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Abstract
Anthocyanins play crucial roles in conferring multicolored characteristics to higher plant organs. Previous studies have investigated the absence

of anthocyanin accumulation in white cornflower petals, where the anthocyanin biosynthesis pathway was obstructed by CcF3H. However, the

genetic  regulation  mechanism  underlying  anthocyanin  absence  remained  unclear.  In  the  present  study,  the  full-length  sequences  of  two

transcription activators CcMYB6-1 and CcbHLH1 were isolated in white cornflower petals. The multi-sequence alignment analysis revealed that

there was no difference in the CcMYB6-1 sequence between the blue and white petals, while CcbHLH1 was truncated to a length of 1,125 bp on

account of alternative splicing, resulting in a frame-shift mutation and premature codon, leading to the loss of basic, helix-loop-helix domains.

The truncated CcbHLH1 could still interact with CcMYB6-1 as demonstrated by yeast-two hybrid and bimolecular luminescence complementary

assays but lost the ability to enhance the trans-activation of CcDFR promoter using dual-luciferase assay. Transient over-expression of mutated

CcbHLH1 in  tobacco  leaves  resulted  in  a  significant  decrease  in  anthocyanin  production.  These  results  suggested  the  alternative  splicing  of

CcbHLH1 caused the incapacity of trans-activating the anthocyanin biosynthetic pathway together with CcMYB6-1, finally leading to anthocyanin

absence  in  white  cornflower.  The  present  findings  further  shed  light  on  the  genetic  regulation  mechanism  of  anthocyanin  biosynthesis  in

cornflower and enrich the knowledge underlying the white color transition in higher plants.
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Introduction

Flower  color  is  one  of  the  most  important  components  in
floral  traits  that  help  higher  plants  attract  pollinators  for
successful  fertilization.  There  are  abundant  flower  color  varia-
tions among species,  cultivars,  and hybrid progenies,  in  which
the  white  flowers,  commonly  as  a  symbol  of  purity  and  holi-
ness, play important roles in ceremonial events and ikebana. It
is  well  known  that  anthocyanins  are  the  core  pigments  to
generate  different  degrees  of  red,  violet,  or  blue  flowers[1,2].
Comparatively,  there  were  only  some  colourless  co-pigments
like  flavanones,  flavones  and  flavonols  found  in  the  white
flowers,  such  as  that  seen  in  the  white  petals  of  cornflower,
Scutellaria  baicalensis,  and Cymbidium  ensifolium[3−5].  Namely,
anthocyanin  absence  leads  to  the  white  color  formation  in
most higher plants.

Anthocyanin, a subclass of flavonoids, is an important secon-
dary  metabolite  catalyzed  by  a  series  of  enzymes[6,7].  Initially,
chalcone  synthase  (CHS)  catalyzes  the  tetrahydroxychalcone
synthesis  from  4-coumaroyl  CoA  and  malonyl  CoA,  which  was
rapidly  isomerized  to  the  naringenin  by  chalcone  isomerase
(CHI).  Then flavanone 3-hydroxylase (F3H) catalyzes the hydro-
xylation at its 3-position to generate dihydrokaempferol (DHK),
which can be further catalyzed by the flavonoid 3'-hydroxylase
(F3'H)  and  flavonoid  3'5'-hydroxylase  (F3'5'H)  to  yield  dihydro-
quercetin  (DHQ)  and  dihydromyricetin  (DHM),  respectively.
DHK,  DHQ,  and  DHM  are  further  converted  to  pelargonidin,

cyanidin, and delphinidin by dihydroflavonol 4-reductase (DFR)
and  anthocyanidin  synthase  (ANS),  respectively.  Finally,  sugar
molecules and acyl groups are attached to the anthocyanidins
by both glycosyltransferase (GT) and acyltransferase (AT). There-
fore,  any block in the structural  genes will  trigger anthocyanin
deficiency.  For  example,  down-regulation  of  the  early  biosyn-
thetic  genes,  such  as CHS and F3H,  led  to  the  white  flower
phenotypes in Ipomoea purpurea, Torenia fournieri, Dahlia varia-
bilis,  gentian,  and C.  kanran[8−13].  Moreover,  deficiency  of  the
late  biosynthetic  genes  (DFR, ANS and GT,  etc.)  also  blocked
anthocyanin  accumulation  and  facilitated  white  flower  forma-
tion,  such  as  the  cases  in Salvia  miltiorrhiza, Aquilegia  vulgaris,
strawberry, and Iris bulleyana[14−17].

Anthocyanin  biosynthetic  genes  are  under  the  control  of  a
regulatory  complex  composed  of  MYB,  bHLH,  and  WD40[18,19].
MYB transcription factors play crucial  roles in this process.  The
mutation  of  R2R3  MYB  transcription  activators  resulted  in  the
evolutionary  transitions  to  white  flowers  in Antirrhinum and
Petunia[20,21],  while  R3  MYBs  usually  function  as  transcription
inhibitors  involved  in  down-regulating  multiple  anthocyanin
biosynthetic  genes,  leading  to  anthocyanin  absence  in  higher
plant  organs[22−25].  In  addition,  bHLHs  of  the  IIIf  subgroup  are
involved in anthocyanin biosynthesis, which are further divided
into  two  distinct  clades,  namely  bHLH1  and  bHLH2  genes[26].
Usually, the bHLH2 plays essential roles in anthocyanin biosyn-
thesis,  and  its  mutation  often  results  in  anthocyanin  decrease
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and  color  fading[27−30].  Moreover,  the  bHLH1  proteins  in
Arabidopsis thaliana and Antirrhinum majus also  directly  regu-
late anthocyanin biosynthesis[31−33].

