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Abstract
Clematis lanuginosa, a valuable ornamental plant in Zhejiang Province, China, produces flowers that are blue–purple, a rare flower colour. In this study, to

explore  the  anthocyanin  synthesis  mechanism  involved  in  flower  colour  formation  in C.  lanuginosa, metabolome,  and  transcriptome  sequencing  was

performed  at  six  flower  development  stages.  Metabolome  analysis  revealed  25  anthocyanin  compounds  and  22  differentially  expressed  metabolites.

Cyanidin-3,5-O-diglucoside, cyanidin-3,5,3'-O-triglucoside, cyanidin-3-O-rutinoside-5-O-glucoside, delphinidin-3-O-glucoside, and petunidin-3-O-glucoside

may promote the formation of blue–purple colour in flowers. The combined analysis results revealed that the transcript41913_f2p0_1152 gene (MYB-like)

may be a key gene in C. lanuginosa blue–purple flower colour development. These results provide the basis for further research on the blue–purple flower

colour of C. lanuginosa.
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Introduction

Clematis  lanuginosa belongs  to  the  Ranunculaceae  family  and  is
one of the most primitive and highly important parents of Clematis
breeding[1].  It  is  also  a  unique  wild  resource  in  China  and  a  key
protected wild plant in Zhejiang Province and is distributed only in
northeast  of  the  province. The  flowers  of C.  lanuginosa are  usually
blue–purple in colour[2,3].

Most plant flower colour is due to the presence of pigment com-
pounds in chloroplasts or vacuoles in flower tissue. Currently known
plant  pigments  are  classified  into  three  main  categories:  carote-
noids,  alkaloids,  and  flavonoids[4].  Anthocyanins  constitute  a  large
class  of  flavonoid  compounds  widely  found  in  plant  roots,  stems,
leaves,  flowers,  and fruits[5].  More  than 600 anthocyanin  glycosides
are found in nature[6]. The most common anthocyanins in plants are
six  widely  distributed  anthocyanin  glycoside  derivatives:  delphini-
din, malvidin, pelargonidin, cyanidin, peonidin, and petunidin[7]. The
type  and  content  of  anthocyanin  glycosides  are  the  main  determi-
nants of flower colour. For example, pink to purple‒red is produced
by  cyanidin,  orange‒red  to  red  is  produced  by  pelargonidin,  and
purple to blue colouration is produced by delphinidin and its deriva-
tive  malvidin  pigment[8].  In  addition,  changes  in  anthocyanin
content affect the final presentation of flower colour. For example, a
gradual  increase  in  cyanidin  content  is  associated  with  a  colour
change from light to dark red[9].

Transcription  factors  regulate  the  expression  intensities  and
patterns  of  structural  genes  associated  with  anthocyanin
biosynthesis[10].  Wild-type  petunias  usually  exhibit  coloured  stems,
blue flowers,  and dark brown seeds.  When the coding sequence of
the morning glory transcription factor InMYB1 is mutated, the stems,
flowers,  and  seeds  of  the  mutant  plants  become  red,  white,  and

white, respectively. A frameshift in the gene encoding another tran-
scription factor, InWDR1,  produces  green stems,  white  flowers,  and
ivory  seeds[11].  When  the  second  intron  of  the TfMYB1 gene  is
inserted  into  an  En/Spm-like  transposon,  the  expression  of  struc-
tural genes involved in the anthocyanin synthesis pathway, such as
F3H, CHS, UFGT, DFR,  and ANS, is significantly downregulated, resul-
ting  in  a  mutant  with  a  'flecked'  grey‒purple  colour  mixed  with
purple spots due to the significant decrease in anthocyanin content
in  the petals[12].  A  study in  peas  revealed that  transposon insertion
into  a bHLH regulatory  gene  inactivates  this  transcription  factor,
resulting in the formation of white flowers[13].

