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Abstract
Secretory and transmembrane proteins start to synthesize and fold in the endoplasmic reticulum (ER). When the balance between protein folding

demands and protein folding capability in the ER is broken, a well-conserved process known as the unfolded protein response (UPR) is induced to

restore protein homeostasis. The grain quality of rice (Oryza sativa L.), one of the most important crops that feed more than half of the world’s

population, is determined by the accumulation of nutritional components, such as seed storage proteins (SSPs) and starches in the grains. Rice

SSPs  are  synthesized  in  the  secretory  pathways  of  endosperms  and  their  biosynthesis  is  subject  to  complex  regulation.  Here,  we  focus  on

summarizing recent advances in our understanding of the role of UPR in grain development, especially in SSP biosynthesis in rice, and provide

future perspectives on unanswered questions on improving grain quality through modulating UPR in rice.
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 Introduction

Protein  homeostasis  (proteostasis)  in  the  endoplasmic  reti-
culum (ER) is important not only for plant growth and develop-
ment,  but  also  for  adaptations  to  various  environmental
challenges[1].  When  the  protein  folding  demands  exceed  the
folding  capability  in  ER,  the  proteostasis  status  becomes  dis-
rupted.  To  overcome  this  imbalance,  the  unfolded  protein
response  (UPR)  is  triggered  to  decrease  the  accumulation  of
unfolded  and  misfolded  proteins  in  the  ER  through  activating
downstream  target  genes[2].  Two  canonical  UPR  pathways  are
identified in plants[3,4],  and their  roles in responses to environ-
mental  stresses  as  well  as  in  growth  and  development  have
been extensivly studied over the past 30 years[5].  However, the
role  of  UPR pathways in  grain development in  cereals  has  just
begun to emerge.

The endosperms of cereal crops such as rice (Oryza sativa L.)
account  for  most  of  the  grain  weight  and  are  major  resources
for human food and animal feed[6]. Endosperm development is
a  complex process,  involving a  series  of  processes  such as  cell
division  and  differentiation,  transport  and  accumulation  of
photosynthetic products, and enrichment of stored substances.
Among the storage products in the rice endosperm, starch and
seed  storage  proteins  (SSPs)  are  the  major  nutritional  com-
ponents,  both  of  which  are  important  for  nourishing  the
embryo during embryogenesis and seed germination[6].

SSPs  are  synthesized  and  folded  mainly  in  the  ER  in  the
secretory  pathway.  As  early  as  1991,  it  was  found  that  an
increase of luminal binding protein (BiP) protein, specifically in
the  endosperm  of  maize floury-2 (fl2)  mutant,  leads  to  the
constitutive  activation  of  UPR  and  a  starchy  endosperm
phenotype with increased lysine content and reduced amount

of  prolamin  (zein)  proteins[7].  Later  it  was  found  that  the
accumulation of  non-processed 24-kD ɑ-zein protein in the fl2
mutant  is  responsible  for  the  observed  floury  phenotype,  and
overexpression of a mutated ɑ-zein protein with non-cleavable
signal  peptide  reproduces  the fl2 phenotype  in  transgenic
maize[8].  Mutant analysis demonstrated that accumulation of a
mutated 19-kD ɑ-zein also interferes with the proper assembly
of  zeins  into  protein  bodies  and  upregulates  several  UPR
downstream  genes  in  the  endosperms  of  the  maize fl4
mutant[9].  These results indicate that proper folding of storage
proteins in the ER is critical for grain quality.  In this review, we
summarize  the  canonical  UPR  pathways  in  rice,  and  focus  on
the  recent  advances  on  the  understanding  the  role  of  UPR  in
SSP accumulation in rice grains, and identify some unanswered
issues related to UPR and rice grain quality.