Our previous study revealed that the transcripts of structural
genes involved in anthocyanin biosynthesis, e.g., CcF3H, CcF3'H,
and CcDFR were  nearly  undetectable  in  the  white  cornflower
petals lacking anthocyanin accumulation[3], which was possibly
caused by the upstream transcription factors (TFs). Besides, two
TFs, CcMYB6-1, and CcbHLH1, were identified as activators syner-
gistically regulating anthocyanin biosynthesis in cornflower[34].
In  the  present  study,  the  anthocyanin  accumulation  in  both
vegetative and reproductive organs in two cornflower cultivars
were  first  monitored  and  it  clarified  that  anthocyanins  were
completely  absent  in  the  white  cornflower.  To  further  explore
the  molecular  mechanism  underlying  the  white  color  transi-
tion in cornflower, the transcript abundances of both structural
genes and transcription factors involved in anthocyanin biosyn-
thesis were detected, and the full-length sequence of CcMYB6-1
and CcbHLH1 were  isolated,  followed  by  the  multi-sequence
alignment and phylogenetic  analysis.  Subsequently,  the geno-
mic  sequence of CcbHLH1 was  isolated to  elucidate  its  trunca-
tion  reason.  Furthermore,  the  subcellular  localization  analysis,
yeast-two  hybrid,  bimolecular  luminescence  complementary
assay, dual-luciferase assay, as well as the transient over-expres-
sion  in  tobacco  leaves  were  conducted  to  explore  the  func-
tional  changes  after CcbHLH1 truncation.  The  findings  will
enhance  our  understanding  of  the  regulation  mechanism  of
anthocyanin  biosynthesis  in  cornflower,  and  provide  new
insights on the white color transition in higher plants. 

Materials and methods
 

Plant material
Two Centaurea  cyanus cultivars  with  blue  and  white  petals

were used in this study, namely, 'Dwarf Tom Pouce Blue' (DTPB)
and 'Dwarf Tom Pouce White' (DTPW) (Fig. 1a). The seeds were
purchased from the Outsidepride Seed Source, LLC. Their seeds
were sown in an equal volume mixture of peat and vermiculite,
then placed in phytotron under 23 °C and 16 h/8 h (light/dark)
conditions. After one month of cultivation, the seedlings began
to blossom, and capitula were divided into four developmental
stages based on our previous publication[3] (Fig. 1b). Briefly, the
buds in stage one (S1), stage two (S2), and stage three (S3) were
uncolored,  less  than  50%  pigmented,  and  fully  pigmented,
respectively,  while  the  petals  in  stage  four  (S4)  were  opened
and  fully  pigmented  (Fig.  1c).  The  roots,  stems,  leaves,  sepals,
and  petals  (S1−S4)  were  collected  into  2  mL  RNAase-free
tubes, rapidly precooled in liquid nitrogen and stored at −80 °C
before use. 

Gene isolation and qRT-PCR analysis
Total  RNAs  were  extracted  from  petals  of  DTPW  and  DTPB,

respectively,  followed  by  the  first-strand  cDNA  generation
using  M-MLV  reverse  transcriptase  (Promega,  Germany).  Poly-
merase  chain  reaction  was  conducted  to  amplify  the  full  or
partial-length of CcMYB6-1 and CcbHLH1 in the two cornflower
cultivars. The 3′-rapid amplification of cDNA ends (3'-RACE) was
performed to isolate the CcbHLH1# in DTPW, followed by verifi-
cation of the obtained sequence using the high-fidelity enzyme
of  KOD-201  (TOYOBO,  Japan).  To  further  explore  the  expres-
sion  characteristics  of  structural  and  regulatory  genes,  the

qRT-PCR  was  performed  in  roots,  stems,  leaves,  sepals,  and
petals of both DTPW and DTPB using the TB Green® Premix Ex
Taq™  II  (Takara,  Japan).  Conflower  actin  (KY621346)  was  used
as the reference gene. All the primers were designed based on
the  transcriptome  database[34] and  listed  in Supplementary
Table S1. 

DNA extraction and isolation of genomic
CcbHLH1

The  fresh  leaves  were  cut  from  DTPB  in  the  vegetative
period, precooled in liquid nitrogen, and ground into a powder.
Then  the  whole-genome  DNA  was  extracted  using  the  super
plant genomic DNA kit according to the instructions (TIANGEN,
China).  To  further  explore  the  genomic  structure  of  CcbHLH1,
the  PrimeSTAR® Max  DNA  polymerase  (Takara,  Japan)  was
used  to  amplify  its  genomic  sequence.  Furthermore,  the  puri-
fied  PCR  products  were  ligated  into  the  pCE3  blunt  vector,
followed  by  the  transformation  into Escherichia  coli DH5α and
sequencing.  All  the  primers  are  listed  in Supplementary
Table S1. 

