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Melting aspects in flow of second
grade nanomaterial with
homogeneous–heterogeneous
reactions and irreversibility
phenomenon: A residual error
analysis
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Abstract
Here, we scrutinize the entropy analysis in magnetohydrodynamic flow of second-grade nano-
materials with melting effect subject to stretchable bended surface. Heat attribution is modeled
through first law of thermodynamics with radiation effect. Major physical effect of random and
thermophoretic motion is also addressed. Feature of irreversibility (entropy rate) analysis is also
discussed. Isothermal cubic autocatalyses chemical reaction at catalytic surface is discussed.
Nonlinear dimensionless differential system is developed through adequate transformation. Op-
timal homeotypic analysis method (OHAM) is employed to construct convergent solution. In-
fluence of physical variables on entropy rate, fluid flow, concentration, and thermal field is
discussed. An augmentation in fluid flow is noticed through curvature variable, while reverse effect
holds for magnetic variable. A reverse effect holds for fluid flow and thermal field through melting
variable. Entropy analysis is augmented with variation in melting variable. Reduction occurs in
concentration through thermophoretic variable, while an opposite effect holds for thermal field. An
increment in melting variable leads to reduced concentration. Larger estimation of radiation
variable improves entropy analysis.

1Nonlinear Analysis and Applied Mathematics (NAAM)-Research Group, Department of Mathematics, Faculty of Sciences,
King Abdulaziz University, Jeddah, Saudi Arabia
2Department of Mathematics and Statistics, Riphah International University I-14, Islamabad, Pakistan

Corresponding author:
M Ijaz Khan, Department of Mathematics and Statistics, Riphah International University I-14, Islamabad 44000, Pakistan.
Email: mikhan@math.qau.edu.pk

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the
Creative Commons Attribution-NonCommercial 4.0 License (https://creativecommons.org/licenses/by-
nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further

permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.
com/en-us/nam/open-access-at-sage).

https://uk.sagepub.com/en-gb/journals-permissions
https://doi.org/10.1177/14686783221090374
https://journals.sagepub.com/home/prk
mailto:mikhan@math.qau.edu.pk
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://us.sagepub.com/en-us/nam/open-access-at-sage
https://us.sagepub.com/en-us/nam/open-access-at-sage


Keywords
Second-grade fluid, curved stretching surface, melting heat, thermal radiation, brownian diffusion
thermophoresis, entropy generation, heat generation/absorption and homogeneous and
heterogeneous chemical reactions

Introduction

It is known fact that melting phenomenon plays a vital role in various industrial and engineering
applications. Melting phenomenon is sufficiently utilized in welding process, heat engines, per-
mafrost melting, semiconductor material processing, coil exchangers, magma solidification, and
many others. Melting phenomenon was first studied by Robert.1 He considered a slab of ice and
investigated its melting process when in contact with hot stream air. Hayat et al.2 explored the effects
of melting heat transfer in magnetohydrodynamic non-Newtonian Oldroyd-B fluid with variable
thickness due to stretching surface. They achieved convergent series solutions by utilizing ho-
motopic technique. Das3 considered thermal radiation effects while exploring melting phenomenon
in magnetohydrodynamic boundary layer flow due to moving surface. Khan et al.4 discussed the
melting effect in dissipative flow of nanomaterials with entropy analysis toward a stretchable
surface. Further investigations of melting phenomenon are illustrated in Refs.5–10

Fluids as carriers are used in a variety of heat transfer equipment. The efficiency of these devices
can be improved by enhancing the thermal conductivity of fluids. It is done by adding small nanosize
particles in base fluid. This ideawas initially revealed byChoi et al.11,12 Due to superior thermal properties,
nanofluids have numerous applications in heat transfer related devices, boiling heat transfer, solar thermal
systems, convective heat transfer as well as condensation and evaporation.13 Nanofluids with stable
suspension of nanoparticles in base fluid have a great prospect to meet the modern requirements of
innovative thermal, industrial, and cooling technology.14 Buongiorno15 gives accomplished advanced
concept on nanomaterials heat conduction augmentation. A comprehensive analysis on challenges,
opportunities, synthesis, and stability of nanofluids is performed by Urmia et al.16 Reddy and Makinde17

examined buoyancy forces, thermophoretic, and Brownian motion for magnetohydrodynamic nanofluid
flow in an asymmetric channel. Nonlinear mixed convection, thermo diffusion, and diffusion thermo
effects in nanofluid flow are addressed by Hayat et al.18 Irreversibility analysis in radiative flow of second-
grade nanomaterials with Lorentz force and radiation effect subject to stretched sheet is performed by
Hayat et al.19 Some recent developments in nanofluids are given in Refs.20–25

