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Abstract
Rice (Oryza sativa L.) is not only a model monocotyledon plant, but also an important cereal seed crop. Improvements in seed-related traits is the

key  to  obtaining  high  grain  yield  and  quality,  therefore  attracting  attention  from  both  scientists  and  crop  breeders.  In  higher  plants,

brassinosteroid (BR), a major growth-promoting hormone, plays an important role in regulating numerous agronomic traits associated with both

vegetative and reproductive growth, thereby presenting huge application potential. Here, we review recent progress into BR regulation in rice

seed  biology.  Both  BR  biosynthesis  and  signaling  have  been  shown  to  regulate  grain  size,  grain  filling,  grain  number,  seed  germination  and

biosynthesis of seed components. Thus, considering the pleiotropic effects of BR, strategies aimed at genetic modulation of the BR pathway have

been  proposed  to  improve  seed-related  traits  in  rice,  and  therefore,  enhance  both  yield  and  quality.  This  review  not  only  strengthens  our

understanding of the underlying mechanism and regulatory network of BR-regulated key agronomic traits in rice, but also facilitates the future

application of BR in rice breeding programs.
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 Introduction

Rice  (Oryza  sativa L.)  is  the  staple  food  of  more  than  half  of
the  world’s  population,  and  production  is  therefore  critical  to
future food security. Research into rice seed biology is therefore
attracting  increasing  attention  from  both  plant  scientists  and
crop breeders, offering the potential to enhance both yield and
quality. The structure of mature rice seeds consists of a spikelet
hull,  seed  coat,  aleurone  layer,  endosperm  and  embryo,  with
the  embryo  containing  most  of  the  genetic  information,  and
the  endosperm  storing  nutrients  and  forming  the  edible
component.  Rice seeds showing excellent performance during
grain  development,  seed  dormancy  and  germination  are
critical  in  guaranteeing  high  yield  and  quality.  Understanding
the  regulatory  molecular  mechanism  of  key  rice  seed  traits  is
therefore  essential  in  improving  and  breeding  elite  varieties.
For  example,  high-vigor  seeds  are  suitable  for  direct  seeding
production,  reducing  labor  costs  and  increasing  planting
efficiency[1], while high-yielding, high-quality rice varieties, with
emphasis on taste and appearance, are preferred by farmers[2].

In  general,  rice  seed  traits  are  controlled  by  both  endoge-
nous  and  environmental  factors,  with  phytohormones  playing
a central  role,  not  only  as  a  critical  intrinsic  regulator,  but  also
by conveying environmental input. The most well-known plant
hormone  family  includes  gibberellin  (GA),  abscisic  acid  (ABA),
auxin,  cytokinin,  ethylene,  brassinosteroid  (BR),  jasmonic  acid
(JA) and strigolactone[3], all of which play essential roles in seed-
related traits,  such as  ripening (ethylene)[4],  dormancy (ABA)[5],
and  germination  (GA)[6].  As  a  major  plant  growth-promoting
phytohormone,  BR  is  widely  involved  in  a  number  of  rice
growth and developmental events, including plant growth, leaf

angle, tillering, pollen fertility, grain size and seed germination
(Fig.  1).  Considering  the  potential  application  of  BR  in  impro-
ving  important  agronomic  traits  in  rice,  this  study  reviews  the
role of this plant hormone in seed biology, such as regulation of
grain  size,  grain  filling  and  seed  germination[7−9].  The  findings
provide valuable information for genetic modification of speci-
fic  hormone  pathways  aimed  at  optimizing  seed-related  traits
in rice.