 The major UPR pathways in rice plants

ER  is  the  key  organelle  for  processing  and  folding  nascent
polypeptide chains, and forms complex spatial structures in the
secretory pathway. Protein folding in the ER is error-prone, and
a  set  of  quality  control  steps  have  evolved  to  minimize
misfolded protein accumulation in the ER[1]. Among them, UPR
pathways are activated to increase protein folding capacity and
decrease  misfolded  protein  accumulation[10].  The  principles  of
UPR pathways are well conserved among eukaryotic organisms
from yeast to worms, plants, flies and humans, but the protein
sequences  of  some  UPR  components  are  different[5].  In  the
model  plant  Arabidopsis,  at  least  two  UPR  pathways  are
identified,  the  AtS2P-AtbZIP28  pathway  and  the  AtIRE1-
AtbZIP60  pathway,  in  both  of  which  membrane-associated
transcription factors are involved[4]. Generally, the basic domain
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leucine  zipper  (bZIP)  protein  AtbZIP28  resides  in  ER
membranes  in  a  dormant  form,  with  its  C-terminal  domain
binding  to  the  molecular  chaperones  BiPs  in  ER  lumen[11−13].
Upon  accumulation  of  misfolded  proteins  in  ER,  AtbZIP28  is
dissociated  from  AtBiPs  and  translocated  from  ER  to  Golgi,
where it is subjected to proteolysis executed by Golgi-localized
site-specific  proteases,  such  as  SITE-2  PROTEASE  (AtS2P)[14−17].
Then the activated N-terminal cytosolic part of AtbZIP28 having
the DNA-binding domain and transcriptional activation domain,
enters the nucleus to upregulate UPR downstream genes[18]. In
contrast,  AtbZIP60  is  activated  by  unconventional  splicing  de-
pending on the ER membrane-associated INOSITOL-REQUIRING
ENZYME 1A/1B (AtIRE1A/1B),  of which the N-terminal domains

are  located  in  the  ER  lumen  sensing  the  accumulation  of
misfolded  proteins  in  the  ER[19].  Under  normal  conditions,
AtbZIP60  has  a  transmembrane  domain  that  resides  in  the  ER
membranes[20].  Upon  ER  stress,  23  bases  in  the  double  stem-
loops  of AtbZIP60 mRNA  are  spliced  out  by  the  activated
AtIRE1A/1B, resulting in a reading frame shift and production of
a  newly  translated  AtbZIP60  without  any  obvious  transmem-
brane domain[21].  AtbZIP60 is then translocated to the nucleus
to  activate  UPR  downstream  genes[20].  Both  AtbZIP28  and
AtbZIP60  are  required  for  the  induction  of  UPR  genes  and  ER
stress tolerance in Arabidopsis[22,23].

The  UPR  pathways  are  well  conserved  in  rice  plants[24]