In C.  lanuginosa,  there  are  significant  changes  in  flower  colour
across  different  flower  development  periods,  and  the  blue–purple
colour typically fades rapidly, greatly shortening the viewing period.
An  important  goal  for  ornamental  plant  breeders  is  to  optimize
flower colour.  However,  there have been no reports on the biosyn-
thesis  and  regulation  of  flavonoids  in C.  lanuginosa. In  this  study,
metabolome  and  transcriptome  analyses  were  used  to  explore
colour changes during flower development in C. lanuginosa. Subse-
quently,  key  metabolites  and  genes  were  identified.  The  results  of
this study provide a direction for optimizing flower colour for higher
ornamental value. 

Materials and methods
 

Plant materials and flower colour determination
Plant  materials  were  obtained  from C.  lanuginosa plants  with

consistent  flower  colour  planted  in  the Clematis germplasm
resource  garden  of  the  Zhejiang  Institute  of  Subtropical  Crops
(120°63'54"  E,  27°99'88"  N),  Zhejiang,  China.  The  flower  colours  at
the  six  selected  stages  were  analysed  and  described  according  to
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the  Royal  Horticultural  Society  Colour  Chart  (RHSCC).  Under  the
same  lighting  conditions,  the  middle  part  of  the  flower  was  com-
pared to  the RHSCC card.  The RHSCC value of  a  flower  is  indicated
by the code closest to the colour on the RHSCC card, and the colour
range and number to which it belongs were determined[14,15].  After
flower colour determination, flowers at the six stages were collected
three times for subsequent research. 

Metabolite extraction and analysis
The C. lanuginosa flower samples were processed as follows: first,

the flowers were vacuum freeze-dried and then powdered in a ball
mill  at  30  Hz  for  15  min;  then,  50  mg  of  the  powder  was  weighed,
dissolved  in  500 μL  of  extraction  solution  (50%  methanol  aqueous
solution  containing  0.1%  hydrochloric  acid),  vortexed  for  5  min,
sonicated for 5 min, centrifuged at 12,000 r/min and 4 °C for 3 min,
and  pipetted  twice  after  centrifugation.  The  supernatant  was
pooled,  filtered  through  a  0.22 μm  microporous  membrane,  and
stored in an injection vial for subsequent LC‒MS/MS analysis[16,17].

MultiQuant  3.0.3  software  was  used  to  process  the  raw  data
acquired  by  tandem  mass  spectrometry  (MS/MS)  and  ultra-perfor-
mance  liquid  chromatography  (UPLC)  (ExionLC™  AD),  including
reference standard retention time and peak shape information. The
metabolites  in  flowers  of  different  colours  were  analysed  by  inte-
grating the mass spectral peaks of the analytes in different samples
to ensure the accuracy of the qualitative quantification, followed by
cluster analysis and principal component analysis[18].

The differentially abundant metabolites were identified based on
the  difference  multiplier  value  (fold_change)  and  the p value
obtained  using  the  Wilcoxon  rank  sum  test  method[19] or  t-test  (or
based  on  the  difference  factor  value  (fold_change)  alone  when
there  were  no  biological  replicates).  Metabolites  with  fold  changes
≥ 2  and  ≤ 0.5  were  selected  as  the  final  differentially  abundant
metabolites. A clustering correlation heatmap with signs was gene-
rated using OmicStudio tools (www.omicstudio.cn). 

Full-length transcriptome sequencing and data
analysis

Eighteen RNA samples (three biological replicates of each sample)
were  mixed  in  equal  amounts.  Single-molecule  real-time  (SMRT)
library  construction  was  performed  as  follows:  oligo  (dT)-enriched
mRNA  containing  poly-A  was  generated  and  then  reverse  tran-
scribed  to  cDNA  using  a  SMARTer  PCR  cDNA  Synthesis  Kit  and
enriched  cDNA  was  amplified  by  PCR.  A  sample  of  the  cDNA  was
screened by BluePippin,  and fragments  larger  than 4  kb were then
enriched. Screened fragments were amplified by large-scale PCR to
obtain  sufficient  cDNA  and  then  subjected  to  damage  repair,  end
repair, and ligation of the SMRT dumbbell-type linker. Nonscreened
fragments  were  then  mixed  at  an  equimolar  ratio  with  fragments
larger than 4 kb to construct the final library.