The most  well-known effect  of  BR is  the promotion of  plant
growth.  BR-deficient  rice  mutants  resulting  from  mutation  of
BR  biosynthesis  genes,  such  as BRD1[10], D2[11], D11[12],  exhibit
dwarf  and  compact  phenotypes,  while  blocking  of  BR  signal
transduction  was  found  to  trigger  a  similar  phenotype,  with
reduced  plant  height  and  leaf  angle[13].  At  present,  the  BR
signaling  pathway  is  one  of  the  most  understood  signal
transduction pathways in  plants,  especially  in  the model  plant
Arabidopsis[14]. Although progress in BR-related studies in rice is
lagging  behind  that  of Arabidopsis,  the  primary  signaling
pathway is conserved. Briefly, BR signals are first sensed by the
receptor OsBRI1 and coreceptor OsBAK1, and then transmitted
to  OsBSK3  kinase  and  an  unidentified  phosphatase,  thereby
suppressing  OsGSK2  kinase  activity[15,16].  OsGSK2,  a  GSK3/
SHAGGY-like  kinase,  is  the  core  negative  regulator  of  the  BR
signaling  pathway,  inhibiting  BR  signals  by  phosphorylating
downstream  key  transcription  factors,  such  as  OsBZR1  and
DLT[17−19]. Rice plants overexpressing OsGSK2 or presenting DLT
mutation  showed  similar  phenotypes  to  the  BR  receptor
mutant d61[17,20],  highlighting  the  essential  role  of  BRs  in
normal growth and plant architecture. In addition, BRs also play
multiple roles in rice seed growth and development[15].
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 BR regulation of grain size

Grain  size  is  an  important  agronomic  trait  closely  related  to
rice yield and quality. As a complex quantitative trait, grain size
is controlled by a series of genes,  of  which more than 80 have
so far been cloned[2].  Based on the regulatory pathways,  these
genes  can  be  divided  into  six  categories:  plant  hormones,
mitogen-activated  protein  kinase  (MAPK)  signaling,  the  G-
protein  pathway,  ubiquitin-proteasome  pathway,  HAIKU  (IKU)
pathway and transcriptional  regulatory factors[21].  At  least  four
plant  hormones;  namely,  BR,  auxin,  cytokinin  and  GA,  have
been reported to be directly or indirectly involved in the regu-
lation of rice grain size[22], and of these, BR is a major regulator,
with more than 20 genes having so far been cloned. According
to  their  specific  roles  in  the  BR  pathway,  these  genes  can  be
further  divided  into  three  categories:  components  of  BR  bio-
synthesis  or  signaling,  targets  of  BR  signaling  pathway,  and
regulators of the BR pathway (Fig. 2).

 Components of BR biosynthesis and signaling
Mutation of the BR synthesis-related genes BRD1, D2 and D11

produced  small  grains,  suggesting  that  BR  plays  positive  roles
in  controlling  rice  grain  size[10−12].  A  similar  small-grained
phenotype was also observed in BR insensitive mutants[7], such
as d61 and bzr1[23],  while  large  rice  seeds  were  generated
following overexpression of OsBSK3 and knock-down of OsGSK2,
respectively[17,24].  Recently,  a  kinesin-13a  protein  BHS1  was
identified to be a new potential BR signaling component. BHS1
regulates  rice  grain  length  by  negatively  modulating  BR  sig-
naling downstream of  OsBRI1[25].  These results  further  suggest
that BR plays a positive role in regulating rice seed size.

