  Moreover,  comparing
I-F-S  with  I-I-S,  the  results  suggested  that  the  DEGs  were
enriched  in  the  'ribosome',  'carbon  metabolism'  'starch  and
sucrose  metabolism',  'phenylpropanoid  biosynthesis',  'amino
sugar and nucleotide sugar metabolism' (Fig. 4c). According to
the  KEGG  analyses,  it  was  deduced  that  the  accumulation  of
anthocyanin  was  mainly  mediated  by  'plant  hormone  signal
transduction',  'Starch  and  sucrose  metabolism',  'MAPK  signal-
ing  pathway',  'arginine  and  proline  metabolism'.  Meanwhile,
Auxin  related  genes  auxin-induced  protein  AUX28,  SAUR32-
like,  IAA3-like,  and gibberellin receptor GID1B-like were identi-
fied in the 'Plant hormone signal transduction' pathway, which
suggested that  auxin and GA may have important  roles  in  the
grafting  process  (Supplemental  Table  S2).  To  understand  the
biological  processes  involved in  grafting in  different  combina-
tions, Gene Ontology (GO) analysis was performed. DEGs in the
'cell periphery', 'external encapsulating structure' and 'cell wall'
terms were significantly enriched in F-I-S vs I-F-R. In F-I-R vs I-I-R,
the  DEGs  were  enriched  in  the  'cell  periphery',  'extracellular
region',  and  'calcium  ion  binding'  terms.  Comparing  I-F-S  vs
I-I-S,  these  DEGs  were  enriched  in  the  'intracellular  non-
membrane  bounded  organelle',  'non-membrane  bounded
organelle', 'ribonucleoprotein complex', and 'ribosome' terms. 

Identification of genes associated with
anthocyanin biosynthesis during grafting

To  identify  key  anthocyanin  regulators  during  grafting  in
crabapple, we focused on DEGs that met the criteria |log2(fold-
change)|  >  2  and  false  discovery  rate  (FDR)  <  0.05  between
different combinations. In the comparison of F-I-S vs I-F-R, there
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Non-grafted Grafted 100 μm

Fig.  1    Grafting  affects  anthocyanin  accumulation  in  F/I
combination.  (a)  Phenotype  of  grafted  seedlings  with  differential
grafting  combinations  (red  arrows  indicate  the  bonding  sites  of
scion  and  rootstock,  the  black  circle  is  the  anthocyanin  accumu-
lation  area)  (F/F: Malus crabapple  cv.  'Flame'  as  scion  and Malus
crabapple cv. 'Flame' as rootstock; F/I: Malus crabapple cv. 'Flame'
as  scion  and Malus crabapple  cv.  'Indian  Magic'  as  rootstock;  I/F:
Malus crabapple  cv.  'Indian  Magic'  as  scion  and Malus crabapple
cv.  'Flame'  as  rootstock;  I/I: Malus crabapple  cv.  'Indian  Magic'  as
scion  and  rootstock).  (b)  Paraffin  section  of  the  interface  in  non-
grafted and grafted seedlings.

 

Table 1.    RNA sequencing data.

Sample
name

Clean reads % ≥ Q30 Total reads Mapped reads

I-I-R-1 26,367,340 93.26 52,734,680 45,507,642 (86.3%)
I-I-R-2 22,928,739 93.21 45,857,478 39,118,647 (85.3%)
I-I-R-3 22,104,191 93.99 44,208,382 38,710,947 (87.56%)
I-I-S-1 23,790,350 93.89 47,580,700 41,410,502 (87.03%)
I-I-S-2 23,041,216 93.29 46,082,432 40,172,269 (87.17%)
I-I-S-3 23,120,817 93.00 46,241,634 40,433,561 (87.44%)
I-F-S-1 23,048,140 94.00 46,096,280 40,314,380 (87.46%)
I-F-S-2 22,692,497 93.90 45,384,994 40,033,821 (88.21%)
I-F-S-3 19,344,387 93.00 38,688,774 33,125,491 (85.62%)
I-F-R-1 22,931,226 94.37 45,862,452 40,818,713 (89.0%)
I-F-R-2 22,311,552 93.06 44,623,104 38,436,230 (86.14%)
I-F-R-3 22,713,776 93.84 45,427,552 39,092,461 (86.05%)
F-I-S-1 22,724,018 94.15 45,448,036 40,037,863 (88.1%)
F-I-S-2 23,260,096 93.93 46,520,192 39,871,870 (85.71%)
F-I-S-3 22,846,841 94.05 45,693,682 40,535,794 (88.71%)
F-I-R-1 23,151,622 94.06 46,303,244 41,035,064 (88.62%)
F-I-R-2 25,981,536 94.19 51,963,072 45,465,386 (87.5%)
F-I-R-3 23,629,467 94.19 47,258,934 41,551,698 (87.92%)

