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Abstract
Seed  germination  is  a  key  process  in  the  life  cycle  of  seed  plants.  The  initiation  of  seed  germination  requires  the  activity  of  specific  internal

signaling molecules, such as hormones and reactive oxygen species (ROS), and is dependent on external environmental factors, such as water,

temperature,  and light.  Seed germination is a complex trait  that is  regulated by multiple factors,  including transcript,  protein,  and metabolite

levels. This review highlights current knowledge relating to the regulatory roles of hormones, ROS, small RNAs, epigenetic modifications, post-

translational modifications, and environmental cues on seed germination, mainly focusing on Arabidopsis and rice. The review on the molecular

regulation of seed germination contributes to the improvement of crop seed quality using bio-breeding approaches.
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 Introduction

Seeds are vital for angiosperm and gymnosperm survival and
dispersion[1]. Seed germination is the basis for crop production.
Seed germination refers  to  the  process via which  viable  seeds
transition from a dormant state to an active physiological one,
leading  subsequently  to  the  development  of  a  plant  with
normal  roots,  stems,  and  leaves  under  appropriate
conditions[2−4].  Physiologically,  seed  germination  is  character-
ized by the absorption of water, which initiates the metabolism
of reserves and energy in seeds. Molecularly, the expression of
certain genes is activated, which instigates a series of reactions
that lead to embryo growth[5].

Seed  germination  is  influenced  by  internal  and  external
factors[6,7].  Hormones  such  as  abscisic  acid  (ABA),  gibberellin
(GA), auxin (AUX), brassinosteroid (BR), cytokinin (CTK), ethylene
(ET),  and jasmonate (JA) are the key internal factors regulating
seed germination[8−13].  Post-translational  modifications (PTMs),
such as phosphorylation[14] and ubiquitylation[15], are critical for
seed  germination,  directly  or  indirectly  affecting  protein  local-
ization,  stability,  and  activity[16,17].  Meanwhile,  external  factors,
such as light, temperature, and water, are the main signals that
seeds can perceive for determining the timing of seed germina-
tion[18−22]. Here, the current knowledge relating to the regulatory
roles  of  hormones,  reactive  oxygen  species  (ROS),  small  RNAs,
epigenetic  modifications,  PTMs,  and  environmental  cues  in
seed  germination  concentrating  primarily  on Arabidopsis and
rice were summarized.

 Seed dormancy and germination

 Seed dormancy
Seed dormancy is a temporary intrinsic block to germination

even  under  favorable  environmental  conditions[21].  Seed

dormancy  is  established  during  seed  maturation[23] and  seed
dormancy is gradually released during after-ripening or stratifi-
cation stages[24]. Seed dormancy is an effective way to regulate
the  optimal  spatiotemporal  distribution  of  seed  germination
and  seedling  formation[25].  The  transition  between  dormancy
and germination is  mainly  precisely  regulated by  endogenous
hormones  ABA  and  GA,  in  which  ABA  positively  regulates
dormancy  induction  and  maintenance,  while  GA  promotes
seed germination[26].  Other  plant  hormones,  such as  auxin,  JA,
salicylic acid (SA), and CTKs, are involved in seed dormancy and
germination via the ABA or GA pathways[27].

 Seed germination
Seed germination begins with imbibition, and can be divided

into three phases, namely, a rapid imbibition phase (Phase I), a
lag phase (Phase II), and a phase in which active water uptake is
resumed (Phase III)[28]. In Phase I of seed germination, the seed
absorbs water rapidly, which immediately initiates the repair of
cellular structures,  such as cell  organelles,  and the reactivation
of  biochemical  processes,  such  as  enzyme  activities[29].  When
hydration levels exceed 60%, seeds enter the lag phase (Phase
II),  in which metabolism becomes active and the seed enters a
new  physiological  state.  Embryonic  cells  grow  rapidly,  and
active substances, such as sugars and amino acids, accumulate
in  large  amounts,  while  cell  wall  acidification  promotes  the
loosening  of  cell  wall  polymers[6,30].  Concomitantly,  H+-ATPase
activity  is  enhanced,  which  further  promotes  seed  water
absorption  (Phase  III)  and  weakens  the  restrictions  on  the
development  of  embryonic  tissues  (such  as  endosperm),
ultimately  causing  embryonic  axis  elongation,  the  breaking  of
radicle through the seed coat, and the completion of germina-
tion[31]. During seed germination, seed nutrients, such as lipids,
proteins,  and starch,  are decomposed and utilized to maintain
the early growth of the seedling until it reaches autotrophy[28].
Although  the  characteristics  of  seed  germination  have  been
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widely investigated, the key events that determine seed germi-
nation remain unclear.