In  addition,  OsBSK2,  a  BR-signaling  kinase  functioning
downstream of OsBRI1, positively regulates rice grain size inde-
pendent of the BR signaling pathway[26]. As the central negative
component of the BR signaling pathway, the activity and status
of Glycogen synthase kinase 3 (GSK3) family members are also
closely related to the regulation of rice grain size. Manipulation
of GSK3 family members, such as OsGSK2, OsGSK3 and OsGSK5,
was  found  to  alter  rice  grain  size[17,19,27,28].  For  example, qGL3
encodes the protein phosphatase OsPPKL1, which contains two
Kelch  domains,  and  affects  BR  signal  transduction  by  dephos-
phorylating and stabilizing OsGSK3 kinase[27]. Meanwhile, a rare
allelic  variation of qgl3 in the second Kelch domain was found
to result  in  a  long-grained phenotype[29].  Furthermore,  OsAK3,
which interacts with qGL3 both in vivo and in vitro,  results in a
longer grain length by controlling cell expansion in rice spikelet
glumes[30].  In  addition,  DLT  and  BZR1,  downstream  transcrip-
tion factors directly regulated by OsGSK2, were found to func-
tion  as  positive  regulators  of  rice  grain  size[7,17,31].  Recent
research  further  suggests  that  qGL3  can  induce  phosphoryla-
tion  of  the  14-3-3  protein  OsGF14b,  consequently  inhibiting
OsBZR1  function  by  promoting  cytoplasmic  retention  and
suppressing transcriptional activation activity, which negatively
regulated grain length in rice[32]. In addition to its role in the BR
signaling pathway,  OsPPKL1 is  proven to be a cryptic inhibitor
of  cytokinin  phosphorelay  which  regulates  rice  grain  size,
suggesting that PPKL1 may have dual roles in modulating both
hormones[33].  Furthermore,  disrupting  the  function  of  OsCPL3,
a  member  of  the  RNA  Pol  II  CTD  phosphatase-like  family,  will
increase  OsGSK2  abundance  and  decrease  OsBZR1  levels,
resulting in changes in rice grain size[34].

 
Fig. 1    Brassinosteroid regulates a series of key agronomic traits in rice, including plant height, pollen fertility, leaf angle, tiller number, grain
size and seed germination.
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 Targets of the BR signaling pathway
In  addition  to  the  key  elements  of  BR  biosynthesis  and

signaling,  other  downstream  components  of  the  BR  signaling
pathway,  notably  those  directly  or  indirectly  controlled  by
OsGSK2 kinase,  also play essential  roles in regulating rice seed
size. For example, OsGSK2 directly interacts with several mem-
bers of the OsOFP family proteins, such as OsOFP1, OsOFP3 and
OsOFP8, modulating their phosphorylation status, protein stabi-
lity or activity, and ultimately affecting grain size[35−37].  Interes-
tingly, the activity of phosphorylated OsOFP1 and OsOFP8 was
found  to  decrease[35,37],  while  the  stability  and  protein  accu-
mulation  of  phosphorylated  OsOFP3  increased[36].  In  addition,
overexpression  of  OsOFP1  and  OsOFP8  significantly  increased
grain  length  in  rice,  while  OsOFP3  overexpression  had  the
opposite  effect.  These  results  imply  that  OsGSK2  either  en-
hances  the  accumulation  of  negative  regulators  such  as
OsOFP3 or suppresses the activity of positive regulators such as
OsOFP1 and OsOFP8,  thereby acting as  a  key negative regula-
tor of grain length.

In addition to OsOFPs, several other OsGSK2-interactive pro-
teins related to grain size have also been identified and cloned.
For  example,  OsWRKY53,  which  is  phosphorylated  and
suppressed  by  OsGSK2,  was  found  to  interact  with  BZR1  and

synergistically  control  BR-regulated  plant  traits,  including  rice
grain  length[38].  Meanwhile,  OsGAMYBL2,  another  OsGSK2-
interacting  protein,  is  destabilized  by  BR,  with  up-  and  down-
regulated  expression  causing  a  decrease  and  increase  in  rice
grain  size,  respectively[39].  Moreover,  OsGSK2  was  found  to
directly interact with GS2/GL2/OsGRF4, inhibiting transcription
activation activity, and thereby altering cell size[40].  In addition,
GS2 has been proven to be involved in the regulation of panicle
length,  seed  shattering  and  cold  resistance  in  rice[41,42].  As  a
target  of  OsmiR396,  GS2 also  interacts  with  transcriptional  co-
activators OsGIFs, forming a complex regulatory module, which
predominantly affects cell expansion[43,44].

