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Abstract
Proteins, the second-largest storage substance in rice endosperm, play an important role in determining the cooking and eating qualities of rice.

Its contents are influenced by both genetic and environmental factors. This article provides a review of the evaluation methods for cooking and

eating qualities of rice and starch physicochemical properties, the factors that affect the protein content of rice, the genetic basis of rice protein

content, the research progress made in the genetic improvement of rice protein content, and the prospects for the future, aiming to provide a

reference for the genetic improvement of rice protein content and the breeding of rice varieties with excellent taste.
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 Introduction

Rice  yield  and  quality  have  always  been  of  concern  as  it  is
one  of  the  main  food  crops  worldwide.  The  rice  yield  greatly
improved  after  the  two  green  revolutions.  However,  research
and  breeding  practices  related  to  rice  quality  lag  far  behind
those focused on rice yield. This may reflect the neglect of rice
quality in the past, complexity of rice quality research, and lack
of a consensus definition and evaluation criteria for rice quality.
Rice quality is a complex character based on several evaluation
indices  that  reflect  both  internal  and  external  attributes,  such
as appearance, taste, and flavor. Rice quality encompasses vari-
ous  qualities,  such  as  appearance,  milling,  nutritional  value,
cooking and eating, and sanitary qualities[1].  Rice quality, espe-
cially  appearance,  cooking,  and  eating  quality,  plays  a  crucial
role  in  determining  consumer  preference  and  commercial
value. Undoubtedly, rice with excellent appearance and taste is
more likely to be favored by consumers.

Rice quality is mainly determined by the synthesis, composi-
tion,  distribution,  and  accumulation  of  nutrients  and  storage
products.  Cooking  and  eating  quality  are  important  indicators
of many quality traits. Currently, in breeding practice, improving
the  taste  quality  of  rice  relies  primarily  on  allelic  variations  in
the  waxy  gene Wx,  encoding  granule-bound  starch  synthase  I
(GBSSⅠ). This allows the cultivation of rice varieties with varying
amylose  contents  to  meet  the  needs  of  different  consumer
groups[2−9].

Wx is known to control amylose synthesis in rice endosperm.
In  addition to  its  direct  function on amylose synthesis,  the Wx
gene  interacts  with  many  other  genes,  both  directly  and  indi-
rectly.  These  interactions  regulate  the  expression  level  of Wx
and ultimately impact the amylose content and quality of rice.
The regulation occurs at the transcriptional and post-transcrip-
tional levels, and also involves interactions with GBSSI proteins,
as well as some unknown forms of interaction. Certain genes or

QTL  (Quantitative  trait  loci),  such  as Du1[10], Du3[11], Du13[12],
FLO2[13], qAC2[14], qSAC3[15], and LowAC1[16], have been reported
to manipulate Wx mRNA splicing efficiency, directly controlling
the  amylose  content  in  rice  grains.  Additionally,  certain  tran-
scription  factors  like OsNAC24[17], OsNAC20[18], OsNAC26[18],
OsNF-YB1[19], OsNF-YC12[9], bHLH144[15], OsMADS7[20],
OsMADS14[21], OsBP-5[22], OsEBP-89[22], REB[23],  and OsbZIP60[24]

have been found to regulate the expression of Wx gene in rice
endosperm,  either  directly  or  indirectly.  There  are  also  some
quality genes, such as OsAAP6[25], Chalk5[26], WCR1[27], FLO19[28],
that affect the expression level of Wx genes in unknown ways.
Furthermore, OsGBP[29] and FLO6[30] have been discovered to be
involved  in  starch  synthesis  through  direct  interaction  with
GBSSI. Exploring natural variations of these genes that interact
with Wx, or modifying these genes themselves through genetic
engineering,  are  potential  strategies  for  enhancing the quality
of cooked rice.

The Wx gene  not  only  affects  the  synthesis  of  endosperm
starch and the physicochemical properties of starch[31], but also
has a powerful pleiotropic function that impacts the quality of
rice from multiple aspects. Tan et al.  identified a major protein
content  QTL  in  the Wx gene  region,  which  is  also  responsible
for  flour  color[32].  Chen  et  al.  investigated  the  total  protein
content  and  four  storage  protein  contents  of  527  rice  germ-
plasms using a genome-wide association study, and discovered
that the distance between an association site with a phenotypic
variation  rate  greater  than  10%  and  the  quality  gene Wx was
less  than  20  Kb[33].  By  conducting  haplotype  analysis  and
endosperm expression analysis of the Wx gene, they observed
that the 2.3 kb mRNA level of Wx was inversely proportional to
the  albumin  content[33].  This  finding  further  supports  the
conclusion  that Wx is  a  gene  responsible  for  endosperm
protein content.  In 2020, two different research groups almost
simultaneously  reported  that Wx also  regulates  grain  trans-
parency  and  eating  quality[8,9].  According  to  Xia  et  al.'s
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genome-wide  association  studies,  it  was  discovered  that  the
Wx gene acts  as  a  negative regulator  for  both crude fatty  acid
content and rice quality[34,35]. Qiu et al. showed that Wx gene is
highly  correlated  with  cooked  rice  elongation[36].  Deng  et  al.'s
research highlighted the significance of the Wx gene in regulat-
ing grain fissure resistance,  and its  genetic  variation conferred
different levels of tolerance to fissuring in grains as well as head
rice  yield[37].  Thus, Wx does  not  affect  rice  quality  solely  by
controlling  amylose  synthesis,  but  rather  depends  on  its
pleiotropic  effects,  which  determine  the  overall  quality  of  rice
from various perspectives (Fig. 1).

Although  significant  progress  has  been  made  in  improving
the quality of rice with regard to starch, the quality of the existing
rice still  fails to meet the diverse needs of consumers. Proteins
have attracted the attention of rice quality researchers because
they  are  the  second-largest  storage  substances  in  rice,  after
starch.  Proteins  in  rice  can  be  divided  into  two  categories
according  to  their  functions:  storage  and  structural  proteins.
Most of the proteins in rice seeds are storage proteins, whereas
structural  proteins  are  responsible  for  maintaining  normal  cell
metabolism,  mainly  hormones,  enzymes,  and  enzyme  inhibi-
tors, and their total content is relatively small[38]. Therefore, rice
proteins  are  generally  referred  to  as  storage  proteins.  Studies
have  shown  that  rice  seed  storage  proteins  are  mainly  distri-
buted  in  the  aleurone  layer  and  embryo[39].  Albumin  and  glo-
bulin  are  more  abundant  in  the  aleurone  and  glume  layers.
Glutelin  is  the  most  abundant  protein  in  the  endosperm,  and
albumin is evenly distributed in rice bran, fine bran, and milled
rice[40]. The storage proteins in the endosperm are mainly filled
between  starch  granules  in  the  form  of  independent
proteomes (PBs), which can be divided into two types: spherical
type I proteomes (PB-I) with concentric lamellar structures and
elliptical  type  II  proteomes  (PB-II)  without  lamellar  structures.
PB-I  mainly  contains  prolamin,  accounting  for  approximately
20%–30%  of  the  total  endosperm  storage  protein[41].  PB-II  is
mainly  composed of  glutelin  with  a  small  amount  of  globulin,
accounting for approximately 65% of the total stored protein in
endosperm[42].  Glutelin  is  the  first  major  component  of  rice
grain storage protein[43].  To date,  research on the biosynthesis
and  genetics  on  glutelin  has  been  the  most  common.  In  this
regard,  there  have  been  two  excellent  reviews[40,44] on  the
progress  in  rice  glutelin  biosynthesis  and  genetics,  which  will
not be repeated here.