(Fig.  1a).  Briefly,  OsbZIP60/OsbZIP16  is  the  ortholog  of

a

b

 
Fig. 1    Coordination of SSP and starch biosynthesis by the UPR pathways in rice endosperm. (a) Regulation of SSP and starch accumulation.
Nascent  polypeptides  of  SSPs  with  N-terminal  signal  peptide  sequences  are  folded  in  the  ER  lumen  (1),  the  properly  folded  prolamins  are
secreted and matured in PBI (2), while properly folded proglutelins and ɑ-globulin are exported from ER into Golgi via COPII vesicles and then
to PBII mediated by DVs and PVCs (3). In contrast, proteins related to starch biosynthesis are transported either from Golgi to plastid (4) or from
cytosol  to  plastid  (5)  to  regulate  starch  biosynthesis.  Two major  UPR pathways,  bZIP60-S2P and bZIP50-IRE1,  are  activated when ER  protein
homeostasis is disrupted in rice plants. Under such conditions, the ER membrane-associated transcription factor bZIP60 is disassociated with
the chaperones BiPs, which results in the ER-to-Golgi transporting and processing of bZIP60 by Golgi-localized proteases such as S2P (6), the
activated bZIP60 enters the nucleus and induces the expression of UPR downstream genes as well as SSP and starch biosynthesis-related genes
(6).  On  the  other  hand,  instead  of  encoding  an  ER  membrane-associated  transcription  factor  bZIP50,  the bZIP50 mRNA  is  unconventionally
spliced  by  the  activated  ER  protein  IRE1,  leading  to  the  open  reading  frame  shift  and  a  newly  translated  protein  without  any  obvious
transmembrane domain (7). The activated bZIP50 enters the nucleus to play a similar role as bZIP60 (7). Some other transcription factors, such
as bZIP58 and NAC20/26, regulate the expression of genes involved in both SSP and starch biosynthesis (8). For protein abbreviations, see the
text. (b) Phenotypic analysis. Wild-type (ZH11), single mutant of bZIP50 (bzip50) or bZIP60 (bzip60), and their double mutant (bzip50 bzip60) are
grown under normal growth conditions and their dehulled seeds are photographed at maturity.
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AtbZIP28  in  rice,  which  is  activated  presumably  through
proteolysis[25].  In  contrast,  OsbZIP50/OsbZIP74  is  the  rice
ortholog  of  AtbZIP60,  it  is  activated  by  OsIRE1-dependent
mRNA  unconventional  splicing[26,27].  The  expression  of  OsIRE1
is  negatively  regulated  by  SQUAMOSA  PROMOTER-BINDING
PROTEIN-LIKE  6  (SPL6),  and  down-regulation  of OsSPL6 results
in  hyperactivation  of  UPR  and  cell  death  in  rice  panicles[28].
Both  OsbZIP50  and  OsbZIP60  recognize  the  pUPRE-II cis-
element  (GATGACGCGTAC),  while  OsbZIP60  specifically  binds
to  the  pERSE-I cis-element  (CCAAT-N10-CACG)[25].  OsbZIP50  is
also  activated  under  heat  stress  conditions  and  involved  in  a
regulatory circuit  together  with rice NAC with transmembrane
motif 1 (NTM1)-like 3 (OsNTL3)[27,29,30].

 The biosynthesis of starch and storage proteins in
rice

The  endosperm  is  an  important  energy  storage  organ  of
cereals  and  one  of  the  important  food  sources  for  human
beings.  Starch  consists  of  more  than  80%  of  the  mature  rice
endosperm,  and  SSPs  contain  approximately  8%–10%  of  the
dry  weight  of  grains.  There  are  two  types  of  starch  in  rice
endosperms, the linear amylose (AM) (10%–30%) and branched
amylopectin  (AP)  (70%–90%)[6].  In  contrast,  rice  SSPs  are
grouped into four categories based on their  solubility:  glutelin
(acidic  or  basic  solution-soluble),  prolamine  (alcohol-soluble),
globulin (salt-soluble), and albumin (water-soluble)[31]. Both the
total  amount  and  the  ratio  between  starch  and  SSPs  are
important for the seed quality of rice.

The metabolites  of  starch in  endosperm is  the key point  for
endosperm  development  and  is  a  complex  and  coordinated
process  involving  a  series  of  key  enzymes  (Fig.  1a),  which
include  adenosine  diphosphate  glucose  pyrophosphorylase
(AGPase),  granule  bound  starch  synthase  I  (GBSSI),  soluble
starch  synthases  (SSI,  SSIIa,  SSIIIa,  SSIVa),  as  well  as  starch
branching enzymes (SBEI, SBEIIa, SBEIIb), isoamylases (ISAI, ISAII
and ISAIII), pullulanase (PU), and starch phosphorylase (Pho)[32].
Some  of  these  enzymes  interact  with  each  other  to  form
heteromeric  protein  complexes  and  are  subject  to  post  trans-
lational  modifications[33].  The  disruption  of  genes  encoding
these  enzymes  impairs  endosperm  development,  resulting  in
the  altered  appearance  of  seeds  or  changed  characteristics  of
starch.  Some  of  those  mutants  showed  floury  endosperms
while  the  others  displayed  chalky  endosperms[34−37].  Recently,
several  transcript  factors  have  been  found  to  regulate  starch
synthesis  in  rice.  For  example,  rice  nuclear  factor  Y  subunit  B1
(OsNF-YB1) activates the expression of genes involved in starch
accumulation either alone or together with other transcription
factors such as RICE STARCH REGULATOR 1 (RSR1), OsNF-YC10,
OsNF-YC12,  rice  basic  helix-loop-helix  144  (OsbHLH144)  and
OsMADS14[38−42].