 Hormones regulate seed germination

 ABA signaling pathway
The  hormone  ABA  promotes  seed  dormancy  and  inhibits

germination[32,33].  Several  genes  regulate  seed  germination  by
influencing ABA content (Fig. 1). The RNA-binding protein RZ-1
and  polycomb  repressor  complex  2  (PRC2)  can  synergistically
silence the expression of ABA biosynthesis enzyme gene 9-CIS-
EPOXYCAROTENOID  DIOXYGENASE  6 (NCED6),  thereby  promot-
ing  seed  germination  in Arabidopsis,  but  promote  seed
dormancy  in  rice[34].  The  bHLH  transcription  factors  Seed
Dormancy  6  (SD6)  and  INDUCER  OF  CBF  EXPRESSION2  (ICE2)
directly  regulate  the  expression  of  the  ABA  degradation  gene
ABA8OX3,  while  OsbHLH048  of  rice  directly  regulates  the
expression  of  the  ABA  synthesis  gene NCED2 during  rice  seed
germination[35].  Transcription  factor OsGAMYB activates  the
expression  of  trehalose-6-phosphate  phosphatase  1  (OsTPP1),
leading to an increase in trehalose content; this then enhances
the  expression  of  the  ABA  catabolic  genes OsABA8OX3 and
OsABA8OX2, resulting in the promotion of seed germination[36].
Mitogen-activated protein kinase 11 (MAPK11) negatively regu-
lates tomato seed germination by upregulating the expression
of NCED1 and  affecting  SNF1-RELATED  PROTEIN  KINASE
SnRK2.2  phosphorylation,  thus  regulating  ABA  signal
transduction[37].

ABSCISIC ACID INSENSIVE5 (ABI5) is a key component of the
ABA  signaling  pathway  during  seed  germination  (Fig.  1).  The
VQ  motif  (FxxxVQxxTG)  proteins  VQ18  and  VQ26  interact  with
ABI5  and  negatively  modulate  its  transcriptional  activity,
thereby  promoting Arabidopsis seed  germination[38].  The
histone-binding  protein  ENAP1  regulates  H3K9  acetylation,

which  mediates  the  positive  feedback  regulation  of  ABI5  and
inhibits Arabidopsis seed  germination[39].  INDUCER  OF  CBF
EXPRESSION1 (ICE1) interacts with ABI5 and negatively regulates
the  response  to  ABA  during  seed  germination  in Arabidopsis;
and  ICE1  also  interacts  with  and  antagonizes  the  activities  of
DELLA proteins, which are positive regulators of ABA signaling.
Thus,  ICE1  establishes  appropriate  ABA  signaling  by  counter-
acting  ABI5  and  DELLA  proteins  activity[40].  ABI5  also  interacts
with  the  circadian  clock  proteins  PSEUDO-RESPONSE  REGULA-
TOR5 (PRR5)  and PRR7,  thereby stimulating ABA signaling and
inhibiting seed germination in Arabidopsis[41].  C-type Cyclin1; 1
(CycC1;  1),  another  interacting  partner  of  ABI5,  inhibits  the
transcription-promoting  activity  of  ABI5  by  occupying  the
promoters  of  ABI5  target  genes,  thereby  stimulating  seed
germination in Arabidopsis[42].