The  protein  content  and  composition  of  rice  also  seriously
affect various quality traits, particularly the cooking and eating
quality.

Singh  et  al.  found  that  the  gelatinization  characteristics  of
rice  flour  and  starch  from  the  same  variety  were  different,
suggesting that  factors  other  than starch affect  the gelatiniza-
tion  process  of  rice[45].  Martin  &  Fitzgerald  found  that  during
the early stage of cooking, protein reduced the water absorption
of  rice  by  binding  water  and  increased  the  concentration  of
starch  gel  in  both  dispersed  and  viscous  phases  through  a
disulfide-linked protein network, resulting in an increase in the
peak  viscosity  of  RVA  spectra[46].  Hamaker  &  Griffin  used  the
reducing agent dithiothreitol (DTT) to break the protein disulfide
bond  and  observed  significant  swelling  of  the  starch  granules
and an increase in peak viscosity[47,48]. After adding protease or
DTT  to  the  rice  flour  and  non-glutinous  rice  flour,  Xie  et  al.
found that the peak viscosity, disintegration value, and recovery
value  of  glutinous  rice  decreased  significantly,  indicating  that

the  protein  network  formed  by  disulfide  bonds  enhances  the
gelatinization  rigidity  of  glutinous  rice  flour.  In  contrast,  the
disintegration  value  of  non-glutinous  rice  increases  without
disulfide  bonds,  and  the  expansion  process  of  starch  particles
became  more  gelatinized[49].  Chavez-murillo  et  al.  reported  a
significant  negative  correlation  between  rice  protein,  peak
viscosity,  and  disintegration  value  in  RVA,  suggesting  that
proteins affect these indices by binding to water[50]. Baxter et al.

 
Fig.  1    Pleiotropy  of Wx gene  in  rice  quality  regulation.  This
pattern diagram presents the regulatory factors of the Wx gene at
both  the  transcriptional  and  post-transcriptional  levels  that  have
been  reported  thus  far.  It  also  highlights  the  encoding  product
GBSSI  of  the Wx gene,  which  plays  a  role  in  regulating  the  three
major  components  of  rice  endosperm (starch,  protein,  and lipids)
and  subsequently  affects  various  physicochemical  properties  of
rice  grains.  The  pleiotropic  effect  of  the Wx gene  ultimately
determines  the  overall  quality  of  rice  from  multiple  perspectives.
GC,  gel  consistency;  GT,  gelatinization  temperature.  Yellow
spheres with the letter P indicate phosphorylation.
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added four protein components to pure starch and found that
the addition of glutenin and albumin increased the starch gela-
tinization  temperature,  whereas  the  addition  of  globulin
decreased it[51]. The albumin content showed a linear and posi-
tive correlation with the hardness of the starch gel and a nega-
tive correlation with adhesion. The addition of prolamin to the
starch gel results in decreased hardness, adhesion, and adhesive
properties.  Furthermore,  an  increase  in  the  prolamin  content
led to a decrease in both hardness and adhesion[52]. Zhou et al.
hydrolyzed the protein in rice with protease and observed that
during gelatinization,  the number of  starch molecules leached
and  water  permeability  increased,  and  the  heat  absorption
temperature  of  gelatinization  decreased,  suggesting  that
protein  is  an  important  factor  that  affects  the  thermodynamic
properties  of  stored  rice[53].  Moreover,  many  studies  have
demonstrated  that  a  higher  endosperm  protein  content
increases  the  hardness  and  roughness  of  rice  and  reduces  its
adhesion and smoothness[54,55].  Existing studies have generally
found that the higher the protein content, the worse the cooking
and eating quality of rice[56,57]. In summary, the protein content
and  composition  of  rice  are  closely  related  to  its  cooking  and
eating quality.

This review mainly focuses on the evaluation methods of rice
cooking and eating quality and starch physicochemical proper-
ties,  factors  affecting rice  protein content,  the genetic  basis  of
rice protein content, progress made in the genetic improvement
of rice protein content, and future prospects in this field.

 Evaluation methods for rice cooking and eating
quality and starch physicochemical properties

The  evaluation  methods  for  rice  taste  include  instrumental,
artificial  sensory,  physical,  and  chemical  index  evaluation
methods.  At  present,  the  most  widely  used  instrument  in  rice
taste evaluation is the rice taste value analyzer produced by the
SATAKE  Company  in  Japan[58].  The  instrument  can  calculate
physical  parameters,  such as viscosity,  elasticity,  hardness,  and
balance, by measuring the light characteristics of rice. Based on
these measurements, the instrument calculates the taste value
of rice using a formula[59]. Sensory evaluation is the most accu-
rate  and  direct  manifestation  of  the  taste  quality  of  rice.  After
the rice is steamed and cooked under standardized and unified
conditions, the evaluators comprehensively evaluate the color,
odor, taste, viscosity, softness, hardness, and overall palatability
of the tested rice using visual, nasal, and oral methods.

In  addition  to  these  two  methods,  physical  and  chemical
index evaluation methods are widely used in the evaluation of
rice quality and breeding of high-quality rice. The main physical
and  chemical  indices  involved  include  the  amylose  content,
fine structure of amylopectin, gelatinization properties, texture
characteristics, and thermodynamic properties (Fig. 2). Amylose
content is considered the most important factor in determining
rice  quality[31,60−62].  Therefore,  the  effects  of  amylose  on  rice
quality  have  been  extensively  and  comprehensively  studied,

 
Fig.  2    Determinants  of  cooking and eating quality  of  rice  and external  factors  affecting protein content  of  rice  grains.  The six  parts  in  the
inner circle represent the physical  and chemical characteristics or indicators that determine the cooking and eating quality of rice;  the three
parts in the outer circle represent the material composition that affects the physical and chemical characteristics of rice; the cartoon diagram in
the outermost circle represents the ecological factors and environmental factors that affect the grain protein content, from clockwise from 1
o'clock to indicate light, moisture, carbon dioxide, salinity, cultivation, fertilizer and temperature.
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which  has  been  summarized  in  detail  in  some  excellent
reviews[1,62−64] and will not be repeated here.

Amylose is a very small, linear, or slightly branched structure,
whereas amylopectin is a highly branched component of starch.
The  difference  in  the  eating  quality  of  rice  with  the  same
amylose content is generally considered to be closely related to
the  fine  structure  of  amylopectin.  Amylopectin  accounts  for  a
large  proportion of  the  starch  in  the  rice  endosperm,  approxi-
mately 70%–90%, and its molecular weight is relatively large. It
is generally composed of thousands of glucose residues. There
are  many  non-reducing  ends  in  the  molecule,  but  only  one
reducing  end.  The  fine  complex  structure  of  amylopectin  is
initially  evident  over  a  wide  range  of  chain  lengths.  The
amylopectin  chain  is  divided  into  A,  B,  and  C  chains  based  on
the  branch  point  and  degree  of  polymerization.  The  reducing
end of the A chain is involved in the formation of α-1,6 glycosidic
bonds.  The reducing end of  the B  chain is  connected to  the C
chain or the other B chains, and the C chain is the only macro-
molecule with a reducing end. Depending on the length of the
chain,  it  can  be  divided  into  main  short  chain  (generally  0–35
DP) and secondary long chain (generally greater than 35 DP), A
chain (6 ≤ DP ≤ 12), B1 chain (13 ≤ DP ≤ 24), B2 chain (25 ≤ DP ≤
36), B3 chain (DP ≥ 37), and some amylopectin molecules have
extra-long  chains  (EL  chains).  Second,  the  fine  and  complex
structure of amylopectin is also evident in the multilevel struc-
ture of the starch granules. Amylose and amylopectin aggregate
and  twist  to  form  a  double  helix  and  then  aggregate  to  form
different types of crystals.  The crystals form amorphous sheets
alternately.  In  addition,  crystalline  sheets  form  periodic  shell-
shaped or ring-shaped growth rings, small starch granules have
raised  elastic  bodies  on  the  surface,  and  these  small  starch
granules further fused to form composite starch granules.