Glutelin and prolamine are two major SSPs in rice grains, and
glutelin  is  more  nutritious  than  other  SSPs  due  to  its  relative
high lysine content and digestibility.  Rice SSPs are synthesized
in  the  secretory  pathway  starting  from  the  rough  ER,  and  are
then transported and deposited into the protein body I/II (PB-I/
PB-II).  The  biosynthetic  pathways  of  rice  SSPs  have  been
recently  reviewed  and  will  not  be  covered  in  the  current
paper[43].  Briefly,  genes  encoding  rice  SSPs  are  spatially  and
temporally  expressed  during  endosperm  development  under
the  control  of  several  transcription  factors,  leading  to  unique

protein  body  formation  and  SSP  deposition  (Fig.  1a).  The
Opaque2  (O2)-like  bZIP  transcription  factor  RICE  SEED  bZIP1
(RISBZ1, also known as OsbZIP58), and the RICE P BOX BINDING
FACTOR  (RPBF)  in  the  DNA-BINDING  WITH  ONE  FINGER  (DOF)
transcription  factor  family  are  two  major  transcription  factors
for  regulating  SSP  genes  via  recognizing  the  GCN4  motif
[TGA(G/C)TCA]  and  P  box  (TGTAAAG),  respectively[44,45].  Inte-
restingly, RISBZ1(OsbZIP58) also controls starch biosynthesis by
binding  to  the  promoter  of  six  genes  involved  in  starch
synthesis,  i.e. AGP-like  3 (AGPL3),  Waxy (Wx),  SSIIa,  SBE1,  SBEIIb,
and ISAII, to regulate their expression[45].

 The function of UPR in rice storage protein
accumulation

UPR could be induced during endosperm development due
to  the  increased  demand  of  SSP  folding  in  the  ER.  The  key
chaperone  gene  involved  in  folding  of  secretory  proteins,
OsBiP1,  is  predominantly  expressed  during  rice  seed  matura-
tion,  either  suppression  or  over-expression  of OsBiP1 not  only
resulted  in  altered  intracellular  structure  of  endosperm  cells,
but also affected SSP and starch accumulation[24,46].  OsERdj7 is
an ER-resident J-domain-containing DnaJ protein and acts as a
co-chaperone  for  Hsp70.  Suppressing  the  expression  of
OsERdj7 in rice endosperms with RNAi technology reduces SPP
accumulation[47].  Further, mutation of a rice protein disulphide
isomerase-like 1-1 (OsPDIL1-1) gene involved in protein folding
in the ER, triggers the expression of many UPR genes in the rice
endosperm  and  produces  small  grains  with  floury
endosperms[48].  These  suggest  that  UPR  is  associated  with
endosperm  development  in  rice  grains,  which  is  essential  for
SSP accumulation and rice endosperm development.

As  mentioned  above,  OsbZIP60  and  OsbZIP50  are  two
important UPR regulators in rice. Recently, Yang et al. reported
that  knock-out  mutation  of OsbZIP60 causes  high  grain  chal-
kiness  and  produces  aberrant  structure  with  storage
substances, while knock-out mutation of OsbZIP50 showed less
chalkiness[49].  We  generated  the  double  loss-of-function
mutant  plant  osbzip60  osbzip50 by  crossing  the  respective
single  mutants[29],  and  the  seeds  of  the  double  mutant  are
extremely  shrunken and chalky  (Fig.  1b),  i.e.  the phenotype of
the  double  mutant  is  much  more  severe  than  the  respective
single  mutants  while  the  vegetative  growth  of  these  plants
appears  normal  under  standard  growth  conditions.  The
osbzip60 mutant  grains  have  reduced  amylose  and  protein
content,  and  several  genes  related  to  grain  chalkiness  and
protein  synthesis  such  as GLUTELIN  PRECURSOR  OVERACCU-
MULATION 3  (GPA3), FLOURY  SHRUNKEN  ENDOSPERM  1 (FSE1),
FLOURY ENDOSPERM 7 (FLO7), CHALKINESS 5 (Chalk5), OsNF-YB1
and rice PYRUVATE KINASE 2 (OsPK2), are down-regulated in the
osbzip60 mutant[49].  These  results  strongly  support  that  UPR is
critical  for  starch  and  SSP  accumulation  in  rice  grains,  which
directly determines the quality of rice grains.