GS9 is  a  negative  regulator  of  grain  length  and  a  positive
regulator of grain width, with gs9 mutant rice seeds exhibiting
a slender grain shape. Importantly, GS9 mutation had no effects
on  rice  growth  or  development,  thus  improving  grain  shape
without  sacrificing  yield  or  other  major  agronomic  traits.
Analysis of the underlying molecular mechanism revealed that
GS9  directly  interacts  with  OsOFP8  protein,  the  target  of
OsGSK2 kinase[45].  Thus,  GS9 is  indirectly  regulated by OsGSK2
via  OsOFP8,  thereby  affecting  BR-induced  regulation  of  grain
size. Identification of genes downstream of BR that affect grain
size would therefore enrich our understanding of the BR signal

 
Fig.  2    Brassinosteroid (BR) regulatory networks of  grain size in rice.  A number of  genes related to BR homeostasis  and signal  transduction
play important roles in controlling rice grain size. Notably, GSK protein, which directly interacts with various transcription factors and functional
proteins. GL, grain length; GW, grain width. Broken lines indicate indirect or multistep regulation. Arrowheads represent positive regulation.

Brassinosteroid regulation of rice seed traits  

Xiong et al. Seed Biology 2022, 1:2   Page 3 of 9



transduction  pathway,  and  also  contribute  to  the  specific
improvement of grain size in rice.

 Regulators of BR biosynthesis and signaling
Some  genes  control  seed  size  in  rice  by  affecting  BR

synthesis or signal transduction. For example, RAV6[46], XIAO[47]

and SLG[48] regulate  rice  grain  size  by  modulating  the
expression  of  BR  biosynthesis  genes,  such  as D2 and D11.  In
more detail,  enhanced expression of SLG improved BR content
and increased grain length[48], while knock-out of XIAO led to a
distinct  BR-deficient  phenotype,  with  short  grains[47].  Mean-
while,  the  effects  of  RAV6  are  more  complex.  Elevated  expre-
ssion  promoted  BR  content  and  rice  leaf  angle,  but  reduced
grain  size,  possibly  due  to  the  complex  down-stream  target
genes  of  RAV6[46]. CYP734A genes  affect  the  level  of  bioactive
BRs by degrading BRs encoding cytochrome P450 monooxyge-
nases.  Plants  overexpressing CYP734A4 as  a  result  of  a  T-DNA
insertion  showed  a  typical  BR-deficient  phenotype,  including
dwarfing  and  grain  shrinkage[49].  On  the  other  hand,
OsREM4.1[50], SG1[51], GS5[52], GW5[53], GW5L[54] and OsSPL12[55]

regulate  rice  grain  size  by  modulating  the  components  of  BR
signaling.  OsREM4.1,  encoded  by  an  abscisic  acid-induced  re-
morin gene, interacts with OsSERK1/OsBAK1 to inhibit its inter-
action  with  OsBRI1[50].  In  this  way,  OsREM4.1  plays  a  negative
role  in  controlling  rice  grain  size[50].  Similarly,  a  rice  small  G
protein OsPRA2 also negatively regulates grain size by directly
binding to OsBRI1 at the plasma membrane, hence resulting in
the dissociation of OsBRI1 from OsBAK1[56]. SG1, which encodes
an unknown protein, is a negative regulator of BR signaling and
grain size in rice[51], while DS1/OsEMF1 is a positive regulator of
rice  growth  and  seed  size  by  interacting  with  OsARF11  and
subsequently  activate  the  expression  of  OsBRI1[57].  Moreover,
enhanced  expression  of  GS5,  a  serine  carboxypeptidase,  was
found  to  suppress  OsBAK1-7  endocytosis  and  promote  BR
signaling,  resulting  in  a  larger  grain  size[52].  Meanwhile,  GW5
and  its  homologous  protein  GW5L  are  negative  regulators  of
rice  grain  width,  directly  interacting  with  OsGSK2  to  inhibit
function[53,54,58].  Furthermore, OsSPL12 is  involved  in  the
differentiation  of  grain  size  between Indica and Japonica,
directly  binding  to  the  promoter  region  of GW5 to  regulate
transcription.  Analysis  using  the  3000  Rice  Genomes  Project
further  indicated  interactions  between  the  different  alleles  of
OsSPL12 and GW5,  implying  that OsSPL12 and GW5 coordi-
nately suppress grain width in Indica[55].