The gelatinization properties of rice flour can be characterized
by measuring the change in the viscosity of the starch suspen-
sion  during  heating  and  cooling.  During  heating,  the  viscosity
gradually  reaches  a  maximum  value  with  increasing  tempera-
ture  and  then  gradually  decreases.  which  is  a  function  of  the
change  in  starch  granules[65].  During  the  cooling  process,  the
viscosity of the starch paste increases over time, which indicates
that  the  gelatinized  starch  was  recycled[66].  Currently,  rapid
viscosity  analyzer  (RVA)  is  mainly  used to investigate the gela-
tinization  properties  of  starch.  The  RVA  gelatinization  curve
provides  several  important  parameters:  the  gelatinization
temperature  (PM),  which  is  the  temperature  at  which  starch
begins  to  gelatinize;  peak  viscosity  (PV),  which  represents  the
maximum  viscosity  of  starch  particles  before  breaking;  peak
time  (PT),  which  indicates  the  time  when  starch  reaches  peak
viscosity;  decay  value  (BD),  which  indicates  the  stability  of
starch  hot  paste  under  shear  stress;  retrogradation  value  (SB),
indicating that the gelatinized starch paste begins to retrograde
when cooled; and final viscosity (FV), which represents the final
viscosity of the RVA curve[67].

Texture  properties,  such  as  hardness,  brittleness,  stickiness,
resilience, elasticity, and gel strength, are important food quality
factors.  Sensory  evaluation  is  a  highly  recognized  evaluation
method;  however,  it  has  some  limitations,  such  as  strong
subjectivity  and  being  greatly  influenced  by  the  evaluator's
own preferences. In this context, a texture instrument has been
developed  to  replace  human  sensory  evaluation  and  provide
specific  index  parameters.  A  texture  tester,  also  known  as  a
physical property tester, is mainly used to simulate the mecha-
nical movement of oral chewing. The most commonly used test

is  the  texture  profile  analysis  (TPA)  program,  which  is  also
known  as  the  secondary  extrusion  cycle  or  twice  mastication
test (two-bite test, TBT). By simulating the chewing movement
of  the  human  cavity,  a  solid  or  semi-solid  sample  is  extruded
twice to obtain texture parameters.

Starch  gelatinization  is  an  irreversible  process  that  includes
granule  swelling,  crystal  dissolution,  loss  of  birefringence,  and
starch  dissolution,  accompanied  by  changes  in  viscosity.  The
phase transition of starch granules involves the expansion and
rupture of starch granules. The gel temperature is the key point
of these two stages because it is at this point that the impact on
the rupture of starch granules is the greatest. The temperature
parameters  of  the  starch  gelatinization  process  can  be  deter-
mined  by  differential  scanning  calorimetry,  including  the
degree of crystallization, transition effect, and melting point of
starch during the gelatinization reaction, as well  as the degree
of gelatinization and recovery characteristics of starch.

 Factors affecting protein content in rice

As a  typical  quantitative  trait,  phenotypic  differences  in  rice
protein content among different genotypes are greatly affected
by  the  environment.  Ecological  factors,  such  as  temperature,
light,  and  carbon  dioxide  concentration,  and  environmental
factors,  such  as  cultivation,  affect  the  protein  content  of  rice
(Fig. 2).

Rice  is  a  typical  temperature-loving  crop,  and  the  protein
content  of  the  grain  is  very  sensitive  to  temperature  changes
during the grain-filling stage. High temperatures during the fill-
ing  stage  usually  lead  to  an  increase  in  grain  protein  content,
decrease in amylose content and taste value, and a decrease in
grain quality[68]. The high temperature during the mature stage
leads to abnormal rice quality, shape, and color, which may be
attributed  to  a  decrease  in  enzyme  activity,  respiratory  con-
sumption  of  assimilation  products,  and  reduced  sink  activity
related to grain filling[69,70].

Light,  in  addition  to  temperature,  is  another  key  factor  that
affects  protein  synthesis.  It  has  been  found  that  the  main
protein components,  such as glutelin,  and the most important
essential amino acids, including lysine and threonine, increased
significantly  in  rice  harvested  after  low-light  treatment  at  the
filling stage; however, cooking quality decreased[71].

Some studies have shown that the atmospheric concentration
of  CO2 has  an  important  effect  on  rice  quality.  Goufo  et  al.
demonstrated  that  elevated  carbon  dioxide  levels  result  in
reduced  protein  content  in  plants,  which  is  attributed  to  the
inhibition  of  nitrate  assimilation[72,73].  Furthermore,  the
researchers  observed  an  increase  in  peak  viscosity,  minimum
viscosity, breakdown value, final viscosity, and hardness of rice,
while noting a decrease in setback value. All these alterations in
physical  and  chemical  indicators  collectively  indicate  an
enhancement in the cooking and eating quality of rice[72].

Moisture and fertilizer are the two most important factors in
cultivation management. In many systems, 5,000 liters of water
is  required  to  produce  1  kg  of  rice,  although  this  can  be
reduced  to  approximately  2,000  liters[74].  Soil  moisture  status
has  a  significant  impact  on  yield  and  grain  quality[75].  Rice  is
generally  grown  under  submerged  conditions.  Submerged
plastic  film  mulching  (PM)  and  submerged  wheat  straw
mulching (SM) are emerging water-saving technologies for rice
production.  Different  water  management  treatments,  namely
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PM, water-saving grouting, and conventional irrigation, signifi-
cantly affected the percentage of brown rice, milled rice, chalky
grain,  amylose  content,  and  protein  content  in  a  variety-  and
grain-position-dependent  manner.  The  protein  content  is  the
most affected by water management[76].  Nitrogen is crucial  for
plant  growth  and  development.  As  nitrogen  is  still  the  main
component  of  proteins,  applying  nitrogen  fertilizer  can  also
significantly affect the quality of grains[35,77]. The application of
nitrogen  fertilizer  at  different  stages  of  panicle  differentiation,
heading, flowering, and grain filling could significantly increase
the content of grain storage protein[78]. In addition to nitrogen,
potassium  is  another  fertilizer  necessary  for  rice  production.
Some  studies  have  shown  that  the  application  of  potassium
fertilizer  increased  gel  consistency  and  grain  protein  content
but had no significant effect on gelatinization temperature and
amylose content[79].