The UPR operates to minimize the accumulation of unfolded
proteins in the ER by increasing the protein-folding and degra-
dation capacity of the ER. Many genes involved in endoplasmic
reticulum  associated  degradation  (ERAD)  are  up-regulated
during  the  UPR  in  plants[1].  The  HMG-CoA  REDUCTASE
DEGRADATION 1 (HRD1) complex is one of the most important
ERAD machineries in plants, and it contains OSTEOSARCOMA 9
(OS9) and HRD3, which recognizes misfolded ERAD clients and
the E3  ligase  HRD1 that  polyubiquitinates  the  ERAD clients[50].

UPR and rice grain quality  
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Endosperm-specific suppression of OsHrd3 reduces the level of
polyubiquitinated  proteins  and  enhanced  UPR  in  rice  endo-
sperms,  resulting  in  deformed  PB-I  formation  with  aberrant
aggregates  of  prolamin[51].  Rice  DERLIN-LIKE  PROTEIN  1
(OsDER1),  a conserved subunit of the HRD1 complex in plants,
interacts  with  OsHRD1,  OsHRD3,  and  the  AAA-ATPase
OsCDC48[52].  Suppression of OsDER1 results in floury, shrunken
seeds in rice[52].  Therefore, ERAD is tightly associated with UPR
to regulate grain development in rice plants.

 Conclusions and prospects

Grain chalkiness affects the appearance, milling, cooking and
eating quality of rice grains; therefore, it  is an undesirable trait
for  rice  production.  Intriguingly,  both  overexpression  and
mutation  of OsbZIP60 leads  to  chalky  endosperms[49].  This
raised the question as to what is the optimial UPR level for ideal
endosperm development. Interestingly, there are natural varia-
tions  in  the  promoter  and  coding  regions  of OsbZIP50 and
OsbZIP60[49].  Thus,  in  the  future  it  will  be  worthy  to  try  to
optimize UPR level for breeding high quality rice. In addition, a
prime-editing-library-mediated  saturation  mutagenesis  me-
thod  is  recently  developed  and  successfully  used  to  generate
value-added rice plants[53]. Therefore, direct evolution of genes
encoding  key  UPR  regulators  with  this  new  technology  are
needed in the future for rice grain quality improvement.

Starch  is  stored  in  the  starch  granule,  which  has  a  complex
structure  with  a  hierarchical  order  composed  of  two  distinct
types  of  glucose  polymer,  i.e.  amylose  and  amylopectin.  In
contrast,  SSP  biosynthesis  starts  from  ER,  passes  through  ER-
Golgi-protein  storage  vacuoles  (PSVs)  routes,  or  directly  buds
off ER, and maturated in PB-I or PB-II. One unanswered question
is how starch biosynthesis and SSP accumulation in rice grains
are  coordinated  during  endosperm  development.  Previous
work  has  shown  that  OsNAC20  and  OsNAC26  functions  re-
dundantly  in  starch  and  SSP  accumulation  through  activating
the expression of α-globulin, GluA1, GluB4/5, Pu, SSI,  and 16  kD
prolamin[54].  Recently,  OsbZIP60  has  been  demonstrated  to
regulate genes related to grain chalkiness and protein synthesis,
and  OsbZIP50  is  activated  in  the osbzip60 mutant  plants[49].
Future  studies  on  the  starch  and  SSP  biosynthesis  in  the
osbzip60  osbzip50 double  mutant  plants  is  needed  to  further
understand  how  the  biosynthesis  of  starch  and  SPPs  is
balanced in rice endosperms.

In  conclusion,  lines  of  evidence  support  that  proper  folding
of  ER  proteins  are  required  for  seed  development  and  grain
quality in rice. ER protein homeostasis safeguarded by the UPR
pathways  plays  critical  roles  in  the  coordination  of  starch  and
SSP accumulation in rice endosperm.
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