 BR regulation of seed germination

Rice  germination  involves  a  series  of  orderly  physiological
and  morphological  changes  following  imbibition  and  expan-
sion of the seeds, which usually begins with rapid absorption of
water  and  ends  with  radicle  protuberance[59].  Normal  seed
germination  requires  a  number  of  prerequisites,  mainly  light,
temperature,  water,  nutrients  and  phytohormones[60].  Of  the
various  plant  hormones,  GA  is  dominant  in  promoting  seed
germination, with GA-deficient mutants in Arabidopsis showing
strong  dormancy  and  an  abnormal  germination  phenotype  in
the absence of exogenous GA treatment[61,62].  In contrast,  ABA
plays a key role in inducing seed dormancy and inhibiting seed
germination[63],  with  ABA-deficient Arabidopsis mutants  show-
ing significantly faster seed germination than the wild-type[64].
Moreover,  GA  and  ABA  are  antagonistic  in  regulating  seed
germination,  with  spatial  and  temporal  balance  determining

germination versus dormancy[5].  In addition, GA also promotes
seed  germination  by  mobilizing  stored  starch  in  rice[65].  This
occurs  mainly  via  GA  synthesis  and  secretion  into  aleurone
layer  cells  in  the  embryo  tissue,  which  activates  the  transcrip-
tion  factor  GAMYB,  thereby  initiating  the  expression  of α-
amylase  and  feedback  to  the  endosperm,  finally  inducing
starch hydrolysis into glucose and other small molecular sugars
for  embryo  growth[66].  However,  the  ABA-inducible OsWRKY51
gene  cooperates  with  the  GA-repressible OsWRKY71 gene  to
inhibit  transcriptional  activity  of  GAMYB  in  rice  embryo  and
aleurone cells[67].  Recently, several genes affecting seed germi-
nation and dormancy were cloned in rice mutants, with roles in
GA  biosynthesis  (OsKO1[68]),  ABA  signal  transduction
(OsMFT2[69], ISA1[70], OsPP2C09[71])  and  ABA  metabolism
(OsTPP1[72], OsbZIP09[73]).  Compared  to  their  respective  wild-
type controls, these mutants showed either strong germination
or dormancy characteristics.

 Direct regulation of rice seed germination by BR
In  addition  to  GA  and  ABA,  other  hormones,  including  BR,

play  a  role  in  fine-tuning  the  rice  germination  process.  For
example,  shoot  length  and  the  germination  rate  of  rice  seeds
was  found  to  decrease  significantly  when  treated  with  the  BR
synthesis inhibitor brassinazole[74].  BR is  not only an important
regulator  of  seed  germination,  but  also  plays  key  roles  in
controlling other agronomic traits related to rice yield, such as
grain  size,  leaf  angle,  and  tiller  number.  Thus,  further  under-
standing  of  the  mechanisms  underlying  BR-regulated  seed
germination  in  rice  will  aid  breeding  programs  aimed  at  im-
proving yield-related traits.

Although Arabidopsis and  rice  share  a  similar  BR  signaling
pathway,  little  is  known  about  the  mechanism  of  hypocotyl
elongation  and  germination  in  rice  compared  to
Arabidopsis[75,76].  In rice, BR-deficient mutants, such as brd1, d2,
gns4 and nbg4[10,11,74,77],  exhibit  a  slower germination rate and
shorter  mesocotyls.  Meanwhile,  a  germination  experiment  in
the  dark  showed  that d61,  a  BR-insensitive  mutant,  has  a
remarkably  shorter  coleoptile  and  radicle  length[13].  These
studies indicate that both BR synthesis and signal transduction
are involved in the regulation of rice seed germination and post-
germination  growth.  However,  the  underlying  molecular
mechanisms remain largely unknown.