Salinity  is  another  important  factor  that  significantly  influ-
ences  crop  quality.  By  comparing  rice  varieties  grown  in  low-
and high-salinity areas, Siscar-Lee et al.[80] found that salt-toler-
ant  and  salt-sensitive  varieties  grown  in  saline-alkali  soil  had
higher  storage  protein  content  than  those  grown  in  normal
soil;  however,  these  varieties  also  had  less  translucent  grains
and lower starch and amylose contents[80]. Owing to the signifi-
cant influence of the environment, the interaction between the
protein  content  genotype  and  the  environment  is  large,  and
the  heritability  is  relatively  small.  Some  studies  have  shown
that the heritability of the phenotype of protein content in rice
is only 13.0% and 37.2%[81]; therefore, the phenotype with high
protein  content  has  little  effect  in  the  early  generation.  How-
ever,  it  is  also reported that  its  heritability  can reach 58.8%[82].
Therefore,  it  is  feasible  to  screen  materials  with  high  protein
content in the lower generation. Several external factors aggra-
vate the complexity and challenge of rice protein research.

 Genetic basis of protein content in rice

 Protein inheritance
Rice  grain  protein  content  is  a  quality  trait  controlled  by

multiple genetic factors with a complex genetic basis. There are
large  differences  in  the  protein  content  among  the  different
varieties[83]. Chen et al. determined the grain protein content of
527  cultivated  rice  core  germplasm  and  showed  that  the
protein content ranged from 44.06 to 106.71 mg/g in 2014 and
32.64 to 80.08 mg/g in 2015[33]. Similarly, Yang et al. used near-
infrared  spectroscopy  to  measure  the  protein  content  of  402
core  germplasms.  The  two-year  phenotypic  data  showed  that
the  protein  content  of  rice  varied  from  5.33%  to  14.83%,  and
the protein content of  most varieties was distributed between
7.5%  and  11.5%[83].  Liu  et  al.  measured  the  protein  content  of
24  japonica  rice  varieties  collected  from  different  regions  in
China and found that the protein content ranged from 6.45% to
11.1%,  with  an  average  of  8.26%[84].  Webb  et  al.  analyzed  the
protein  content  of  approximately  4,000  rice  varieties  from  57
countries and found that the protein content ranged from 5.3%
to 13.6%[85].

 Genetic loci for protein
To  date,  numerous  studies  have  mapped  quantitative  trait

loci  (QTL)  that  control  the  protein  content  of  rice.  Tan  et  al.
used  a  set  of  recombinant  inbred  line  populations  to  detect  a
QTL  related  to  protein  content  on  chromosomes  6  and  7

respectively,  one  of  these  QTLs  was  located  near Wx on  chro-
mosome  6  and  had  a  large  effect,  explaining  13.0%  of  the
phenotypic  variation[32].  Aluko  et  al.  used  DH  populations
derived  from  BC3F1 (O.  sativa  ×  O.  glaberrima)  to  detect  QTL
controlling  protein  content  on  chromosomes  1,  2,  6,  and  11,
respectively[86]. Similar to the results obtained by Tan et al., the
QTL on chromosome 6  had the largest  effect  and was  located
near  the Wx gene[86].  Hu  et  al.  also  used  a  DH  population
(Gui630×02428)  and  identified  five  QTLs  for  rice  protein
content,  among  which  the  QTL  effect  on  chromosome  5  in
RG435-RG172a was found to be the largest[87]. Kepiro et al. used
an  RIL  population  to  map  QTLs  related  to  protein  content  in
both brown rice and milled rice respectively[88].  They observed
that the two loci were located in brown rice and three loci were
located in milled rice. The loci on chromosomes 1 and 4 simul-
taneously control the protein content of brown rice and milled
rice[88].  Wang  et  al.  used  the  RIL  population  (Zhenshan97/
Nanyangzhan)  to  map  QTLs  for  different  amino  acid  contents
and found that there was a QTL with a large effect at the end of
the  long  arm  of  rice  chromosome  1  that  simultaneously
controlled  the  contents  of  multiple  amino  acids[89].  Using  the
RIL population constructed by Chuan 7 and Nanyangzhan, Luo
et  al.  detected  two  QTLs  affecting  protein  content;  however,
the effects of these QTLs were small,  and phenotypic variation
explained only 7.2%[90]. Ye et al. detected at least 15 fragments
related to protein content using two-year data of chromosome
segment  substitution  line  (CSSL)  populations  at  four  sites,
among  which  CSSL-48  on  chromosome  8  was  detected  in  all
eight environments[91]. Liu et al. mapped nine protein content-
related QTL on chromosomes 1, 2,  3,  6,  8,  and 11 using a CSSL
(Asominori × IR24) population[92]. Bruno et al. identified a minor
QTL for brown rice protein content on chromosome 7, using a
set  of  DH  populations[93].  Kashiwagi  &  Munakata  used  a  set  of
single-segment  substitution  line  populations  obtained  from
crosses between Koshihikari and NonaBokra to identify a stably
inherited QTL, TGP12, which controls the protein content of rice
across  three  years  of  different  environments[94].  This  QTL  can
specifically  reduce protein content of  rice without affecting its
cooking and eating quality[94]. Park et al. used a set of RIL popu-
lations obtained from the crossing parents with large differences
in  rice  quality,  and  identified  a  stable  genetic  QTL qPro9 on
chromosome 9 through 2 years of repeated identification, and
fine-mapped  it  to  a  specific  region  of  34  Kb[95].  Zhang  et  al.
studied the inheritance of crude protein and its components in
rice  using  71  recombinant  inbred  lines  (RIL)  obtained  from
crossing  the  japonica  rice  variety  Asominori  with  indica  rice
variety  IR24[96].  They  identified  a  total  of  16  QTLs  located  on
eight  chromosomes[96].  To  investigate  the  genetic  relationship
between rice yield and rice nutrient content, Yu et al. used 209
recombinant  inbred  lines  obtained  from  crossing  XieqingzaoB
with  Milyang46  to  map  the  QTL  that  affects  brown  rice  yield
and  two  main  nutrient  contents.  Five  QTLs  related  to  protein
content  were  detected  on  chromosomes  3,  4,  5,  6,  and  10.
Among  them,  a  major  QTL qPC-6 was  located  near  the Wx
marker  RM190  on  the  short  arm  of  rice  chromosome  6,  which
explains  19.3%  of  the  phenotypic  variation  with  an  additive
effect  of  0.471%[97].  Zheng  et  al.  used  71  lines  derived  from
'Asominori/IR24'  to  analyze  the  developmental  behavior  of
protein  content  and  protein  index  (PI)  through  unconditional
and  conditional  QTL  mapping.  Ten  unconditional  QTLs,  six
conditional  QTLs  of  proteins,  11  unconditional  QTLs,  and  nine
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conditional  QTLs  of  PI  have  been  identified  at  four  stages  of
grain filling[98].