Exonuclease  digestion  was  performed,  and  the  unligated  junc-
tions  at  both ends of  the cDNA sequence were then removed.  The
primers and DNA-binding polymerase were combined to generate a
complete  SMRTbell  library.  After  the  library  was  qualitatively  ana-
lysed,  the  PacBio  Sequel  platform  was  used  for  sequencing  accor-
ding  to  the  effective  concentration  of  the  library  and  the  data
output  requirements.  The  official  SMRT Link  v6.0  software  package
was  used  to  filter  and  process  the  data,  and  circular  consensus
sequence  (CCS)  data  containing  full-length  and  non-full-length
fragments  were  generated.  The  full-length  nonchimeric  (FLNC)
sequence  and  nonfull-length  (nFL)  nonchimeric  sequence  were
subsequently used to determine whether the CCS contained the 5'-
primer,  3'-primer,  and  poly-A  sequences.  The  isoform-level  cluste-
ring (ICE) algorithm was used to cluster the FLNC sequences of  the
same  transcript  to  obtain  the  consensus  sequence.  The  nFL

nonchimeric  sequences  were  subsequently  used  to  correct  the
obtained  consensus  sequence,  and  the  polished  consensus
sequence  was  ultimately  obtained.  The  NGS  data  were  used  to
correct the polished consensus sequence using LoREDC software. 

De novo sequencing of different flower stages and
data analysis

Total RNA from eighteen C. lanuginosa flower samples (three bio-
logical  replicates  of  each  sample)  was  used  to  construct  an  mRNA
library  and  high-throughput  sequencing  was  performed  using  an
Illumina  HiSeq™  2500  sequencer.  Paired-end  150  bp  data  were
obtained  and de  novo processed  into  transcripts  and  unigenes  as
reference sequences for subsequent analysis[20].

The assembled unigenes were annotated using six databases (NR,
SwissProt,  Pfam,  COG,  GO,  and  KEGG).  The  BLAST2GO  program
performs  GO  classification  and  then  maps  unigenes  to  the  KEGG
database  to  determine  their  associated  metabolic  pathways.  The
quantitative expression results were then used for differential gene
analysis  between  groups  to  obtain  the  differentially  expressed
genes;  the  difference  analysis  software  used  was  DESeq2,  with  a
screening threshold of |log2FC| > 1 and adjusted p < 0.05. 

Real-time quantitative (qRT‒PCR) validation and
analysis

Real-time  PCR  primers  were  designed  using  Oligo  7  software.
GAPDH was  used  as  the  internal  reference  gene.  The  primers  used
are shown in Table 1.  The reaction system used was described in a
previous  study  by  Ye  et  al.[21].  Three  technical  replicates  were  per-
formed  to  ensure  the  accuracy  of  the  experiment,  and  the  relative
expression was calculated using the 2−ΔΔCᴛ method. 

Combined metabolome and transcriptome analysis to
explore anthocyanin production mechanisms

Combined  analysis  of  the  transcriptome  and  metabolomic  data
was  performed  using  WGCNA  with  default  parameters  in  R  to  sim-
plify the gene expression data into coexpressed modules, normalize
the FPKM values, and construct adjacency matrices. The phenotypic
data  were  imported  into  the  WGCNA  package,  and  correlation-
based  associations  between  phenotypes  and  gene  modules  were
identified using default  settings.  The WGCNA package was used to
convert  adjacency  matrices  into  topological  overlap  matrices
(TOMs)[22].  After  network  construction,  transcripts  with  the  same
expression pattern were grouped to establish modules, and feature
calculations  were performed.  Cytoscape 3.9.1  with  default  parame-
ters was used to draw the network diagram[23]. 

Results
 

C. lanuginosa flower colour characterization
The  stages  of  development  of C.  lanuginosa flowers  were  analy-

sed with a colorimetric card. The flower colours at the six stages are
described  as  follows  (Table  2):  yellow‒green  (bud  stage,  myfs1,

 

Table 1.    Primers for qRT-PCR.