 GA signaling pathway
The  components  of  GA  signaling  pathway  include  the  GA

receptor  GIBBERELLIN  INSENSITIVE  DWARF1  (GID1),  the  DELLA
proteins,  and  the  F-box  proteins  GID2,  SLEEPY  1  (SLY1)  in
Arabidopsis[43].  The  GA-receptor  GID1  perceives  bioactive  GA
and  undergoes  conformational  changes  that  enable  the  inter-
action between GID1 and DELLAs in Arabidopsis[44]. When GA is
present  in  large  quantities,  GA  binds  to  a  nuclear  receptor
GID1A and form a complex, which promotes the ubiquitination
and  degradation  of  DELLA  proteins  mediated  by  the  F-box
ubiquitin  ligase SLY1 and then promotes  seed germination[45].
Mutations in the SLY1 lead to increased seed dormancy, and a
triple  knockout  of  AtGID1  leads  to  germination  failure
(Fig. 1)[46].

In Arabidopsis,  the  DELLA  subfamily  of  GRAS  regulatory
genes  consists  of  GA  INSENSITIVE  (GAI),  REPRESSOR  OF  ga1-3
(RGA),  RGA-LIKE1  (RGL1),  RGL2,  and  RGL3[47].  In  which,  RGL2
functions  as  main  signaling  intermediate  involved  in  GA-
mediated  seed  germination[48].  RGL2  negatively  regulates
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Fig. 1    Hormones regulate seed germination. ABA, abscisic acid; GA, gibberellins; ETH, Ethylene; AUX, auxins; JA, jasmonic acid. BR, brassinolid.
Arrows and lines with slanted dashes indicate positive and negative effects, respectively.
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seed  germination  in  response  to  GA,  and  that  RGL1,  GAI,  and
RGA do not[49]. However, the function of RGL2 can be enhanced
by  GAI,  RGA,  and  RGL1[50].  A  mutation  in  RGL2  can  rescue  the
non-germinating  phenotype  of  the  gibberellin-deficient
mutant[51].  CONSTITUTIVE  PHOTOMORPHOGENIC  1  (COP1)
positively  regulates  seed  germination  by  directly  interacted
with RGL2[48], increasing the expression of downstream regula-
tors (such as GASA6 and EXPA1) of seed germination[51]. Mean-
while,  GAI  and  RGA  can  also  be  degraded via the  COP1/
SUPPRESSOR  OF  PHYA-105  (SPA)  complex[52].  In Arabidopsis,
SMAX1 interacts with the DELLA proteins RGL1 and RGL3, thus
enhances the transcriptional activity of SMAX1 and inhibits GA
biosynthesis  key  enzyme GIBBERELLIN  3-oxidase  2 (GA3ox2)
gene  expression,  which  inhibit  seed  germination  under  weak
light conditions[53].

In  rice,  the  DELLA  protein  is  identified  as  SLENDER  RICE1
(SLR1), which has significant homology with RHT-1Da in wheat,
D8  in  maize,  and  GAI  and  RGA  in Arabidopsis[54].  When  GA  is
present,  the  GA-GID1-SLR1  complex  is  formation,  which  facili-
tates  the  degradation  of  SLR1,  and  then  the  released  GAMYB
from  SLR1  promote  the  gene  expression  of α-amylase[27].  In
addition,  stress-associated  protein  8  (OsSAP8)  interacts  with
lesion  simulating  disease  1-like  1  (OsLOL1)  and  OsbZIP58  to
reduce  the  binding  of  OsbZIP58  to  the  GA  biosynthesis  gene
KAURENE  OXIDASE  2  (KO2)  promoter,  which  promotes  the
biosynthesis of GA and, consequently, the activation of amylase
expression and seed germination[55]. GERMINATION DEFECTIVE
1  (OsGD1)  binds  to  the  promoter  of  the LEC2/FUS3-like gene
OsLFL1 and activates its expression, which represses the expres-
sion  of  GA 2-oxidase  3  (GA2ox3)  and induces  that  of GA20ox1,
OsGA20ox2,  and OsGA3ox2,  thereby influencing seed germina-
tion in rice[56].