To  determine  the  mechanism  of  BR-regulated  seed  germi-
nation,  a  series  of  BR  biosynthesis  and  signaling  related  rice
mutants  were  used  in  a  germination  assay[78].  The  results
showed  that  both  the GSK2 overexpressing  line  and bzr1 mu-
tant germinated slower than their respective wild-type controls.
Meanwhile,  further  experiments  revealed  that  the  BZR1-
RAmy3D centered  transcription  module  is  critical  in  accelera-
ting the degradation and utilization of starch in both the endo-
sperm  and  embryo  of  rice  seeds,  thus  promoting  seed
germination (Fig. 3). As the key α-amylase gene in rice, RAmy3D,
which  is  also  known  as αAmy3,  acts  as  a  positive  regulator  of
seed germination. Overexpression of αAmy3 could promote rice
seed  germination  under  both  normal  and  abiotic  stress
conditions[79].  Interestingly, RAmy3D is  also  the  target  gene  in
responses  to  hypoxia  and  sugar  starvation  signals,  with  the
regulatory  pathway  mediated  by  the  CIPK15-SnRK1A-MYBS1-
RAmy3D signaling  cascade[80] (Fig.  3).  More  importantly,  since
RAmy3D is  highly  expressed  during  early  stages  of  seed
germination,  disruption  of  the  BZR1-RAmy3D regulatory
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module via editing  of  the BZR1 gene  prevented  pre-harvest
sprouting  (PHS)  in  rice[78].  These  findings  suggest  that  the
downstream components of the BR signaling pathway could be
used  to  improve  the  germination  and  PHS  characteristics  of
rice.

 Co-regulation of rice seed germination via crosstalk
between BR and GA

Notable  progress  has  been  made  in  determining  the  mole-
cular  mechanisms  underlying  BR-GA  crosstalk  during  growth
regulation  in  both  rice  and Arabidopsis[75,81−84].  Although  low
levels of  BR promoted expression of  the GA biosynthesis  gene
GA3ox-2 in  rice,  high  levels  inactivated  GA  by  inducing
expression of the GA inactivation gene GA2ox-3, with feedback
inhibiting BR biosynthesis[82]. This is also the main reason why a
high  concentration  of  BR  inhibits  rice  growth.  Based  on  these

studies, the mechanism of BR-GA co-regulated rice seed germi-
nation  has  been  gradually  revealed.  First,  GA  was  found  to
recover  seed  germination  defects  in  BR-deficient  and  insensi-
tive  rice  seeds,  while  an  iTRAQ  proteomic  approach  identified
the  differentially  abundant  target  proteins  involved  in  this
process[85].  Accordingly,  a  total  of  42  target  proteins  were
identified,  five  of  which  are  LEA  family  proteins.  Expression  of
these LEA family members was further found to be suppressed
by  GA  at  both  the  transcript  and  protein  levels.  Meanwhile,
genetic  evidence  suggests  that  LEAs  function  downstream  of
both  the  BR  and  GA  pathways,  with  LEA  mutation  inhibiting
rice  seed  germination[85].  Moreover,  BR  and  GA  were  found  to
induce  the  expression  of  REP-1  in  both  the  rice  embryo  and
endosperm  during  seed  germination,  thereby  affecting  the
turnover  of  storage  proteins,  including  glutelin,  which