Gene Primer-F Primer-R

GAPDH AACCCCTGAGGAGATTCCA CACCACCCTTCAAGTGAGCAG
ANS1 ATTGTGCACATCGGTGACAC CGACTCACTGACAAGTTCTG
ANS2 TGCCTGGTCTCCAAGTGTAC CTAGCCCTCTATGCAGTATAC
F3'H1 TCTTGTTGAGTACATCTTGG GACACTAGGTGGCAAGCGTG
WD40 ATGAGCGAGAATTGCTGAGC TGCTACTGTGCATCCATCTG
MYB1 AAGGCCGTTGGGATACGTTA ATCCTAGACCACCTGTTGCC
MYB2 CACTGTTACCTCCGACGAGA CAGGTCTGTATCCTCGCTGT
bHLH1 TGAAGACACCTGAAGGGCAA TCGTTGGAGCAAGATTCGGT
bHLH2 TGCGAAGGAGTTCTGGTGAA ATGGCAAGAGAAGTCCCGAA
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N144D),  light  blue‒purple  (colouring  stage,  myfs2,  N88C),  blue‒
purple  (early  flowering  stage,  myfs3,  N88B),  bright  blue‒purple
(flowering  stage,  myfs4,  90D),  lilac  blue‒purple  (after  flowering
stage,  myfs5,  91B),  and extremely lilac purple (end flowering stage,
myfs6, 91C) (Table 2 & Fig. 1). 

Metabolomics assays
Visual  examination  of  the  total  ion  current  (TIC)  plots  revealed  a

strong instrumental analysis signal, a large peak capacity, and good
retention time reproducibility for all the samples (Fig. 2a). The essen-
tial  metabolite  compositions  in  the  different  flowers  of C.  lanugi-
nosa were determined by gas chromatography–mass spectrometry
(GC‒MS),  and this  analysis  identified 25 compounds in  the flowers.
Overall,  the number of species and quantity of primary metabolites
were  greater  than  those  of  secondary  metabolites,  indicating  that
the flower samples presented vigorous primary metabolic activities.
For  these  metabolites,  principal  component  analysis  (PCA)  accura-
tely  grouped  all  the  samples  into  distinct  clusters,  which  reflected
the  obvious  differences  between  the  different  flower  stages
(Fig. 2b).

All  the  detected  metabolite  content  data  were  normalized,  and
heatmaps  were  generated  (Fig.  2c).  The  results  revealed  that
cyanidin-3-O-galactoside and cyanidin-3-O-ruticoside-5-O-glucoside
were  expressed  only  in  the  myfs1  stage.  The  expression  levels  of
cyanidin-3,5,3'-O-triglucosidecyanidin-3,5-O-diglucoside,  cyanidin-
3-O-ruticoside-5-O-glucoside,  pelargonidin-3-O-rutin-5-O-glucoside,

petunidin-3,5-O-diglucoside, petunidin-3-O-glucoside, and delphini-
din-3-O-glucoside tended to increase during the first three develop-
mental stages, peaked during the myfs3 period, and then tended to
decrease.

In  addition,  22  differentially  expressed  metabolites  were  identi-
fied  (Fig.  3a).  The  most  differentially  abundant  metabolites  were
observed between myfs3 and myfs6. To further evaluate the specific
expression  profiles  of  the  differentially  expressed  metabolites,  we
normalized the expression data of the differentially expressed meta-
bolites were normalized and a heatmap generated (Fig. 3b). Petuni-
din  3,5-O-diglucoside,  petunidin  3-O-glucoside,  pelargonidin-3-O-
ruticoside-5-O-glucoside,  cyanidin-3,5,3'-O-triglucoside,  cyanidin-
3,5-O-diglucoside,  and  cyanidin-3-O-ruticoside-5-O-glucoside  were
expressed  during  the  myfs1  period  and  then  tended  to  increase,
peaking  in  the  early  flowering  period  (myfs3),  and  then  gradually
decreasing. 