Phylogenetic analysis and sequence alignment
A maximum likelihood phylogenetic tree was constructed by

the Jones-Taylor-Thornton (JTT) model using MEGA11. Deduced
protein sequences were firstly aligned using MUSCLE, followed
by the phylogeny test with 1,000 bootstrap replications. Besides,
gaps  or  missing  data  were  treated  as  complete  deletions.
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Fig.  1    Different  cultivars  and  developmental  stages  of  corn-
flower.  (a)  Two cornflower  cultivars  with  white  and blue petals  in
DTPW and DTPB, respectively. (b) The capitula were classified into
four  developmental  stages,  bar  =  1  cm.  (c)  The  pigmentation
pattern  of  cornflower  petals  in  different  developmental  stages,
bar = 1 cm.
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DNAMAN  software  was  applied  to  obtain  the  multi-sequence
alignment result. 

Subcellular localization of key genes
The  pCAMBIA  vector  carrying  an  EGFP  was  digested  with

NcoI and SpeI, followed by the ligation with CcMYB6-1, CcbHLH1
and its mutant without stop codons using homologous recom-
bination.  The  empty  and  recombinant  plasmids  were  trans-
formed  into Agrobacterium tumefaciens GV3101,  respectively.
GV3101s  were  resuspended  in  the  liquid  mixture  containing
10  mM  MgCl2,  10  mM  MES,  and  200 μM  acetosyringone,  then
were adjusted to the OD600 of 1, followed by the infiltration into
Nicotiana benthamiana leaves using needless injections. Before
observation, the leaves were immersed in the DAPI (10 μg/mL)
for 30 min. Finally, a laser scanning confocal microscope (Leica
TCS  SP8,  Wetzlar,  Germany)  was  used  to  obtain  the  fluores-
cence signal. 

Yeast two-hybrid assay
The  restriction  endonucleases EcoRI  and BamHI  (New

England  Biolabs)  were  used  to  linearize  pGBKT7  and  pGADT7
empty vectors. The whole length of CcMYB6-1 was cloned into
pGADT7  to  form  AD-CcMYB6-1  recombinant,  while CcbHLH1
and  its  mutant  were  cloned  into  pGBKT7  to  construct  BD-
CcbHLH1 and BD-CcbHLH1# recombinants.  Then,  these empty
vector and/or recombinant plasmids were co-transformed into
Y2H strain by use of yeastmaker™ yeast transformation system
2  (Clontech,  USA)  and  plated  on  the  SD/-Leu/-Trp  solid
medium, followed by incubation upside down at 30 °C for three
days. The matchmaker™ insert check PCR mix 2 (Takara, Japan)
was used to ensure the successful insertion of target genes into
the yeast strain, followed by the evaluation on the SD/-Trp-Leu-
His-Ade  medium  supplemented  with  X-α-Gal  and  3-amino-
1,2,4-triazole (3AT). 

Bimolecular luminescence complementary assay
The  bimolecular  luminescence  complementary  assay  was

further  conducted  to  get  more  evidence  of  protein-protein
interaction  between  CcMYB6-1,  and  CcbHLH1,  or  CcbHLH1#.
The  empty  pCAMBIA1300-cluc  (cLUC)  and  pCAMBIA1300-nluc
(nLUC) plasmids were digested with KpnI  and SalI  for lineariza-
tion.  The  full-length  sequence  of CcMYB6-1 was  ligated  into
linearized  cLUC,  while CcbHLH1 and CcbHLH1# without  stop
codons  were  cloned  into  linearized  nLUC,  respectively.  Subse-
quently, the empty or recombinant plasmids were transformed
into A. tumefaciens GV3101  severally,  followed  by  the  infiltra-
tion of GV3101s of different combinations into N. benthamiana
leaves at  an equal  volume ratio of  cLUC and nLUC. After three
days  of  co-culture  in  the  dark,  the  D-luciferin  potassium  salt
solution  was  sprayed  on  the  leaf  abaxial  surface,  followed  by
the  observation  of  fluorescence  signals  using  a  molecular
imaging system (LB983 NightOwl II). 

Dual luciferase assay
The promoter  region of CcDFR,  a  key structural  gene cataly-

zing anthocyanin biosynthesis,  was isolated as  in  our  previous
publication[34]. Restriction endonucleases KpnI and BamHI (New
England Biolabs) were used to digest pGreenII 0800-LUC empty
vector  in  rCutSmart  buffer  at  37  °C  for  15  min,  then CcDFR
promoter  of  1,510  bp  was  cloned  into  the  linearized  pGreenII
0800-LUC  by  homologous  recombination.  The  full-length
sequences  of CcMYB6-1, CcbHLH1 and CcbHLH1# were  recom-
bined  into  pGreenII  62-SK  vector.  All  the  recombinants  were