 
Fig. 3    Molecular regulatory network of brassinosteroid (BR), GA and ABA in co-regulating starch mobilization during rice seed germination.
BR  regulates  the  transcription  of RAmy3D via the  BRI1-GSK2-BZR1  signaling  cascade,  thereby  promoting  starch  mobilization  in  the  seeds.
Different  concentrations  of  BR  promote  or  inhibit  GA  accumulation  by  activating  the  expression  of GA3ox-2 and GA2ox-3,  respectively.  GA
promotes  starch  mobilization  through  the  GAMYB-RAmy1A regulatory  module,  while  ABA  interferes  with  the  expression  of RAmy1A and
RAmy3D by inhibiting the activity of GAMYB in the GA pathway and SnRK1A in the sugar starvation pathway. In addition, ABA down-regulates α-
amylase activity through OsPP2C51 via its own signaling pathway. Broken lines indicate indirect or multistep regulation. Arrowheads represent
positive regulation.
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consequently  serves  to  provide  more  amino  acids  for  embryo
growth[74].  The  mobilization  of  starch,  which  is  the  most
abundant  storage component  in  rice  seeds,  was  also  found to
be  closely  related  to  the  control  of  seed  germination.
Accordingly,  a  large  amount  of  transient  starch  was  found  to
accumulate  in  the  embryos  of  BR  insensitive  mutants d61 and
bzr1[78],  as  well  as  in  the  GA  deficient  mutant osko1[68].  BR
promotes  the  degradation  of  starch  through  the  downstream
BZR1-RAmy3D transcription  module,  which  is  independent  of
the  GAMYB-RAmy1A transcription  module  of  GA[78].  The
interaction node between BR and GA in co-regulation of starch
degradation  is  therefore  thought  to  lie  upstream  of  these
transcription factors, thereby influencing hormone biosynthesis.
This  phenomenon  also  occurs  during  the  interaction  between
GA  and  ABA.  For  example,  GAMYB  was  found  to  directly
activate expression of OsTPP1, increasing the trehalose content
and  thereby  reducing  ABA  accumulation  in  rice  seeds[72].
Although  the  mechanism  underlying  BR-ABA  crosstalk  during
coordinated  seed  germination  in Arabidopsis and  lamina  joint
inclination  in  rice  have  been  well  established[86−88],  direct
molecular  evidence  of  the  interaction  between  BR  and  ABA
during  co-regulation  of  seed  germination  and  dormancy  has
yet to be reported.

 BR regulation of other seed traits

In  addition  to  grain  size  and  seed  germination,  BR  is  also
involved  in  other  seed-related  traits,  such  as  grain  number,
grain  filling,  and  starch  and  protein  biosynthesis  in  the  seeds.
smg11 is  a  newly-identified  allele  of DWARF2 (D2),  resulting  in
small grains and dense panicles, but also an increased number
of grains per panicle[89]. GW10, which encodes a P450 subfamily
protein,  has  similar  effects  on  rice  grains.  Reduced  expression
of  GW10  in  the  panicles  resulted  in  shorter  and  narrower  rice
grains, as well as an increased number of grains per panicle[90].
During  the  reproductive  stage,  nutrients  are  transferred  from
the leaves to the developing seeds, thereby determining grain
filling and subsequent rice yield. Down-regulated expression of
OSI-BAK1,  a OsBAK1 homologous  gene,  resulted  in  a  large
number  of  undeveloped  green  and  unfilled  grains,  with
embryonic deletion and developmental  delay[91].  Furthermore,
ectopic  expression  of  the  BR  synthetic  gene  in  rice  stems,
leaves and roots increased both seed number and grain filling,
thereby  promoting  grain  yield  per  plant  by  about  15%–44%,
which suggests that BRs stimulate the flow of assimilates from
the  source  to  the  seeds[92].  Another  study  demonstrated  that
BRs  increase  the assimilation of  glucose to  starch biosynthesis
in  rice,  while  respective  inhibition  of D11 and OsBZR1 expre-
ssion  led  to  defective  pollen  maturation  and  reduced  starch
accumulation  in  rice  seeds[31].  The  underlying  mechanism
involves  direct  binding of  OsBZR1 to  the promoter  of  the CSA
gene, promoting expression. CSA, a critical MYB-domain trans-
cription  factor,  regulates  sugar  partitioning  in  rice  pollen  and
seeds by directly regulating the expression of starch synthesis-
related genes during seed development[31].