Transcriptome sequencing data analysis
A  total  of  773,680  CCS  and  643,906  full-length  nonchimeric

(FLNC) sequence reads were obtained via full-length transcriptome
sequencing.  The  FLNC  cluster-corrected  sequence  was  corrected
using  data  from  Illumina  deep  sequencing,  and  54,793  gene
sequences  were  obtained  by  removing  redundant  and  similar
sequences  from  the  sequences  obtained  using  CD-HIT  software,
with an average length of 2,365 bp and an N50 of 3,088. Gene func-
tion  annotations  in  seven  databases,  namely,  Nr,  KEGG,  Nt,  Pfam,
KOG/COG,  SwissProt,  and GO,  revealed a  total  of  20,896 transcripts
annotated;  the  most  genes  (17,656)  were  annotated  in  the  Swis-
sProt database, whereas the fewest genes were annotated in the GO
and Pfam databases (13,377 each), and 7,416 genes were annotated
in all seven databases (Fig. 4a). Using ANGEL software to predict the
CDSs  of  the  full-length  transcriptome[24],  25,800  CDSs  were
obtained,  of  which  20.27%  (5,230)  had  CDSs  with  lengths  greater
than 1,800 bp (Fig. 4b).

To  explore  the  molecular  mechanisms  involved  in  the  develop-
ment  of C.  lanuginosa flowers,  different  flower  developmental

 

Table 2.    Flower color identification of C. lanuginosa.

Sequencing
number Flower stage RSHCC Colour

myfs1 Bud stage N144D yellow‒green
myfs2 Coloration stage N88C light blue‒purple
myfs3 Early flowering stage N88B dark purple
myfs4 Flowering stage 90D bright blue‒purple
myfs5 Post flowering stage 91B lilac purple stage
myfs6 End flowering stage 91C extremely lilac purple stage

 

a b c

d e f

Fig. 1    Different stages of C. lanuginosa flower development. (a) Bud stage (myfs1, yellow‒green, N144D); (b) Colouring stage (myfs2, light blue‒purple,
light blue‒purple, N88C); (c) Early flowering stage (myfs3, dark purple, N88B); (d) Flowering stage (myfs4, bright blue‒purple, 90D); (e) After the flowering
stage (myfs5, lilac purple stage, 91B); (f) End flowering stage (myfs6, extremely lilac purple stage, 91C).

Flower color formation of the Clematis lanuginosa
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stages  of C.  lanuginosa were  analysed  by  next-generation  transcri-
ptome sequencing. From these sequences, 169.42 GB of clean data
were obtained, with a filtering error rate of less than 0.025%, a Q30
between  94.6%  and  95.17%,  and  a  GC  content  between  45%  and
45.77%. To explore the DEGs among C. lanuginosa flowers at the six
different  stages,  the  FPKM  values  of  all  genes  in  the  samples  were
compared. The greatest number of DEGs was found between myfs1
and  myfs6  (10,909;  6,216  upregulated  and  4,693  downregulated),
followed  by  myfs1  vs  myfs5,  and  myfs2  vs  myfs6.  The  smallest
number of DEGs was found between myfs4 and myfs5, with a total
of 3,382 DEGs (936 upregulated and 2,446 downregulated), followed
by myfs3 vs myfs4, and myfs2 vs myfs3 (Fig. 5). 

Real-time PCR validation
To  further  verify  the  reliability  of  the  transcriptome  sequencing

results,  eight  unigenes  (two ANS genes,  two MYB genes,  two bHLH
genes,  one F3'5'H gene,  and  one WD40 gene)  were  randomly
selected  for  expression-level  detection  by  qRT–PCR.  As  shown  in
Fig.  5,  the  expression  trends  of  the  qRT‒PCR  results  and  the  FPKM

values  from  the  sequencing  results  are  consistent,  suggesting  that
the transcriptome results  and analysis  are reliable and can be used
for further analysis (Fig. 5). 