individually  transformed  into A.  tumefaciens GV3101  and  veri-
fied  as  a  positive  clone  by  polymerase  chain  reaction.  Subse-
quently, a total of six groups including SK, SK + CcMYB6-1, SK +
CcbHLH1, SK + CcbHLH1#, CcMYB6-1 + CcbHLH1, and CcMYB6-
1  +  CcbHLH1#  were  individually  mixed  with  LUC-DFRpro at  a
ratio  of  10:1  (v:v).  The  GV3101s  containing  different  recombi-
nants were infiltrated into N. benthamiana leaves using a need-
less  injector.  After  three  days  of  cultivation,  the  infiltrated
leaves  were  painted  with  a  layer  of  D-luciferin  potassium  salt
liquid  containing  0.1%  Triton-x-100,  and  then  photographed
using the molecular imaging system (LB983 NightOwl II). More-
over,  the firefly luciferase and Renilla luciferase were extracted
following  the  instructions  of  Dual-Luciferase® Reporter  Assay
System  E1910  (Promega,  USA),  and  detected  by  EnVision
(PerkinElmer, USA). 

Transient expression in tobacco leaves
To explore the functional changes before and after CcbHLH1

mutation, N.  benthamiana were  used  for  transient  expression.
GV3101s containing mixed plasmids including SK + CcMYB6-1,
SK  +  CcbHLH1,  SK  +  CcbHLH1#,  CcMYB6-1  +  CcbHLH1,  or
CcMYB6-1 + CcbHLH1# at a ratio of 1:1 (v:v) was infiltrated into
leaves using a needleless injector, followed by cultivation in the
dark  for  three  days  and  photographed  after  nine  days.  About
0.1  g  infiltrated  tobacco  leaves  were  weighed  and  stored  at
−80 °C before use. 

Semiquantitative analysis of anthocyanin
Cyanidin-3-O-glucoside  (Cy3G)  was  used  to  obtain  the

regression  equation  (Y  =  2.9301X,  R2 =  0.9959)  at  525  nm.
About 0.1 g of fresh samples were accurately weighed, ground
into  a  powder  using  a  grinding  machine,  and  extracted  with
1  mL  mixture  of  methanol  :  H2O  :  formic  acid  :  trifluoroacetic
acid  =  70:27:2:1  (v  :  v  :  v  :  v)  at  4  °C  overnight,  followed  by
centrifugation  at  12,000  rpm  for  two  minutes.  As  for  leaves,
stems  and  sepals,  500 μL  chloroform  was  added  to  remove
chlorophyll  before  centrifugation.  The  liquid  supernatant  was
transferred  into  new  tubes  for  anthocyanin  detection  using  a
spectrophotometer. 

Statistical analysis
Data  processing  was  conducted  by  use  of  Excel  2021,  and

SPSS  20.0  was  performed  to  obtain  the  significant  difference
analysis  using  Ducan's  multiple  test  at  1%  level.  Origin  2021
was used for visualizing the figures. 

Results
 

Anthocyanin is completely absent in both
vegetative and reproductive organs of the white
cornflower

The previous research on cornflower  has  clarified that  there
were pelargonidin derivatives in the pink and red petals as well
as  cyanidin  derivatives  in  the  blue,  mauve,  and  black  petals,
while  no  anthocyanin  was  detected  in  the  white  petals  using
the  ultra-performance  liquid  chromatography  coupled  with
photodiode  array  and  tandem  mass  spectrometry[3].  Here,  we
further  attempted  to  detect  the  anthocyanins  in  root,  stem,
leaf,  and  sepal,  besides,  the  dynamic  changes  of  anthocyanin
content were also traced among four developmental stages of
petals  (Supplementary  Fig.  S1).  There  was  no  anthocyanin  in
the  DTPW  petals,  which  was  consistent  with  our  previous
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results[3],  while  the  vegetative  organs  showed  no  anthocyanin
accumulation,  either  (Fig.  2a & b),  suggesting  anthocyanins
were  completely  absent  in  DTPW.  Comparatively,  the  sepals
accumulated trace anthocyanins and the anthocyanin contents
in petals continuously increased with flower development and
peaked  at  stage  four  (Fig.  2a & b),  suggesting  anthocyanins
accumulated in both sepals and petals of DTPB.

The  expression  pattern  of  structural  genes  was  further
analyzed  including CcF3H, CcF3'H, CcDFR, CcANS, CcGT,  and
CcAT in  the  spatio  levels  to  clarify  the  potential  mechanism of
anthocyanin  absence  in  DTPW  (Supplementary  Fig.  S2).  Nota-
bly,  the CcDFR was  specifically  expressed  in  the  reproductive
period. All the biosynthetic genes in the blue petals were signi-
ficantly  higher  expressed  than  others,  while  the  white  petals
only  showed  a  tiny  amount  of  gene  expression,  which  were
consistent  with  our  previous  publication[3].  These  results
suggested  that  the  down-regulating  of  biosynthetic  gene
expression  accounted  for  the  anthocyanin  absence  in  DTPW.
Our previous research identified two transcription factors (TFs)
positively  regulating  anthocyanin  biosynthesis  in  cornflower,
namely  CcMYB6-1  and  CcbHLH1[34].  The  qRT-PCR  results
revealed  that  the  white  petals  showed  significantly  higher

expression of CcMYB6-1 (Fig.  2c),  while  the CcbHLH1 transcript
was nearly undetectable in DTPW (Fig. 2d), indicating CcbHLH1
may  be  responsible  for  the  down-regulating  of  biosynthetic
genes in DTPW. 