 Other hormones
BR and ethylene pathways also promote seed germination in

plants (Fig. 1)[57,58]. It has been found that blocking BR signaling
delays  seed  germination  and  inhibits  embryonic  growth.
BRASSINAZOLE-RESISTANT  1  (BZR1),  a  key  regulatory  factor  in
the BR signaling pathway, upregulates α-amylase expression by
binding  to  the  promoter  of  alpha-Amylase  3D  (RAmy3D),  thus
influencing  starch  degradation  in  the  endosperm  and  subse-
quently  promoting seed germination[59].  Similarly,  seed germi-
nation  is  promoted  by  the  ethylene  pathway  in  plants[58].  The
production of ethylene occurs immediately after seed imbibition
and increases as germination progresses. Moreover, the peak of
ethylene  release  coincides  with  the  emergence  of  the  radicle
through  the  seed  coat[60−62].  The  direct  precursor  of  ethylene,
1-aminocyclopropane-1-carboxylic  acid  (ACC),  promotes  seed
germination  in  many  species,  such  as  lettuce,  sunflower,
chrysanthemum,  chickpea,  amaranth,  and  beet  (Fig.  1)[63−67].
Low temperature, GA, nitric oxide, and hydrogen cyanide (HCN)
treatments  can  all  increase  ethylene  production  and  promote
seed germination[47,50,51]. In Arabidopsis, the ethylene-insensitive
mutants Atetr1 and Atein2 show  delayed  seed  germination[64].
The Arabidopsis ethylene-responsive  factor  ERF12  can  bind  to
the promoter of the key dormancy gene DELAY OF GERMINATION
1 (DOG1)  and  recruit  the  transcriptional  co-repressor  TOPLESS
(TPL),  which  inhibits DOG1 expression  and  promotes  seed
germination[68].

In contrast to BR and ethylene, seed germination is inhibited
by jasmonic acid (JA)  and its  derivates[69,70].  The application of

exogenous  JA  or  methyl  jasmonate  (MeJA)  can  inhibit  seed
germination,  as  can  their  precursor  12-oxo-phytodienoic  acid
(OPDA)[71].  Interestingly,  auxin  both  stimulates  and  inhibits
seed germination in plants, depending on its concentration[72].
For instance, at high concentrations (0.3 to 1 µM indole-3-acetic
acid (IAA)),  auxin inhibits seed germination in Arabidopsis[73,74],
whereas at low concentrations (0.03 to 3 nM IAA), the opposite
is  observed[75].  Recent  research  has  shown  that  exogenous
auxin and JA synergistically enhance the ABA-induced delay in
seed germination. Auxin Response Factor10 (ARF10) and ARF16
positively  mediate  JA-increased  ABA  responses,  and  this
process is mainly dependent on ABI5 (Fig. 1)[76].  In general, the
regulatory  roles  of  signaling  pathways  associated  with  other
hormones except ABA and GA, such as ETH,  BR,  JA,  and auxin,
on seed germination remains unclear.

 Hormone interactions
The  crosstalk  among  hormones  plays  an  important  role  in

seed  germination  in  plants  (Fig.  1).  For  example,  in  wheat,  JA
can  suppress  the  ABA  biosynthesis  genes, TaNCED1 and
TaNCED2,  and  thereby  promote  seed  germination[77].  Several
JAZ repressors  stimulate  seed germination by interacting with
ABI3  and  inhibit  its  transcription  as  well  as  that  of  ABI5[13].
OsPK5  improves  seed  germination  by  increasing  the  GA/ABA
ratio[78]. Similarly, BR promotes seed germination by antagoniz-
ing  ABA  signaling  through  a  feedback  loop  mediated  by
MOTHER OF FT AND TFL1 (MFT)[79]. BRINSENSITIVE1 (BRI1)-EMS-
SUPRESSOR1  (BES1),  a  BR  signaling  component,  interacts  with
ABI5  and  inhibits  its  binding  to  the  promoter  region  of  target
genes, resulting in a decrease in their expression levels and the
promotion of seed germination in Arabidopsis[80]. In the presence
of  ABA,  the  protein  kinase  BRASSINOSTEROID-INSENSITIVE2
(BIN2),  another  constituent  of  the BR signaling pathway,  inter-
acts  with  ABI5  and  stabilizes  it  through  phosphorylation,  thus
positively  regulating  ABA  signaling  and  inhibiting  seed
germination[9].  Ethylene  can  antagonize  the  effect  of  ABA  on
endosperm  weakening  and  seed  coat  rupture,  which  conse-
quently  stimulates  seed  germination  without  affecting  ABA
levels[81]. ABI4 can directly bind to the promoters of the ethylene
biosynthesis  genes ACC  SYNTHASE2 (ACS2)  and ACS8,  resulting
in  reduced  ethylene  production  and  the  suppression  of  seed
germination[82].  The  indole-3-acetic  acid  glucosyltransferase
gene of rice (OsIAGLU) positively regulates seed germination by
reducing  IAA  and  ABA  contents  and OsABI3/5 expression[83].
AUXIN RESISTANT 1 (AUX1)  is  required for  ABA-mediated inhi-
bition  of  seed  germination  and  AtAUX1  loss-of-function
mutants display an enhanced ABA-resistant phenotype[84].