Clean reads: number of reads after raw data filtering; % ≥ Q30: Percentage of
total bases with Phred values greater than 30; Total reads: number of clean
reads  of  sequencing  data  after  quality  control;  Mapped  reads:  number  of
reads matched to the genome and their percentages.
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were 120 DEGs listed in Supplemental  Table S3.  Among them,
three  transcription  factors MdSAUR20-like (MD05G1052200),
MdbHLH137 (MD06G1133200), MdbHLH63-like (MD05G1065100)
were  identified  and  the  variation  of  expression  level  of  these
three  TFs  in  the  comparison.  Notably, MdSAUR20 showed  the
highest  expression  in  F-I-S.  The  expression  level  of MdSAUR20
was  also  analyzed  by  qRT-PCR,  and  the  results  showed  that
MdSAUR20 in  the  stem  of  'Flame'  in  F-I-S  was  significantly
higher than that in the stem of 'Indian Magic' I-F-S, suggesting
its potential role as a key signaling factor for anthocyanin accu-
mulation in the scion during the grafting process (Fig. 5b).

To  unravel  the  transcriptional  regulatory  mechanism  of
MdSAUR20, cis-elements  in  the  promoter  region  of MdSAUR20
were  examined  using  the  PlantCARE  database.  The  analysis
identified the presence of TGACG, CGTCA-motif, ABRE, and TCA
motifs in the MdSAUR20 promoter. From this, it can be inferred
that  the  expression  of MdSAUR20 could  potentially  be  trig-
gered  by  Indole  acetic  acid  (IAA),  Methyl  Jasmonate  (MeJA),
Abscisic acid (ABA) and Salicylic acid (SA) (Fig. 5d).

To  further  investigate  the  role  of MdSAUR20 in  anthocyanin
biosynthesis,  overexpression  assays  were  conducted  in  apple
tissue  culture  seedlings  (M.  domestica cv.  'Golden  Delicious')
using  the  vector  pRI101-eGFP  vector.  The  seedling  trans-
formed  with  pRI101-MdSAUR20-eGFP  exhibited  a  noticeable
color  difference  compared  to  the  control  (Fig.  6a).  Measure-
ment  of  anthocyanin analysis  further  confirmed an increase in
anthocyanin  accumulation  in  the MdSAUR20 overexpressed
seedling  (Fig.  6b).  qRT-PCR  results  demonstrated  significantly
elevated  transcription  levels  of  anthocyanin  biosynthesis
genes,  including MdCHS, MdCHI, MdF3H, MdDFR, MdANS and
MdUFGT genes,  in  the MdSAUR20 overexpressed  seedling
compared to the control (Fig. 6c). 

Discussion

Grafting  stands  as  a  crucial  agricultural  method,  elevating
the  vigor  and  characteristics  of  the  scion,  impacting  various
aspects  such  as  fruit  quality,  fruit  color,  environmental  and
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disease  stress  resistance[37].  Anthocyanins,  the  primary

pigments  in Malus plants,  assume  vital  functions  in  multiple

physiological  and  biochemical  processes,  encompassing  UV

protection,  insect  attraction,  herbivore  defense[38−40].  There-

fore,  the  utilization  of  cultivars  with  elevated  anthocyanin

content  as  rootstocks  have  significant  production  importance.