A spontaneous mutation of CcbHLH1 occurs in the
white cornflower petals

Further,  an  attempt  was  made  to  isolate  the  full-length
sequences of those two TFs using the cDNA library constructed
from the petals  of  both DTPW and DTPB.  Firstly,  a  polymerase
chain  reaction  was  performed  to  amplify  the  whole  length  of
two TFs using primers based on the published sequence infor-
mation  in  the  blue  cornflower  cultivar  DTPB.  The  agarose  gel
electrophoresis  showed  that CcMYB6-1 could  be  successfully
amplified in DTPW (Supplementary Fig.  S3a),  and its  sequence
contained the whole R2 and R3 domains, 100% consistent with
that  in DTPB (Fig.  3a),  suggesting CcMYB6-1 was not the main
cause  for  anthocyanin  absence  in  DTPW.  Then,  three  pairs  of
primers  were  designed  to  amplify  different  fragments  of
CcbHLH1 (Supplementary  Fig.  S3b),  and  the  agarose  gel  elec-
trophoresis showed that there were clear bands of fragment 1
and fragment  2,  however,  fragment  3  could  only  be  amplified
in DTPB (Supplementary Fig. S3c), suggesting its full-length was
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Fig.  2    Anthocyanins  showed specific  accumulation in  different  cultivars  and organs of  cornflower.  (a)  The anthocyanin extracts  of  distinct
organs from DTPW and DTPB.  (b)  Anthocyanin content in different cultivars  and organs.  Error  bars were the S.E.  of  four biological  replicates
with each from three individual plantlets. (c), (d) The spatio and temporal expression patterns of CcMYB6-1 and CcbHLH1 in DTPW and DTPB.
Error bars were the S.E. of three technical replicates. Different capital letters indicate significant difference at 1% level by Duncan's multiple test.
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possibly  missing  in  the  white  petals.  Then  3'  RACE  was
performed  to  obtain  the  whole  length  of CcbHLH1 in  DTPW.
Finally, a sequence with 1,125 base pairs was joined and further
verified by amplification using high-fidelity enzyme. The multi-
sequence  alignment  analysis  showed  that  the  truncated
CcbHLH1 in DTPW lost partial WD activation domain, the whole
basic helix-loop-helix domain in the N-terminal, and the aspar-
tokinase,  chorismite  mutase,  TyrA  (ACT)-like  domain  in  the  C-
terminal (Fig. 3b). For convenience, the truncated CcbHLH1 was
renamed  as CcbHLH1# in  the  following  assays.  These  results
revealed  that  a  naturally  spontaneous  mutation  of CcbHLH1
occurred  in  DTPW,  which  may  account  for  its  anthocyanin
absence. 

Alternative splicing is responsible for the
truncation of CcbHLH1

The qRT-PCR results revealed that CcbHLH1# was specifically
expressed in the petals,  and its  abundance in the white petals
was  significantly  higher  than  that  in  the  blue  petals  (p <  0.01)
(Fig.  4a).  To  further  explore  the  molecular  mechanism  under-
lying  the  truncation  of CcbHLH1,  its  genomic  sequence  was
isolated in DTPB, which contained four exons and three introns

(Fig.  4b).  The  mature  mRNA  of CcbHLH1 consisted  of  four
complete exons, carrying the key basic, helix-loop-helix domain
(Fig.  4b).  Comparatively,  the CcbHLH1# transcript  consisted  of
exons 1, 2, and partial retention of intron 2, losing the key bHLH
domain  (Fig.  4b).  Furthermore,  phylogenetic  analysis  of  the
predicted  amino  acid  sequences  of  CcbHLH1  and  CcbHLH1#
with other bHLHs that regulate flavonoid biosynthesis in other
species revealed they belong to the bHLH2 clade within the IIIf
subgroup (Fig. 4c). 

The subcellular localization analysis of CcbHLH1
To  further  clarify  if  the  functional  position  changed  after

CcbHLH1 truncation,  the  subcellular  analysis  was  conducted
using  GFP  as  a  reporter  gene,  whose  transcription  was  acti-
vated  by  the  constitutive  CaMV  35S  promoter.  The CcMYB6-1,
CcbHLH1,  and CcbHLH1# without  stop  codons  were  success-
fully  fused  with  GFP.  There  were  strong  GFP  fluorescence
signals  widely  found  in  the  whole  cell  transformed  with  an
empty  vector.  Comparatively,  the  GFP  fluorescence  signals  of
CcMYB6-1,  and CcbHLH1 were  mainly  focused  in  the  nucleus
(Fig.  5),  which  was  consistent  with  our  previous  identification
that CcMYB6-1 and CcbHLH1 functioned as transcription factors
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synergistically involved in regulating anthocyanin biosynthesis
in  cornflower[34].  Similarly,  the  green  fluorescence  signals  of
CcbHLH1# were  also  observed  in  the  nucleus  (Fig.  5),  sugges-
ting  the  loss  of  multi-domains  didn't  change  its  functional
position. 