Entropy generation is used to determine the performance of various isolated thermal systems in
manufacturing, engineering, refrigerators, thermal transportation phenomenon, hybrid-powered engines,
industrial, and various biological processes. Entropy production occurs due to fluids friction, Joule heating,
diffusion, friction of solid surfaces, electric resistance, molecules vibration, unstained expansion chemical
reaction, thermal resistance to the liquidflow, etc. Entropyminimization is used to augments of any thermal
system performance. Bejan26,27 gives the concept of entropyminimization in convective fluid flow.Kumar
et al.28 discussed irreversibility investigation inmagnetohydrodynamic incompressible flow ofWilliamson
nanoliquid. Irreversibility in reactive magnetohydrodynamic couple stress liquid flow through a saturated
permeable channel is illustrated by Hassan.29 Few recent investigations about irreversibility (entropy rate)
analysis are highlighted in Refs.30–40

Motivated from above-mentioned studies and the numerous industrials applications of the recent
problem, it is main interest in this exploration to discuss the melting effect in hydromagnetic flow of
second-grade nanofluid with entropy analysis by a stretchable curved surface. Heat equation is
scrutinized through first law of thermodynamics with radiation effect. Random and thermophoresis
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motion are considered. Features of entropy generation are addressed. Homogeneous–heterogeneous
chemical reactions are considered at catalytic surface. By employing similarity variables, we get
dimensionless ordinary differential system. Optimal homotopic analysis technique (OHAM) is
implemented to develop convergent solution.41–45 Influence of fluid flow, entropy generation,
thermal field, and concentration against physical parameters are graphically discussed.

Statement

Two-dimensional hydromagnetic flow of an incompressible second-grade nanomaterial with
melting effect is addressed. Heat equation is developed through first law of thermodynamics with
thermal radiation. Brownian motion and thermophoretic effects are considered. Entropy features are
also considered. Furthermore, homogeneous–heterogeneous chemical reactions are considered at
catalytic surface. Magnetic force of strength ðB0Þ is implemented. Suppose that uw ¼ as the
stretching velocity with rate constant ða > 0Þ. Figure 1 shows the physical flow diagram.

Isothermal cubic autocatalytic reactions satisfy46–49

Aþ 3B→ 4B, with reaction rate ¼ k∗1C2C
2
2 (1)

First-order chemical reaction is given as

A→B, with reaction rate ¼ k∗2C2 (2)

Under above assumption, the governing equation becomes50–52

ðr þ RÞ ∂v
∂r

þ vþ R
∂u
∂s

¼ 0, (3)

Figure 1. Flow sketch.
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u ¼ as, T ¼ Tm, DC1

∂C1

∂r
¼ �DC2

∂C2

∂r
¼ k∗2C1 at r ¼ 0,

u→ 0,
∂u
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kf

�
∂T
∂r

�
¼ ρf ½λþ CsðTm � T0Þ�vðs,0Þ

9>>>>>>>=
>>>>>>>;
: (9)

By using

u ¼ asf 0ðηÞ, v ¼ � R

r þ R
ffiffiffiffiffiffiffi
aνf

p
f ðηÞ, p ¼ ρf a

2s2PðηÞ,
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(10)

we have

P0 � f 02

ðηþ KÞ ¼ 0, (11)
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Consider we have DC1 ¼ DC2 we have

φðηÞ þ lðηÞ ¼ 1

From equations (14) and (15) we have
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φ0ðηÞ ¼ K2φðηÞ, φð∞Þ ¼ 1: (19)

Physical quantities

Skin friction coefficient

Mathematically
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Heat transfer rate

It is expressed as
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Entropy modeling
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One can write
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Solution methodology

Optimal homotopic analysis method (OHAM) is employed to develop convergent solution.46,47

Here, linear operators and initial approximation are defined as
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Figure 2. Total residual error.
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Table 1. Total residual error for the velocity, temperature and concentration.

m εfm εθm εφm

2 0.000221245 0.0000635364 0.0000866985
4 3.35461 ×10�7 1.01235 ×10�9 0.00001512547
8 1.47896 ×10�10 1.5421 ×10�11 1.12451 ×10�7

12 1.14532 ×10�13 1.3654 ×10�14 1.36542 ×10�8

16 1.45632 ×10�16 3.67895 ×10�17 3.78654 ×10�9

20 1.56421 ×10�19 1.54213 ×10�19 5.12452 ×10�10

Figure 3. f 0ðηÞ versus M.

Figure 4. f 0ðηÞ versus Me.
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Here, ci ði ¼ 1; 2,:::,8Þ denotes the arbitrary constants.

Convergence Analysis

Initially, Liao 46,47 gives the concept of optimal homotopic analysis technique. Mathematically it is
expressed as

εfm ¼ 1

k þ 1

Xk
i¼0

2
4ℵf

 Xm
j¼0

f ðηÞ
!