Advanced  molecular  breeding  methods,  such  as  genome-
wide association analysis (GWAS), supported by next-generation
sequencing  and  omics  technology,  can  effectively  identify
genomic  regions  related  to  rice  quality  traits[99−102].  Thus,  in
addition to using parental-derived genetic populations to iden-
tify  QTLs related to rice protein content,  researchers  have also
attempted to use natural populations of rice to conduct GWAS
to find genes/QTLs related to protein content of rice. Chen et al.
conducted  GWAS  of  total  protein  content  and  four  stored
protein contents of 527 rice varieties in the overall population,
as  well  as  in  the  indica  rice  subpopulation  and  japonica  rice
subpopulation. They detected a total of 107 significant associa-
tion  loci,  of  which  28  loci  overlapped  with  reported  QTLs  or
intervals  known  to  control  rice  protein  content.  Sixteen  loci
were detected in different populations and nine of them were
simultaneously detected in different phenotypes. Based on the
analysis of the associated loci that explained a phenotypic vari-
ation  rate  of  more  than  10%,  13  loci  were  found  to  be  co-
located  with  genes  related  to  quality,  and  the  distances
between  5  loci  and  quality-related  genes  (PG5a, Wx, AGPS2a,
RP6,  and RM1) were less than 20Kb[33].  Similarly, 135 significant
loci  related  to  grain  protein  content  have  been  identified
through  genome-wide  association  studies[103],  among  these
loci,  six  leading  SNPs  are  located  near  the  known  genes
involved  in  the  biosynthesis  and  accumulation  of  storage
proteins (less than 150 Kb), including Sar1a, GluB6, OsTudor-SN,
and Glb1.  In  addition,  two  genes  (Susy2 and Flo5),  which  have
been shown to play a  key role in rice starch synthesis,  are less
than 50 Kb from the leading SNPs, and the chalkiness rate and
protein content of mutants obtained by editing Flo5 are signifi-
cantly higher than those of the wild type[103]. Yang et al. used a

population of CSSLs obtained by crossing the indica rice variety
Habataki with japonica rice variety Sasanishiki for QTL mapping
and  identified  18  QTLs  related  to  grain  protein  content  across
three  environmental  conditions.  Among  these, qGPC-1 and
qGPC-10 were  repeatedly  identified  in  all  three  environmental
conditions,  whereas qGPC-3, qGPC-8,  and qGPC-12 were
detected under both environmental conditions, and the others
could only be detected under one environmental condition[83].
Huang  et  al.  conducted  a  genome-wide  association  study  on
heading  date  and  ten  grain-related  traits,  of  950  rice  varieties
worldwide using a high-density haplotype map to identify five
candidate genes for grain protein content on chromosomes 6,
7, and 11, in combination with expression profile data and gene
annotation information[104]. Verma et al. used 42,446 SNP mark-
ers  to  perform  a  genome-wide  association  study  on  five  grain
quality  traits  of  103  rice  varieties  and  identified  multiple  grain
protein QTLs on chromosomes 1,  2,  6,  7,  10,  and 11[105].  More-
over,  a  novel  grain  protein  QTL, qPRO_1.12 was  identified  on
chromosome  12[105].  Using  different  sets  of  258  germplasm
from  the  3  K  Rice  Genome  Project,  Wang  et  al.  conducted  an
association  study  on  apparent  amylopectin  content  (AAC),  gel
consistency  (GC),  gelatinization  temperature  (GT),  and  PC  in
two  environments,  and  detected  three  QTLs  affecting  protein
content[106].

 Key genes for protein content
Although  many  QTLs  have  been  identified  and  reported,

cloning QTLs related to protein content has become extremely
difficult  owing  to  various  influencing  factors.  To  date,  only  a
limited number of genes have been cloned from natural popu-
lations,  which  can  be  used  for  quality  improvement.  Peng  et
al.[25] cloned  the  first  protein  content  gene, OsAAP6,  in  rice,
which  encodes  an  amino  acid  transporter  and  functions  as  a
positive regulator of the storage protein content. Upregulation

Table 1.    Reported floury endosperm genes that may affect grain protein content.

Classification Name Gene ID
Effect of gene knockout
or knockdown on grain

protein content
Annotation

Biochemical
metabolism

flo4/OsPPDKB/OsC4PPDK LOC_Os05g33570 Increased[130] Pyruvate, phosphate dikinase
OsSSIIIa/Flo5/SS3a LOC_Os08g09230 Increased[103] Starch synthase III
FLO8/OsUgp1 LOC_Os09g38030 Increased[131] UTP--glucose-1-phosphate

uridylyltransferase
FLO12/OsAlaAT1 LOC_Os10g25130 Increased[132,133] Aminotransferase
FLO15/OsGLYI7 LOC_Os05g14194 Increased[134] Glyoxalase family protein
FLO16 LOC_Os10g33800 Increased[135] lactate/malate dehydrogenase
FSE1 LOC_Os08g01920 Increased[136] Phospholipase-like protein
OsAGPL2/OsAPL2/shr1/GIF2/
osagpl2-3

LOC_Os01g44220 Decreased[137] ADP-glucose pyrophosphorylase large
subunit 2

OsBEIIb/be2b LOC_Os02g32660 Unknown[138] Starch branching enzyme IIb
Pho1 LOC_Os03g55090 Unknown[139] Plastidial phosphorylase
OsGINT1/FSE6 LOC_Os05g46260 Increased[140] Glycosyltransferase
OsPK2/OsPKpα1 LOC_Os07g08340 Increased[141] Plastidic pyruvate kinase
GIF1/OsCIN2 LOC_Os04g33740 Unknown[142] Glycosyl hydrolases
PDIL1-1 LOC_Os11g09280 Increased[143] Protein disulphide isomerase-like

enzyme
OsACS6/SSG6 LOC_Os06g03990 Unknown[144] Aminotransferase
PFPβ/PFP1 LOC_Os06g13810 Unknown[145] Pyrophosphate-fructose 6-phosphate

1-phosphotransferase subunit beta
FLO19 LOC_Os03g48060 Increased[28] Class I glutamine amidotransferase
FLO19 LOC_Os04g02900 Decreased[146] Plastid-localized pyruvate

dehydrogenase complex E1 component
subunit α1

(to be continued)
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Table 1.    (continued)
 

Classification Name Gene ID
Effect of gene knockout
or knockdown on grain

protein content
Annotation

FLO23/OsF2KP2 LOC_Os03g18310 Decreased[147] Fructose-6-phosphate-2-kinase/fructose-
2, 6-bisphosphatase

OsDPE1 LOC_Os07g43390 Unknown[148] Disproportionating enzyme
Transcriptional
regulation and
protein interaction

OsNF-YC12 LOC_Os10g11580 Increased[19,149] CCAAT-box-binding transcription factor
OsNF-YB1/OsHAP3K/OsEnS-
41

LOC_Os02g49410 Increased[19] Nuclear transcription factor Y subunit B

bHLH144 LOC_Os04g35010 Increased[19] Helix-loop-helix DNA-binding domain
containing protein

RISBZ1/OsbZIP58 LOC_Os07g08420 Decreased[150] bZIP transcription factor
REB/OsbZIP33/RISBZ2 LOC_Os03g58250 Unknown[151] bZIP transcription factor
RPBF/OsDof3/OsDof-10/
OsDof7

LOC_Os02g15350 Decreased[150,152] Dof transcription factor

FLO2 LOC_Os04g55230 Unknown[153] Tetratricopeptide repeat domain
containing protein

FLO6 LOC_Os03g48170 Increased[154] CBM48 domain-containing protein
OsGBP LOC_Os02g04330 No change[29] GBSS-binding protein
FLO7 LOC_Os10g32680 Unknown[155] DUF1388 domain protein
OsHsp70cp-2/cpHSP70-2/
flo11-2/ FLO11