Studies  have  also  shown  that  BR  and  auxin  regulate  seed
germination  in  a  manner  involving  GA  metabolism  or  the  GA
signaling pathway (Fig.  1).  For  example,  GA and BR can syner-
gistically  induce  the  degradation  of  the  key  gluten  protein-
encoding gene GLUA2, thereby promoting seed germination in
rice[85].  Rice  LATE  EMBRYOGENESIS  ABUNDANT  33  (LEA33)
affects seed germination possibly by reducing BR accumulation
and enhancing GA biosynthesis[86].  Two components of the BR
signaling  pathway,  the  basic  helix-loop-helix  transcription
factors HBI1 and BEE2, can directly regulate the gene expression
of GA-stimulated  Arabidopsis  6 (GASA6),  which  promotes  seed
coat  and  endosperm  breakage  for  seed  germination[87].  More-
over,  exogenous  auxin  treatment  represses  soybean  seed
germination  by  positively  mediating  ABA  and  negatively
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regulating  GA  biosynthesis[88].  The  expression  of  the  auxin
transporters  AUX1,  PIN-FORMED  2  (PIN2),  and  PIN7  are  highly
upregulated  in ga1 mutant  seeds  following  treatment  with
GA[89].  These  findings  underscore  the  importance  of  hormone
crosstalk  on seed germination in plants.  However,  an in-depth
understanding  of  the  crosstalk  among  JA,  BR,  ethylene,  and
auxin is still lacking.

 Reactive oxygen species regulate seed
germination

 Roles of ROS in seed germination
Reactive  oxygen  species  (ROS)  are  a  class  of  highly  active

oxygen-containing  molecules  or  ions  that  mainly  include
superoxide  anions  (O2

•−),  hydrogen  peroxide  (H2O2),  singlet
oxygen (1O2), and hydroxyl radicals (•OH)[90,91]. In dry seeds, ROS
are mainly generated by lipid autooxidation, whereas following
imbibition,  they  are  primarily  produced  by  enzymatic
reaction[92]. ROS have a dual role in seed physiology. Low levels
of  ROS  stimulate  seed  germination,  while  excessive  ROS  accu-
mulation causes  oxidative  damage and inhibits  seed germina-
tion[93].  ROS promote seed germination by contributing to cell
wall  loosening,  endosperm  weakening,  and  radicle  and  root
elongation[94−97].  Rice  polyamine  oxidase  5  (OsPAO5)  oxidizes
spermine and generates  H2O2,  which  promotes  mesocotyl  cell
elongation  during  seed  germination[98,99].  Cotton  HSP24.7
enhances the release of ROS from mitochondria, which leads to
the  degradation  of  key  components  within  the  endosperm
membrane  and  reduces  its  strength  for  seed  germination[100].
Generally,  within  a  certain  concentration  range,  known  as  the
'oxidative  window',  ROS  promote  seed  germination,  while  the
opposite  is  observed  at  concentrations  that  deviate  from  this
window[101]. Although the appropriate ROS concentrations that
contribute  to  seed  germination  have  been  reported  for
camphor, wheat, soybean, barley, and pea[101−103], the oxidative
window  for  the  promotion  of  seed  germination  remains
unclear for most crops.