Starch and protein are the two dominant components of the
rice  endosperm;  thus,  their  constitution  and  structure  deter-
mine  rice  quality[2].  Seed-specific  overexpression  of  the  BR
biosynthesis gene OsDWF4 in rice was found to alter a variety of
seed-related  traits,  including  grain  size,  chalkiness  and  the
starch  structure  of  endosperm[93].  Furthermore,  constitutive

expression  of ZmD11,  an  ortholog  of  rice D11,  significantly
increased  grain  size,  and  the  starch  and  protein  content  in
rice[94].  These  results  suggest  that  modulation  of  BR  synthesis
and/or  signaling  affects  grain  number,  grain  filling,  and  the
composition  and  physicochemical  properties  of  rice  seeds,
thereby  altering  not  only  rice  yield,  but  also  rice  quality  traits,
such as appearance, nutrition, and eating and cooking indices.

 Conclusions and perspectives

BR,  as a principal  growth-promoting plant hormone,  plays a
wide  range  of  roles  in  plant  growth  and  development.  In  rice,
BR  has  at  least  three  potential  applications  in  breeding
practices.  First,  by  attenuating  BR  biosynthesis  or  signaling  to
improve  plant  architecture.  With  the  reduction  in  arable  land
and  increasing  demands  for  food,  breeding  of  compact  rice
varieties  complemented  by  intensive  planting  has  been
deemed a practical strategy for reducing competition for water,
light  and  nutrients,  thereby  improving  yield  per  unit  area.
Second,  BR  could  also  be  used  to  regulate  a  series  of  seed-
related  traits,  including  grain  size,  grain  filling,  grain  number
and seed components, thereby increasing rice yield and quality.
Third,  BR  involvement  in  the  regulation  of  seed  germination
and  PHS  shows  further  potential,  without  affecting  the
germination  rate,  with  the bzr1 mutant  showing  slightly
delayed germination but strong resistance to PHS[78]. However,
due to the pleiotropic effects of BR, improving rice seed-related
traits by enhancing the BR pathway also has negative effects on
other  agronomic  traits;  for  example,  increasing  the  leaf  angle
and  loosening  the  overall  plant  architecture.  Meanwhile,  BR-
deficient and insensitive rice mutants typically exhibit dwarfism
and  a  compact  plant  phenotype,  although  their  grain  size  is
also smaller. At present, the most effective way of applying the
positive  aspects  of  BR  while  avoiding  its  negative  effects  is  to
use weak BR mutants or downstream target genes with specific
roles  in  regulating  certain  agronomic  traits.  For  example,
osdwarf4-1,  a  weak  BR-deficient  mutant,  causes  only  limited
defects in rice morphology, including a slightly dwarfed stature
and more erect leaves,  while the yield was higher than that of
the  wild-type  control  under  dense  planting  conditions[95].
Another  example  is  GS9,  a  specific  regulator  of  rice  grain  size
functioning  downstream  of  the  BR  signaling  pathway. GS9
mutation  improved  rice  appearance  quality,  presenting  a
slender shape and reduced chalkiness, but without observable
negative effects on any other agronomic traits[45].

Rice is one of the most important crops in the world, while its
seed traits are directly correlated with yield and quality. Studies
aimed at  improving seed-related traits  are therefore attracting
increasing  attention  from  both  plant  scientists  and  rice
breeders.  However,  although  BR  plays  comprehensive  roles  in
regulating  multiple  seed  traits,  little  is  known  about  the
underlying  molecular  mechanism  and  regulatory  network.  For
example, BR interacts with GA and ABA to co-regulate rice seed
germination,  as  demonstrated by a  series  of  physiological  and
preliminary  molecular  studies;  however,  the  exact  integrative
nodes  remain  unclear.  Future  application  of  powerful  and
accurate  technologies,  accompanied  by  additional  genetic  re-
sources  and  a  more  complete  understanding  of  the  BR  signa-
ling  pathway  in  rice  will  therefore  help  uncover  the  mecha-
nisms underlying BR-regulated seed traits in rice.
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