However,  the  molecular  regulatory  mechanisms  governing

anthocyanin  biosynthesis  during  grafting  in Malus plants

remain  unclear.  In  the  present  study,  the  evergreen  cultivar

'Flame'  and  the  spring-red-leaf  cultivar  'Indian  Magic'  were

selected  as  grafting  materials.  The  results  revealed  that  the

accumulation of anthocyanin was induced in the 'Flame' when
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'Indian Magic' was used as the rootstock. Furthermore, through
RNA-seq analysis, MdSAUR20 was identified as a crucial regula-
tor of anthocyanin during grafting.

Grafting  can  modify  scion  phenotypes  through  the  uptake
and transport of water, nutrients, hormones, and long-distance
movement  of  biological  molecules[37].  Micrografting  experi-
ments  in Arabidopsis,  employing  different  mutants  related  to
cytokinin  biosynthesis  and  transport  demonstrated  that  the
regulation  of  shoot  architecture  is  influenced  by  the  root-to-
shoot translocation of trans-zeatin riboside and trans-zeatin[41].
In blood oranges, eight developmental stages of the lido blood

orange  cultivar  grafted  onto  two  rootstocks,  and  global  tran-
scriptome  and  metabolome  results  revealed  that  flavonoid-
accumulating  rootstocks  predominantly  influence  the  fruit
quality  of  the  scion[37].  In  grape,  the  metabolomic  analysis  of
Cabernet  Sauvignon cultivar  grafted  onto  different  rootstocks
and onto itself demonstrated that grafting promotes the accu-
mulation  of  stilbenes,  anthocyanins,  PAs,  and  flavonols[41,42].
Phenotypic,  metabolomic,  and transcriptomic results also indi-
cated  that  grafting  the  Crimson  Seedless  cultivar  onto  four
rootstocks could enhance berry color[37].  These results suggest
that  various  rootstocks  have  the  potential  ability  to  improve
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anthocyanin  accumulation  in  fruit  through  grafting.  However,
the  molecular  mechanism  and  signal  transport  mode  remain
unclear.  In  the  present  results,  it  was  observed  that  'Indian
Magic'  rootstock  promoted  anthocyanin  accumulation  in  the
stem  of  'Flame'  scion.  KEGG  analysis  further  suggested  that
anthocyanin accumulation in the scions of 'Flame' grafted onto
'Indian Magic'  rootstock may be mediated by plant hormones,
starch, and sucrose, or other signal transduction pathways. We
speculate  that  variations  in  anthocyanin  accumulation  during
grafting  depend  on  differentially  expressed  genes  and  the
transmission of multiple signaling pathways.

Plant hormones are likely to be important factors that modu-
late  light-dependent  anthocyanin  accumulation.  Previous
investigations  have  demonstrated  the  existence  of  crosstalk
between hormone signaling pathways and anthocyanin biosyn-
thetic  pathway,  IAA  enhanced  the  cytokinin-induced  increase
in  anthocyanin  levels  in Arabidopsis and M.  domastic cv.  'Red
Delicious'[43,44].  In apple, auxin response factor MdARF13 nega-
tively  regulates  anthocyanin  biosynthesis  by  interacting  with
MdMYB10  and  MdIAA121  interacts  with  MdARF13  to  weaken
the  inhibition  of  anthocyanin  biosynthesis[11].  And  other
studies  found  that  the  E3  ubiquitin  ligases  MdSINA4  and
MdSINA11 were involved in auxin-mediated anthocyanin regu-
lation by triggering the ubiquitination degradation of MdIAA29
and MdARF5 which auxin suggested plays a key role in media-
ting  the  inhibition  of  anthocyanin  biosynthesis[45].  In  conclu-
sion,  the  identification  of  DEGs  between  F-I-S  and  I-F-R
suggests that MdSAUR20 (MD05G1052200) may be induced by
plant  hormones  and  serves  as  a  regulator  of  anthocyanin
biosynthesis during grafting. 

Conclusions

In  summary,  the  comprehensive  phenotypic  and  transcrip-
tomic analyses during grafting have provided valuable insights
into  anthocyanin  synthesis.  These  findings  reveal  noteworthy
alterations  in  transcriptional  patterns  related  to  color  regula-
tion under diverse grafting conditions, presenting implications
for the improvement and breeding of Malus plants. 
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