Combined metabolomic and transcriptomic analyses
resolve anthocyanin synthesis

For the WGCNA of  the FPKM values,  myfs1 was used as  the con-
trol  group,  and  27  gene  modules  were  identified  according  to  the
coexpression patterns of individual genes. These gene modules are
represented  in  different  colours  in  cluster  maps  and  network
heatmaps (Fig. 6a). Using different metabolites at different stages of
C. lanuginosa development as phenotypic data, module‒trait corre-
lations  were  analysed,  and  a  sample  tree  map  and  a  trait  heatmap
were constructed to clarify the expression of metabolite contents at
different developmental stages (Fig. 6b).

One of these 27 gene modules showed a very significant relation-
ship with the differentially expressed metabolites.  The MEroyalblue
gene module is  associated with anthocyanin biosynthesis,  with the
highest  correlations  with  cyanidin-3,5-O-diglucoside,  cyanidin-3-O-
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rhamnoside glycoside-5-O-glucoside, and cyanidin-3,5,3'-O-trigluco-
side, with R2 values of 0.69, 0.52, and 0.56, respectively (Fig. 6c & d).

Correlation analysis of the differentially expressed MYB, bHLH, and
WD40 transcription  factors  and  differentially  abundant  metabo-
lites  in  all  the  gene  modules  revealed  that  the MYB gene
(transcript41913_f2p0_1152), cyanidin-3,5-O-diglucoside, cyanidin-3-
O-rutin-5-O-glucoside,  and  cyanidin-3,5,3'-O-tri  glucoside  had  the
highest  correlations,  suggesting  that  this MYB gene  may  be  a  key
gene involved in colour formation in C. lanuginosa (Fig. 7). 

Discussion
 

Metabolites affecting flower colour in C. lanuginosa
Flower  characteristics  are  important  traits  of  many  ornamental

plants[25];  this  is  also  true  for C.  lanuginosa (widely  used  in  home
gardening  and  urban  greening).  In C.  lanuginosa,  during  the  early
flowering period (myfs3), the flowers are blue–purple, which is a rare
colour. Delphinidin is the first type of anthocyanin that accumulates
in the pigment synthesis  pathway of  blue–violet  flowers  and is  the
most  important  basal  pigment[26].  Malvidin  and  petunidin,  which
represent  different  degrees  of  delphinidin  methylation,  are  also
important  colour-forming  substances  for  many  purple  plants[27,28].
Mizuta suggested that blue anthocyanins are dominated by delphi-
nidin,  malvidin,  and  petunidin[29].  In  this  study,  petunidin-3,5-O-
diglucoside,  petunidin-3-O-glucoside,  and  delphinidin-3-O-gluco-
side  expression  levels  began  to  increase  at  the  myfs1  stage  and
reached  their  highest  levels  during  the  early  flowering  period
(myfs3).  These results suggest that these three metabolites may be
involved  in  the  development  of  flower  colour  during  the  early  flo-
wering period, resulting in a blue‒purple colour.

However,  the flowers of C.  lanuginosa in the myfs3 stage are not
only  pure  blue‒purple  but  also  purple‒red.  Previous  reports  have
indicated that cyanidin produces a magenta flower colour, whereas
pelargonidin  produces  a  brick-red  flower  colour[30,31].  In  this  study,

cyanidin-3,5,3'-O-triglucoside,  cyanidin-3,5-O-diglucoside,  cyanidin-
3-O-rutinoside-5-O-glucoside, and pelargonidin-3-O-rutinoside-5-O-
glucoside were upregulated in the myfs3 stage, indicating that they
may  be  important  compounds  for  flower  colour  formation  in C.
lanuginosa and, in combination with the abovementioned metabo-
lites, produce blue–purple flowers.

In  addition,  in  the  end  flower  development  stage  (myfs6),  cya-
nidin-3,5,3'-O-triglucoside,  cyanidin-3-O-rutinoside-5-O-glucoside,
delphinidin-3-O-glucoside,  pelargonidin-3-O-rutinoside-5-O-gluco-
side, petunidin-3,5-O-diglucoside and petunidin-3-O-glucoside were
significantly  downregulated.  The  loss  of  these  metabolites  may
cause  the  colour  of C.  lanuginosa to  become  lighter,  as  the  flower
colour gradually becomes white in later stages[32]. 