LOC_Os12g14070 Unknown[156] Plastid heat shock protein 70

RSR1 LOC_Os05g03040 Unknown[157] Transcription factor of the AP2/EREBP
family

OsNAC20; OsNAC26 LOC_Os01g01470;
LOC_Os01g29840

Decreased when knock out
together[18]

NAC transcription factor

OsNAC23/ONAC023 LOC_Os02g12310 Decreased when gene knock
out and increased when gene
overexpression[158]

NAC transcription factor

OsNAC24/OsNAC024 LOC_Os05g34310 Unknown[17] NAC transcription factor
OsNAC127 LOC_Os11g31340 Unknown[159] NAC transcription factor
OsNAC129 LOC_Os11g31380 Unknown[159,160] NAC transcription factor
Du13/TL1 LOC_Os06g48530 No change[12] C2H2 zinc finger protein
OsbZIP60/O3/OPAQUE3 LOC_Os07g44950 Decreased[24] Basic leucine zipper transcription factor
OsMADS6/MFO1 LOC_Os02g45770 Increased[161] MADS-box transcription factor
OsMADS29 LOC_Os02g07430 Unknown[162] MADS-box transcription factor
OsMADS14 LOC_Os03g54160 Unknown[21] MADS-box transcription factor

Epigenetics OsROS1/ROS1a/DNG702 LOC_Os01g11900 Increased[163] DNA demethylase
OsCADT1/FLO20/SHMT4 LOC_Os01g65410 Decreased[164] Serine hydroxymethyltransferase

Energy supply FLO10 LOC_Os03g07220 Increased[165] Pentatricopeptide repeat protein
FLO14/OsNPPR3 LOC_Os03g51840 Unknown[166] Pentatricopeptide repeat protein
FLO18 LOC_Os07g48850 Decreased[167] Pentatricopeptide repeat protein
OGR1 LOC_Os12g17080 Unknown[168] Pentatricopeptide repeat–DYW protein
FGR1/OsNPPR1 LOC_Os08g19310 Unknown[169] Pentatricopeptide repeat protein
FLO13/OsNDUFA9 LOC_Os02g57180 Unknown[169] Mitochondrial complex I subunit
FLO22 LOC_Os07g08180 Unknown[170] P-type pentatricopeptide repeat (PPR)

protein
Material transport ESG1 LOC_Os04g46700 Decreased[171] Bcterial-type ABC (ATP-binding cassette)

lipid transporter
OsBT1 LOC_Os02g10800 Unknown[172] ADP-Glucose Transporter
OsBip1/BiP3 LOC_Os02g02410 Decreased[173] Endoplasmic riculum caperone
OsLTPL36 LOC_Os03g25350 Decreased[174] Lipid transfer protein
OsRab5a/gpa1/glup4 LOC_Os12g43550 No change, but pro-glutelin

accumulation[175]
Small GTPase

Sar1a; Sar1b; Sar1c LOC_Os01g23620;
LOC_Os12g37360;
LOC_Os01g15010

Unknown but pro-glutelin
accumulation when three
genes knockdown together[176]

Small GTPase

GPA3 LOC_Os03g61950 Increased and pro-glutelin
accumulation[177]

Regulator of post-Golgi vesicular Traffic

GPA4/GLUP2/GOT1B LOC_Os03g11100 Decreased but pro-glutelin
accumulation[178]

Golgi Transport 1

GPA5 LOC_Os06g43560 Unknown but pro-glutelin
accumulation[179]

Rab5a Effector

OsVPS9A/GPA2/GLUP6/GEF LOC_Os03g15650 Decreased but pro-glutelin
accumulation[180]

Guanine nucleotide exchange factor

GPA6/OsNHX5 LOC_Os09g11450 No change, but pro-glutelin
accumulation[181]

Vacuolar Na+/H+ antiporter

Function unknown SSG4 LOC_Os01g08420 Unknown[182] Unknown function protein
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of  its  expression can increase the contents  of  the four  storage
proteins.  Notably,  the OsAAP6 allele  from  Nanyangzhan
reduced the content of the four storage proteins while improv-
ing the cooking quality of rice.  In 2019, Yang et al.[83] cloned a
major glutelin gene, OsGluA2, which acts as a positive regulator
of  rice  protein  content.  The  higher  the  expression  level,  the
higher  the  glutelin  content  and  the  larger  the  volume  of
protein  body  II.  In  addition,  a  large  number  of  floury  endo-
sperm  genes  may  also  affect  grain  protein  content  and  (Table
1), but previous researchers did not pay enough attention.

 Nitrogen-efficient genes that may affect endosperm
protein content

Rice  grain  nitrogen  is  primarily  derived  from  the  nitrogen
absorbed  from  the  soil.  Therefore,  in  addition  to  the  external
factors,  the  ability  of  rice  to  absorb,  transport,  assimilate,
distribute,  and even reuse  nitrogen may cause  changes  in  the
nitrogen  (protein)  content  of  the  final  grain  (Fig.  3).  In  other
words,  the  nitrogen utilization capacity  of  rice  may also  be  an
internal cause of the difference in grain protein content. There-
fore, attention should be paid to genes related to nitrogen use
efficiency  in  rice,  as  they  may also  be potential  targets  for  the
genetic improvement of rice proteins. In a recent study, Zhang
et  al.  utilized  the  promoter  of  the Nhd1 gene  to  develop  rice
genetic  materials  with  significantly  increased  endogenous
expression  levels[107].  There  were  no  significant  changes
observed in the entire length of growth duration, nitrogen use
efficiency  and  rice  yield  of  the Nhd1 enhanced  line.  However,
the starch granules in the rice showed a more relaxed arrange-
ment,  with  noticeable  reductions  in  amylose  and  protein
content. This resulted in a lower gelatinization temperature and
increased  gel  consistency,  suggesting  that  the  rice  is  easier  to
cook,  digest,  and  has  an  improved  taste.  The GRF4 gene  is  a
positive  regulator  of  plant  carbon  and  nitrogen  metabolism
that can simultaneously promote nitrogen absorption, assimila-
tion,  and transport,  thereby increasing the total  nitrogen level
in  the  grain[108]. LNUE1 gene  encodes  OsAlaAT1,  an  alanine
aminotransferase that regulates nitrogen use efficiency of rice.
lune1 mutant  has  low  nitrogen  use  efficiency,  decreased  total
protein  levels  in  seeds,  and  severe  chalkiness  in  the
endosperm[109]. THP9[110], the first major gene cloned from wild
maize  to  control  the  high  protein  content  and  NUE  of  maize,
encodes asparagine synthetase 4 (ASN4), which is a key compo-
nent of nitrogen metabolism and is responsible for asparagine

synthesis. Transgenic expression of THP9-teosinte in B73 inbred
lines  significantly  increases  seed  protein  content.  The
OsDREB1C[111] gene drives  a  wide range of  transcriptional  acti-
vities  that  regulate  the  photosynthetic  capacity,  nitrogen  use
efficiency, and heading date of rice. Overexpression of the gene
enhanced  the  ability  of  rice  to  absorb  and  transport  nitrogen,
allocate more nitrogen to the grain,  and increase nitrogen use
efficiency by 25.8%–56.6% compared with the control group. In
view  of  the  fact  that  the  NUE  genes  cloned  and  discovered  in
many  studies  currently  only  have  yield  data,  and  relevant
researchers have not yet investigated whether these genes also
affect grain protein content and quality traits, we collected and
summarized  the  relevant  information  on  the  currently  known
NUE  genes  (Table  2).  This  compilation  will  facilitate  further
exploration  of  the  effects  of  these  genes  on  rice  grain  protein
content and quality.