CcbHLH1# remains the protein-protein
interaction with CcMYB6-1

The  yeast  two-hybrid  assay  was  conducted  to  explore
whether  the  protein-protein  interaction  relationship  changed
between  the  truncated  CcbHLH1  and  CcMYB6-1.  Yeast  trans-
formed with pGBKT7-53 and pGADT7-T as well  as pGBKT7-lam
and  pGADT7-T  were  designed  for  the  positive  and  negative
control,  respectively.  A  total  of  five  combinations  were  per-
formed,  and  all  of  them  could  grow  well  on  the  SD/-Trp-Leu
plate,  suggesting  all  the  target  plasmids  were  successfully
transformed  into  the  Y2HGold  yeast  strain  (Fig.  6a).  The  follo-
wing  observation  found  that  yeast  transformed  with  BD-
CcbHLH1/CcbHLH1#  and  empty  AD  or  empty  BD  and  AD-
CcMYB6-1 could not grow on the SD/-Trp-Leu-His-Ade+X-α-gal
+  3AT  plate,  similar  as  the  negative  control.  Comparatively,
yeast  co-transformed  with  CcMYB6-1  and  CcbHLH1  or
CcbHLH1# grew well and exhibited significant blue color on the
same  medium,  similar  as  the  positive  control  (Fig.  6a).  More-
over,  the bimolecular  luminescence complementary assay was
also conducted to obtain more evidence. There was no fluores-
cence  signal  detected  in  the  combinations  of  nLUC  +  cLUC,
nLUC  +  cLUC-CcMYB6-1,  and  nLUC-CcbHLH1/CcbHLH1#  +
cLUC,  while  significantly  stronger  fluorescence  signals  were

found both in the nLUC-CcbHLH1 + cLUC-CcMYB6-1 and nLUC-
CcbHLH1#  +  cLUC-CcMYB6-1,  further  verifying  the  protein-
protein interaction between CcbHLH1/CcbHLH1# and CcMYB6-
1  (Fig.  6b).  These  results  indicated  that  the  truncation  of
CcbHLH1 didn't change its protein interaction with CcMYB6-1. 

CcbHLH1# loses the ability to enhance the trans-
activation of CcDFR promoter

A  previous  study  indicated  that  CcMYB6-1  could  trans-acti-
vate the promoters of structural genes involved in anthocyanin
biosynthesis  and  this  trans-activation  was  significantly
enhanced when co-expressed with CcbHLH1[34]. The late antho-
cyanin  biosynthetic  gene CcDFR was  then  chosen  to  clarify
whether  the  mutational  CcbHLH1  could  retain  the  ability  to
enhance  gene  expression.  Firstly,  tobacco  leaves  were  infil-
trated  with  CcbHLH1,  CcbHLH1#,  and  CcMYB6-1,  respectively,
followed  by  the  visualization  of  firefly  fluorescence  using  a
molecular imaging system. The fluorescence signal in CcMYB6-
1  was  significantly  stronger  than  that  in  the  CcbHLH1/
CcbHLH1#,  suggesting CcbHLH1 or  its  mutant  alone could not
trans-activate  the CcDFR promoter  (Supplementary  Fig.  S4).
Then  CcbHLH1  and  CcMYB6-1  were  co-expressed  and  more
stronger fluorescence signal was obtained, however, the signal
in  CcbHLH1#  +  CcMYB6-1  was  similar  as  that  in  the  SK  +
CcMYB6-1, suggesting CcbHLH1# could not enhance the trans-
activation of  the CcDFR promoter  (Fig.  7a).  Moreover,  the dual
luciferase assay was conducted to obtain more concrete statis-
tics.  The value of  LUC/REN in  SK was set  as  1  for  convenience.
The  combinations  of  SK  +  CcbHLH1/CcbHLH1#  could  not  up-
regulate  the activity  of CcDFR promoter,  which was  consistent
with  the  molecular  imaging  results.  Comparatively,  co-trans-
formed  CcMYB6-1  and  CcbHLH1  significantly  enhanced  the
activity  of  the CcDFR promoter  with  12.9-fold  induction,  while
there  was  no  significant  difference  between  CcMYB6-1  +
CcbHLH1# and SK + CcMYB6-1 (p < 0.01) (Fig. 7b). These results
indicated  that  the  truncated  CcbHLH1  lost  the  ability  to
enhance  the  trans-activation  of CcDFR promoter,  which  possi-
bly was the main reason for the anthocyanin absence in DTPW. 