η¼iδ∗η

3
5

2

, (31)

Figure 5. f 0ðηÞ versus K.

Figure 6. θðηÞ versus Me.
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Total squared residual error is 46,47

Figure 7. θðηÞ versus Q.

Figure 8. θðηÞ versus Nt.
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εtm ¼ εfm þ εθm þ εφm:

Figure 2 shows the total averaged squared residual error.
Individual averaged residual errors are highlighted in Table 1.

Graphical results and analysis

Significant performance of fluid flow, entropy rate, thermal field, and concentration against physical
variable are studied.

Figure 9. θðηÞ versus Rd.

Figure 10. φðηÞ versus Sc.
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Velocity

Performance of fluid flow against magnetic variable is portrayed in Figure 3. An amplification in
magnetic effect improves the resistive force which reduced the fluid flow. Influence of melting effect
on velocity ðf 0ðηÞÞ is exhibited in Figure 4. Higher estimation of melting parameter corresponds to
rises velocity ðf 0ðηÞÞ. Significant effect of velocity versus curvature variable is shown in Figure 5.
An intensification in curvature variable ðKÞ reduces the viscous force and as a result fluid flow is
boosted.

Figure 11. φðηÞ versus Me.

Figure 12. φðηÞ versus Nb.
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Temperature

Influence of thermal field via melting variable is depicted in Figure 6. Larger approximation in
melting ðMeÞ variable declines the temperature ðθðηÞÞ distribution. Heat generation variable impact
on thermal field is illustrated in Figure 7. An augmentation in temperature is noticed through heat
generation ðQÞ variable. An increasing behavior in thermal field is noted with variation in ther-
mophoretic variable (see Figure 8). Outcomes of radiation on thermal field ðθðηÞÞ are illustrated in
Figure 9. Here, one can found that temperature boosts up with higher radiation effect.

Figure 13. φðηÞ versus Nt.

Figure 14. NGðηÞ versus M.
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Concentration

Outcome of concentration with higher Schmidt number is depicted in Figure 10. A decrement in
mass diffusivity is noticed with rising Schmidt number, which decreases concentration. Reduction
occurs in concentration with variation in melting variable (see Figure 11). Influence of random and
thermophoretic motion variables on concentration is revealed in Figures 12 and 13. Clearly reverse
trend holds for concentration through thermophoretic and random motion variables.

Entropy rate

Figure 14 elucidates influence of entropy rate against magnetic variable. An intensification in
magnetic effect improves the resistive force between liquid particles, which enhances the

Figure 15. NGðηÞ versus α1.

Figure 16. NGðηÞ versus Rd.
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disorderness in thermal system. As a result, entropy rate boosted. An increment in thermal ratio
variable ðα1Þ enhances the entropy rate (see Figure 15). Figure 16 shows outcome of radiation on
entropy generation ðNGðηÞÞ. A decrement in coefficient of mean absorption with higher radiation,
which rises thermal emission and thus entropy generation, is augmented.

Conclusions

The key findings are given below.

· An amplification in fluid flow is observed through curvature variable, while opposite impact
holds for magnetic variable.

· An opposite behavior holds for fluid flow and thermal field through melting variable.
· Thermal field increased with variation in heat generation variable.
· Larger estimation of radiation boosts up entropy rate, while opposite impact holds for thermal

field.
· An opposite impact in concentration is noticed through random and thermophoretic variable.
· A decrement in concentration is seen through Schmidt number.
· An intensification in thermal field is seen through magnetic variable.
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Appendix

Nomenclature

A,B chemical species Me melting parameter
C0 ambient concentration Ec Eckert number
C1 homogeneous concentration Nt thermophoresis parameter
C2 heterogeneous concentration Nb Brownian motion parameter
cp specific heat NG entropy generation

DC1,DC2 diffusion coefficients L1 homogeneous diffusion parameter
DT thermophoresis coefficient L2 heterogeneous diffusion parameter
k∗ mean absorption coefficient α1 temperature difference parameter
kf thermal conductivity Res local Reynold number
k∗1 reaction rate (homogeneous species) Sc Schmidt number
k∗2 reaction rate (heterogeneous species) K1 homogeneous reaction parameter
p pressure K2 heterogeneous reaction parameter

Q0 heat generation coefficient R molar gas constant
r, s curvilinear coordinates β fluid parameter
T temperature M magnetic parameter
Tm melting heat temperature Rd radiation parameter
T∞ ambient temperature Pr Prandtl number
u, v velocity components Cs surface heat capacity
α∗1 material parameter δ diffusivity ratio
ρf density Cfs surface drag force
νf kinematic viscosity τrs shear stress
μf dynamic viscosity Nus Nusselt number
σf electrical conductivity qw heat flux
σ∗ Stefan Boltzmann constant Br Brinkman number
λ latent heat Q heat generation parameter
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