 Advances in genetic improvement of rice protein
content

Rice  protein  content  plays  a  key  role  in  determining  the
cooking and eating quality of rice. A high protein content tends
to make rice grains compact, resulting in poor water absorption
and greatly reducing the taste of rice. Therefore, in production
practice,  reducing  the  protein  content  in  rice  is  helpful  for
improving  the  cooking  and  eating  qualities  of  rice.  Although
research on breeding rice with proper protein content has been
conducted  for  many  years,  there  are  currently  no  effective
methods in production practice to regulate rice protein content
and  improve  the  cooking  and  eating  qualities  of  rice.  Hybrid
breeding is the most commonly used method for quality breed-
ing  worldwide[112].  For  rice  quality  traits  that  exhibit  relatively
simple  genetic  behavior,  germplasm  resources  with  excellent
rice quality traits can be selected and improved by crossbreed-
ing. Some well-known high-quality varieties, such as Koshihikari
from Japan,  Basmati370 from the United States,  IR64 from the
International  Rice  Research  Institute,  and  Daohuaxiang  2  from
China,  are  bred  through  hybridization.  However,  for  protein
content,  a  typical  quantitative  trait  controlled  by  multiple
genes,  the  genetic  basis  is  complex  and  greatly  affected  by
environmental  factors,  making  it  challenging  to  achieve  ideal
improvement using traditional hybrid breeding.

It may be effective to improve the quality traits of rice using
physical  and  chemical  factors  to  induce  variation.  Schaeffer  &
Sharpe  performed  biochemical  mutagenesis  by  increasing  the
contents  of  lysine,  threonine,  and  cysteine  in  the  culture
medium and obtained mutant lines with high lysine content in
rice through cell culture[113,114].

It  is  also  a  good  choice  for  collecting  a  wide  range  of
germplasm  resources,  selecting  varieties  with  specific  traits,
and  improving  them  to  meet  human  needs.  Juliano  et  al.
screened 38 rice varieties with lysine content 0.5% higher than
the average level  of  10,493 rice varieties[115].  Mochizuki  & Hara
used  the  low-gluten  material  NM67  to  breed  a  rice  variety
LGC-1  with  significantly  reduced  absorbable  glutelin,  and  the
content of prolamin in the rice that cannot be absorbed by the
human  body  is  high[116].  By  crossing  LGC-1  with  Wuyujing  3,
combined  with  breeding  for  agronomic  traits  and  molecular
marker-assisted selection, Zhang et al. obtained three new rice
varieties  with  excellent  agronomic  traits  and  glutelin  content
close to that of LGC-1[117].

N assimilate,
reuse

N transport,
distribute, assimilate

N uptake,
assimilate

Grain protein
content

 
Fig. 3    The nitrogen utilization ability of  rice may determine the
protein content of grains.  Each step of nitrogen utilization in rice,
which  includes  absorption,  transportation,  assimilation,  distribu-
tion,  and  reuse,  can  potentially  impact  the  final  grain  protein
content.
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Since  the  1990s,  the  continuous  development  of  molecular
biology  technology  has  created  good  conditions  for  the
genetic  improvement  of  rice  quality,  and  progress  has  been
made  in  the  creation  of  high-quality  rice  materials  and  rice
quality breeding using biotechnology. The application of trans-
genic  technology  to  introduce  exogenous  special  genes  and
express  them  efficiently  may  be  an  effective  strategy  for
increasing the content of essential amino acids in rice. Lee et al.
carried  out  point  mutations  in  the  maize dhps gene  and
connected  the  gene  to  the  promoter  of CsMV35S and GluB-1,
respectively,  to  transform  and  obtain  transgenic  rice,  and  the

lysine  content  in  mature  seeds  was  significantly  increased[118].
Liu et al. linked the endosperm-specific expression promoter to
lysine-rich  foreign  proteins,  which  also  increased  the  lysine
content of seeds by 30%[119]. A sulfur-rich storage protein gene
from  sesame  was  transferred  into  rice  and  expressed,  which
simultaneously  increased  cysteine  and  methionine  in  the
endosperm and total protein content at the same time[120]. The
transfer  of  sulfur-rich  genes  from  sunflower  to  rice  could  also
increase  cysteine  and  methionine  levels  in  the  endosperm;
however,  the  total  protein  content  decreased[121].  Zhou  et  al.
transformed  the  aspartate  aminotransferase  gene  from

Table 2.    Reported nitrogen use efficiency genes that may also affect grain protein content.

Name Gene ID Effect of altered gene function on grain
protein content Annotation

MYB61/qNLA1/qCel1 LOC_Os01g18240 Unknown[183] MYB family transcription factor
OsGRF4/GS2/GL2/PT2/LGS1/GLW2 LOC_Os02g47280 Increased when gene overexpression[108] Growth-regulating factor
TOND1 LOC_Os12g43440 Unknown[184] Unkonwn function protein
OsDEP1/DN1/qPE9-1/qNGR9 LOC_Os09g26999 No change when gene overexpression[185] Gγ subunit
OsTCP19 LOC_Os06g12230 Unknown[186] Class-I TCP transcription factor
SMOS1/shb/RLA1/NGR5 LOC_Os05g32270 Unknown[187] GRAS protein
OsNPF6.1 LOC_Os01g01360 Unknown[188] Nitrate transporter
OsNAC42 LOC_Os09g32040 Unknown[188] No apical meristem protein
OsNR2/qCR2 LOC_Os02g53130 Unknown[189] Nitrate reductase
OsNRT1.1B/OsNPF6.5/qCHR-10 LOC_Os10g40600 Unknown[190] Peptide transporter PTR2
Ghd7/E1/Hd4 LOC_Os07g15770 Unknown[191] CCT motif family protein
ARE1 LOC_Os08g12780 Unknown[192] Chloroplast envelope membrane

protein
OsCCA1/OsLHY/Nhd1 LOC_Os08g06110 Decreased when gene expression

enhanced[107]
MYB transcription factor

Ef-cd Unknown[193] Long noncoding RNA
OsAtg8/OsATG8a LOC_Os07g32800 Increased when gene overexpression[194] Autophagy-related protein
OsPIN9 LOC_Os01g58860 Unknown[195] Auxin efflux transporter
OsNLP4 LOC_Os09g37710 Unknown[196,197] NIN-like protein
OsNLP3 LOC_Os01g13540 Unknown[198] NIN-like protein
OsNLP1 LOC_Os03g03900 Unknown[199] NIN-like protein
OsAAP6/qPC1 LOC_Os01g65670 Increased when gene overexpression[25] Amino acid permease
OsAAP10 LOC_Os02g49060 Decreased when gene knock out[200] Amino acid permease
OsAAP5 LOC_Os01g65660 Unknown[201] Amino acid permease
OsAAP3 LOC_Os06g36180 Increased when gene overexpression[202] Amino acid permease
OsAAP1 LOC_Os07g04180 Increased when gene overexpression and

decreased when gene interference[203]
Amino acid permease

OsAMT1;1/OsAMT1-1 LOC_Os04g43070 Unknown[204] High-affinity ammonium transporter
OsAMT2;1 LOC_Os05g39240 Unknown[205] Ammonium transporter
OsGS1/OsGS1;1/OsGLN1;1/λGS28 LOC_Os02g50240 Decreased when OsGS1;1b

overexpression[206]
Glutamine synthetase

OsGS2/OsGLN2/λGS31 LOC_Os04g56400 Increased when concurrent overexpression
of OsGS1 and OsGS2[207]