Anthocyanin content in tobacco leaves decreases
after CcbHLH1 mutation

Due  to  the  lack  of  a  stable  genetic  transformation  system,
the  transient  over-expression  in  tobacco  leaves  were  conduc-
ted  to  clarify  the  functional  changes  after  CcbHLH1  mutation.
A  total  of  five  combinations  were  designed,  including  SK  +
CcMYB6-1,  SK  +  CcbHLH1,  SK  +  CcbHLH1#,  CcMYB6-1  +
CcbHLH1,  and  CcMYB6-1  +  CcbHLH1#.  After  9  d  of  co-cultiva-
tion, tobacco leaves infiltrated with CcMYB6-1 turned green to
red,  in  which  the  CcMYB6-1  +  CcbHLH1  group  exhibited  the
darkest  red,  followed  by  CcMYB6-1  +  CcbHLH1#,  and  SK  +
CcMYB6-1  groups.  On  the  contrary,  tobacco  leaves  infiltrated
with SK + CcbHLH1 or SK + CcbHLH1# retained green (Fig. 8a).
These  results  indicated that  only  CcMYB6-1  expressed can the
tobacco  leaves  turn  red,  which  was  consistent  with  our  pre-
vious research[34].  Notably, the leaves exhibited pale red rather
than  darker  red  after  CcbHLH1  mutation,  suggesting  its  func-
tion of synergistically regulating anthocyanin biosynthesis with
CcMYB6-1  was  also  missing.  Furthermore,  the  semi-quantita-
tive interpretation using Cy3G as a standard was performed to
obtain  more  direct  evidence.  There  was  no  anthocyanin
detected  in  SK  +  CcbHLH1  and  SK  +  CcbHLH1#  groups,  while
the anthocyanin content in CcMYB6-1 + CcbHLH1 was 10.8 mg/g
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(fresh  weight,  FW),  significantly  higher  than  that  in  other
combinations.  Notably,  there  was  no  significant  difference
between SK + CcMYB6-1 and CcMYB6-1 + CcbHLH1# (p < 0.01)
(Fig.  8b),  suggesting the  truncated CcbHLH1 didn't  play  a  role
in stimulating anthocyanin biosynthesis together with CcMYB6-
1.  These  results  revealed  that  the  loss  of  the  conserved  multi-
domains  of  CcbHLH1  led  to  the  loss  of  the  ability  to  up-regu-
late  anthocyanin  biosynthesis  with  CcMYB6-1,  which  can
account  for  the  anthocyanin  absence  in  the  white  petals  of
cornflower. 

Discussion

Cornflower  is  favored  by  its  exquisite  capitulum  and  abun-
dant  flower  color  variation  thereby  is  widely  used  in  garden
design, cut flowers, and food decoration. In our previous study,
six  cornflower  cultivars  with  pure  colors  were  collected.  The
UPLC-MS/MS  analysis  revealed  that  pelargonidin  and  cyanidin
derivatives  were  the  main  anthocyanins  accumulating  in  the
pink/red and blue/mauve/black petals, respectively, while there
was  no  anthocyanin  detected  in  the  white  cornflower  petals,
which  only  accumulated  apigenin  derivatives[3].  Here,  antho-
cyanins  were  further  monitored  in  both  vegetative  and

reproductive organs of cornflower (Fig. 2). There was no antho-
cyanin  detected  in  roots,  stems,  and  leaves,  suggesting  the
anthocyanin  deficiency  in  vegetative  organs  of  cornflower.
Notably,  anthocyanins  accumulated  slightly  in  the  sepals,  and
increased  with  petal  development  in  DTPB,  while  no  antho-
cyanin  was  found  in  both  sepals  and  petals  of  DTPW,  indica-
ting  its  complete  anthocyanin  absence,  which  was  further
explained  by  the  block  of  structural  genes  including CcF3'H,
CcDFR, CcGT, and CcAT (Supplementary Fig. S2).

To  date,  CcMYB6-1  and  CcbHLH1  have  been  functionally
characterized  as  positive  regulators  involved  in  the  anthocya-
nin  biosynthesis  in  cornflower.  Considering  that  MYBs  muta-
tion  usually  leads  to  the  anthocyanin  deficiency  and  white
phenotype  in Raphanus  sativus taproots,  grapes,  strawberries,
and  citrus[35−38],  we  focused  on  the  gene  expression  and
sequence  isolation  of CcMYB6-1.  Unexpectedly,  the  transcript
level  of CcMYB6-1 was significantly higher in DTPW petals (p <
0.01, Fig.  2),  and its  full-length sequence in DTPW was entirely
consistent  with  that  in  DTPB  (Fig.  3),  which  was  distinct  from
the CgsMYB12 mutation caused by a 1-bp deletion in the white
basal region of Clarkia gracilis[39], the FaMYB10 mutation caused
by an AG insertion in the white-fleshed strawberry[37], as well as
the LsTT2 mutation  in  the  white  seeds  of  lettuce[40].  Notably,
CcbHLH1 transcript  was  undetectable  in  DTPW  (Fig.  2),  consis-
tent  with  the  absence  of  structural  gene  expression  and
anthocyanin  accumulation.  The  following  gene  isolation  and
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multi-sequence  alignment  showed  that CcbHLH1 in  the  white
cornflower was spontaneously truncated to 1,125 bp, losing the
basic  helix-loop-helix  domain  in  the  N-terminal  and  the  ACT-
like domain in the C-terminal (Fig. 3), two necessary domains in
regulatory  activity,  the  mutation  of  which  usually  results  in
anthocyanin decrease[41,42].