Candidate transcription factors involved in
anthocyanin biosynthesis

Flowering  time  is  an  important  life  history  trait  in  plants  and  is
regulated  by  both  internal  and  environmental  factors[33,34].  Tran-
scription  factors  mainly  regulate  the  transcription  of  structural
genes and thus participate in anthocyanin biosynthesis.  By binding
to  cis-acting  elements  in  the  promoters  of  structural  genes,  tran-
scription  factors  activate  or  inhibit  the  expression  of  one  or  more
structural genes in the anthocyanin biosynthesis pathway, and func-
tional  proteins  can  coordinate  these  interactions[35,36].  Jin  et  al.
reported  that  the MYB transcription  factor PavMYB10.1 participates
in  anthocyanin biosynthesis  in  sweet  cherry,  thereby affecting fruit
colour[37].  Notably, MdMYB10 participates  in  anthocyanin  synthesis
and  regulates  fruit  colour[38].  Stracke  et  al.  reported  that  in  the
model  plant Arabidopsis,  the  transcription  factor MYB can  regulate
the  expression  of  early  structural  genes  such  as FLS, CHI, F3H, and
CHS[39].

In  addition,  previous  studies  have  reported  that  ternary  protein
complexes formed by the MYB, bHLH,  and WD40 genes play impor-
tant  roles  in  regulating anthocyanin  biosynthesis[40,41].  In Arabidop-
sis, the MBW transcription complex WD40 was found to interact with
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different MYB transcription factors[42].  In the MBW ternary complex,
MYB and bHLH transcription factor interactions are prerequisites for
the  recognition  of  specific  DNA  sequences.  Moreover, WD40 tran-
scription  factors  can  increase  the  stability  of  ternary  complexes[43].
Therefore, the MBW ternary complex, like other transcription factors,
acts  mainly  by  regulating  the  transcriptional  abundance  of  struc-
tural  genes,  and simultaneously,  each member can also coordinate
with  the  others[44].  In  a  study  in Arabidopsis,  Li  reported  that  the
MYB–bHLH–WD40  (MBW)  complex  activated  late  anthocyanin
biosynthetic  genes[45].  Zhao  et  al.  reported  that FaMYB9/FaMYB11,
FabHLH3,  and FaTTG1 are  functional  homologues  of AtTT2, AtTT8,
and AtTTG1 in  strawberry  and  promote  strawberry  fruit  growth[42].
Feller  et  al.  reported  that  the  interaction  between bHLH and R2R3-
MYB proteins  plays  an  important  role  in  the  colour  production
process  of  maize[46].  In  this  study,  15  differentially  expressed MYB
genes,  eight bHLH genes,  and 26 WD40 genes  were  identified,  and
relevant  transcription  factors  were  also  predicted.  Changes  in  the
anthocyanin content of C. lanuginosa flowers may be related to and
caused  by  these  transcription  factors.  Specifically,  the  combined
metabolic‒transcriptional  analysis  suggested  that  the MYB gene
(transcript41913_f2p0_1152)  may  be  a  key  gene  involved  in  the
development of C. lanuginosa flower colour. 

Conclusions

To  further  study  colour  development  in C.  lanuginosa flowers,  in
this  study,  metabolome and transcriptome sequencing was  perfor-
med at six flower development stages (myfs1, myfs2, myfs3, myfs4,
myfs5,  and  myfs6).  The  metabolome  sequencing  results  revealed
25  anthocyanin  compounds,  including  22  differentially  expressed
metabolites.  Cyanidin-3,5-O-diglucoside,  cyanidin-3,5,3'-O-trigluco-
side,  cyanidin-3-O-rutinoside-5-O-glucoside,  delphinidin-3-O-gluco-
side, and petunidin-3-O-glucoside may affect the formation of blue–
purple  flowers  in C.  lanuginosa.  The  combined  metabolome  and
transcriptome  analysis  results  revealed  that  the MYB gene  (tran-
script41913_f2p0_1152)  is  a  key  gene  involved  in C.  lanuginosa
flower colour development and change. 
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