Glutamine synthetase

OsAMT1;3/OsAMT1.3/OsAMT1;2 LOC_Os02g40710 Increased when gene overexpression[208] Ammonium transporter
OsGOGAT1 LOC_Os01g48960 Increased when gene overexpression[208] Glutamate synthetase 1
OsAS1/ OsASN1 LOC_Os03g18130 Increased when gene overexpression[209] Asparagine synthetase
OsSHM1/OsSHMT1 LOC_Os03g52840 Unknown[210] Serine hydroxymethyltransferase 1
OsENOD93-1 LOC_Os06g05010 Unknown[211] Early nodulin 93 ENOD93 protein
OsNRT2.3/OsNRT2.3a/OsNRT2.3b LOC_Os01g50820 Unknown[212] High-affinity nitrate transporter
OsNAR2.1 LOC_Os02g38230 Unknown[213] Partner protein for high-affinity

nitrate transport
OsNRT2.1 LOC_Os02g02170 Unknown[214] High-affinity nitrate transporter
OsNRT1.1A/OsNPF6.3 LOC_Os08g05910 Unknown[215] Nitrate transporter
DNR1 LOC_Os01g08270 Decreased when gene knock out[216] Amino transferase
qSBM1 LOC_Os01g65120 Unknown[217] Peptide transporter
OsRBCS2 LOC_Os12g17600 Unknown[218] Small subunit of Rubisco
OSA1 LOC_Os03g48310 Unknown[219] Plasma membrane H+-ATPase
OsDREB1C LOC_Os06g03670 Increased when gene overexpression[111] AP2/EREBP transcription factor
OsPTR6/OsNPF7.3 LOC_Os04g50950 Unknown[220] Peptide transporter
OsMADS1/LHS1/AFO/LGY3/GW3p6 LOC_Os03g11614 Unknown[221,222] MADS-domain transcription factor
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Escherichia coli into rice, which increased the content of amino
acids  and  proteins  in  rice[122].  The OASA1D gene,  encoding  a
feedback-insensitive α-subunit  of  rice  anthranilate  synthase,
was expressed in rice driven by the maize ubiquitin promoter,
which increased the content of tryptophan in seeds[123].

The 3'  untranslated region regulates  gene expression at  the
transcriptional  and  post-transcriptional  levels  by  affecting  the
accumulation,  stability,  and  translation  efficiency  of
mRNA[124−126].  Li  et  al.  evaluated  the  3'-UTRs  of  nine  seed  sto-
rage  protein  (SSP)  genes  as  terminators  to  enhance  glutelin
GluB-3 promoter-driven β-glucuronidase (gus A)  reporter  gene
expression  in  stable  transgenic  rice  lines,  in  which  six  3'-UTRs
significantly  enhanced  the  activity  of  the GluB-3 promoter
without altering its tissue specificity[127].  Yang et al.  found that
transgenic  seeds  using  the  3'  UTR  of GluB-1 as  the  terminator
had  more  accumulation  of  the  target  expression  protein  than
transgenic  seeds  using  the  Nos  terminator[128].  These  results
indicate that  it  is  feasible  to  regulate the key genes of  protein
content at the transcription and translation levels using genetic
engineering.

In  recent  years,  the  popularity  of  gene-editing  technology
has provided an opportunity to improve the protein content of
rice.  Yang  et  al.  used  Crispr-cas9  technology  to  edit  eight
members of the glutelin gene family and obtained seven differ-
ent  homozygous  mutation  types,  including  double,  triple,
quadruple, quintuple, and sextuple mutants. Notably, type II, III,
IV,  V,  and  VI  mutants  with  moderately  reduced  grain  protein
content significantly increased the rice taste value, improved its
appearance,  and  decreased  hardness[57].  Similarly,  Chen  et  al.
designed  three  sgRNAs  targeting  nine  glutelin  genes  and
generated  nine  T-DNA-free  homozygous  editing  lines  that
exhibited  reduced  glutelin  content  compared  with  the  wild
type. These low glutelin lines all showed agronomic traits similar
to  the  wild  type,  including  yield  components  and  viscosity
characteristics[129].

 Prospects for the future

The  cooking  and  eating  qualities  of  rice  may  differ  among
different individuals. Thousands of rice varieties vary in cooking
taste,  particularly  in  texture.  This  highly  significant  trait  in  rice
has attracted the attention of scientists for nearly three-quarters
of a century and has only recently begun to be fully understood.
An increasing number of studies have shown that grain protein
is the most important factor affecting cooking and eating quality
after  starch.  However,  more research is  needed to  fully  under-
stand  the  relationship  between  grain  protein  and  rice  quality,
as well as to develop strategies for optimizing it to meet human
dietary needs. Therefore, it can be strengthened in the following
aspects:

1.  Enhancing  the  genetic  mechanism  of  protein  content  in
rice.

Rice  protein  content  is  a  typical  quantitative  trait.  Although
hundreds  of  QTLs  affecting  rice  grain  protein  content  have
been  identified,  only  two  genes  regulating  protein  content
have  been  cloned,  both  of  which  are  positive  regulators  of
protein content. Further new genes regulating protein content
in rice need to be further explored. The formation of rice storage
proteins  is  a  complex  process  involving  nitrogen  absorption,
transport, assimilation, distribution, reuse, amino acid synthesis,

amino acid modification, amino acid transport, protein synthe-
sis,  transport,  modification,  storage,  and  degradation.  The
molecular genetic mechanisms of each step need to be further
analyzed.

2.  Strengthen  study  on  the  mechanism  of  the  effect  of
protein on eating quality.

A  series  of  physical  and  chemical  changes  occur  in  rice
during cooking, including water absorption of rice grains, gela-
tinization  of  starch,  dissolution  of  starch  after  endosperm  cell
breakage,  and  formation  of  adhesion  layers.  In  this  process,
whether the protein itself has an indirect effect on the taste or a
direct effect on the water absorption of rice grains, starch gela-
tinization, and expansion, the type of extract, and the thickness
of  the  adhesive  layer,  the  specific  mechanism  needs  to  be
further  explored.  In  addition,  the  interactions  among  the  pro-
teins, starch, and lipid require further clarification. In summary,
an  in-depth  study  on  the  relationship  between  rice  protein,
cooking,  and  eating  quality  will  provide  a  scientific  basis  for
breeders to select and cultivate varieties with superior tastes.

3.  Rational  application  of  nitrogen  fertilizer  and  breeding  of
varieties with high nitrogen efficiency.

Although  nitrogen  fertilizer  is  commonly  used  to  increase
rice  yield,  its  inefficient  use  not  only  causes  environmental
pollution  but  also  results  to  an  increase  in  protein  content  in
rice. This excessive use of nitrogen fertilizer leads to the deteri-
oration  of  cooking  and  eating  quality  of  rice.  Exploring  more
nitrogen-efficient genes and analyzing the mechanism of their
influence on protein content in rice will help cultivate nitrogen-
efficient varieties. This, in turn, will lead to synergistic improve-
ment  in  rice  yield  and  quality,  with  minimal  nitrogen  fertilizer
usage.
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