Generally,  the  base  deletion  or  insertion,  transposon  inser-
tion,  and  alternative  splicing  will  give  rise  to  the  premature
stop codon and frameshift,  finally  leading to  the truncation of
coding genes and anthocyanin loss[43−48]. In this study, the trun-
cation  of CcbHLH1 is  the  result  of  alternative  splicing  by  com-
paring the genome sequence with two transcripts (Fig.  4).  The
truncated CcbHLH1# protein is still localized in the nucleus and
could interact  with  CcMYB6-1 (Figs  5 & 6),  suggesting the loss
of  necessary  domains  doesn't  change  its  functional  position
and  interaction  relationship,  which  may  be  explained  by  the
invariant  MYB-interaction  region  in  the  N-terminal[18].  The
following  dual-luciferase  assay  revealed  that  CcbHLH1  alone
couldn't  stimulate  the  trans-activity  of  the CcDFR promoter,
suggesting its  function in a CcMYB6-1-dependent way (Fig.  7),
which  was  different  from  petunia  anthocyanin1,  also  a  bHLH2
clade  TF,  that  directly  activates  the  expression  of  the dfrA
gene[27].  However,  the  enhanced  trans-activation  of CcDFR
promoter  and  anthocyanin  biosynthesis  ability  when  co-
expressed  with  CcMYB6-1  disappeared  after  CcbHLH1  trunca-
tion  (Figs  7 & 8),  suggesting  the  loss  of  basic  helix-loop-helix
domain  and  ACT-like  domain  contributed  to  the  regulatory
inactivation,  similar  to  the  cases  in  chrysanthemum,  tomato
and petunia[29,49,50].

A  possible  explanation  is  that  the  truncated  TFs  function  as
inhibitors  involved  in  either  competing  with  the  functional
protein for activation sites of structural genes or the formation
of  effective  MYB-bHLH-WD40  protein  complex,  thus  signifi-
cantly  affects  anthocyanin  levels.  In  maize,  the  dominant
mutant C1-I, a truncated MYB transcription factor acts as antho-
cyanin  inhibitor  by  competing  C1  for  activator  sites  of  the
biosynthetic  genes  like R1-nj[51].  Truncated  MYBs  or  bHLHs
usually lose the original ability to form the MBW complex thus
leading  to  the  anthocyanin  decrease  and  color  fading  like
chrysanthemum, radish, and wheat[29,52,53]. Differently, the trun-
cated  CcbHLH1  of  cornflower  retains  its  interaction  with
CcMYB6-1,  but  this  CcbHLH1#-CcMYB6-1  complex  can't  effec-
tively enhance the trans-activity of CcDFR promoter and antho-
cyanin accumulation in tobacco leaves like CcbHLH1-CcMYB6-1
complex  (Figs  7 & 8),  suggesting  that  the  truncated  variant
inhibits  anthocyanin  biosynthesis  by  forming  a  dysfunctional
complex.

Alternative  splicing  plays  a  key  regulatory  role  in  antho-
cyanin  accumulation,  leading  to  the  color  variation  of  higher
plant organs. The anthocyanin-free phenotype of the eggplant
efc1 mutant is  caused by the retention of the second intron in
DFR by  improper  splicing[54].  In  tomato  and Brassica  napus,
alternative  splicing  brings  the  truncated  R2R3-MYB  protein
without  the  key  R3  domain,  resulting  in  the  non-interaction
with  bHLH  transcription  factor,  and  finally  leading  to  antho-
cyanin loss[55,56].  Interestingly,  there  are  three kinds  of  splicing
variants  of  bHLH2  in  chrysanthemum,  namely,  the  activator
CmbHLH2  with  complete  domains  and  the  strongest  regula-
tory effect, the activator CmbHLH2.1 with 26 amino acids diffe-
rence at the C-terminal and less regulatory effect, as well as the
dysfunctional CmbHLH2short with only partial MIR domain at the

N-terminal[24,29,30], suggesting the more domains lost, the more
functions  disappear.  The  missing  multi-domains  in  cornflower
CcbHLH1# is also caused by alternative splicing, leading to the
complete  anthocyanin  loss  in  DTPW.  Together,  these  findings
reveal alternative splicing may play a potential role in modula-
ting  anthocyanin  biosynthesis  in  cornflower.  The  regulatory
mechanism underlying alternative splicing remains to be seen
in the near future. 

Conclusions

The transcription activator in cornflower, CcbHLH1, was trun-
cated to 1,125 bp because of alternative splicing, losing multi-
domains  at  the  C-terminal.  The  mutated  CcbHLH1  protein
could  interact  with  CcMYB6-1,  but  lose  the  ability  to  trans-
activate  promoter  activity  of  anthocyanin  biosynthetic  genes
and  to  induce  anthocyanin  biosynthesis  thereby,  which
resulted  in  the  complete  anthocyanin  absence  in  the  white
cornflower.  These  obtained  results  provide  insights  into  the
molecular  mechanism  underlying  the  white  color  transition  in
higher plants. 
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