 Interactions between ROS and hormones regulate seed
germination

Interactions  between  ROS  and  hormones  such  as  GA  and
ABA play important roles in seed germination in plants. Exoge-
nous  GA  treatment  can  induce  ROS  production  and  promote
seed germination in wild oat (Avena fatua) and Chinese flower-
ing  cabbage  (Brassica  parachinensis)[104,105].  Exogenous  H2O2

can enhance the expression of kaurenoic acid oxidase 1 (KAO1)
and HvGA3ox1,  thereby  promoting  GA  synthesis  and  seed
germination in barley[106].  Similarly,  H2O2 can enhance the GA-
induced expression of the expansin gene HvExpA11 and the GA
biosynthesis gene HvGA20ox1, as well as inhibit the expression
of  the  GA  catabolic  gene HvGA2ox3,  thereby  promoting  GA
accumulation and, consequently, seed germination in barley[92].
In Arabidopsis,  exogenous  H2O2 treatment  can  activate  the
expression  of  the  GA  synthesis-related  genes GA3ox and
GA20ox and the ABA metabolism-related gene CYP707A, which
enhances  GA  synthesis  and  ABA  metabolism  and  improves
seed  germination[107].  In  tomato,  H2O2 enhances  germination
capacity by upregulating the expression of the GA biosynthesis
gene GA3ox1 as  well  as  that  of  the  ABA  catabolism  gene  ABA
8'-hydroxylase (ABA8ox)[108].  H2O2 regulates  barley seed germi-
nation by influencing the activity of  an ABA catabolic enzyme,

and  consequently,  ABA  content  in  seed  embryos[109].  Mean-
while,  H2O2 can suppress the phosphatase activity of ABI1 and
ABI2,  thus  inhibiting  seed  germination  in Arabidopsis[110,111].
ABI4,  another  major  constituent  in  ABA  signaling,  modulates
ROS  metabolism  during  seed  germination  under  salt  stress  by
directly combining with RbohD and Vitamin C Defective 2 (VTC2),
key  genes  in  ROS  production  and  scavenging[112].  Similarly,
ABI5  can  modify  ROS  homeostasis  by  inducing CATALASE  1
(CAT1)  expression and,  consequently,  catalase  activity[113].  Fur-
thermore,  exogenous  H2O2 can  induce  ethylene  biosynthesis,
which  promotes  seed  germination  in  soybean[102].  Exogenous
ethylene positively regulates seed germination in sunflower by
activating NADPH oxidase, which leads to ROS accumulation in
the  embryonic  axis[60].  However,  whether  crosstalk  between
ROS  and  other  hormones  such  as  JA,  BR,  or  auxin  also  exerts
regulatory effects on seed germination requires further investi-
gation.

 Internal regulatory factors regulate seed
germination

 Epigenetic modifications

 Small RNAs
MicroRNAs  (miRNAs)  are  a  class  of  small,  non-coding  RNAs,

approximately  20  to  24  nucleotides  in  length[114,115].  They  can
influence  gene  expression  at  the  transcriptional  level via the
methylation of target genes or at the post-transcriptional level
by  promoting  target  mRNA  degradation  or  inhibiting  target
mRNA translation[116].  Several  hormone-related signaling path-
ways  are  controlled  by  miRNAs  during  seed  germination  in
plants  (Fig.  2)[74].  In Arabidopsis,  the  overexpression  of  miR159
can inhibit the transcription of the ABA response factors MYB33
and MYB101,  resulting  in  reduced  sensitivity  to  ABA  during
seed  germination.  MiR159  has  also  been  reported  to  regulate
seed germination by regulating the mRNA level of GAMYB, and
thus  modulating  GA  signaling[117].  MiR9678  regulates  seed
germination via its  effects  on  ABA/GA  signaling  pathways  in
wheat[118].  Meanwhile,  miR160  was  shown  to  participate  in
seed germination by negatively  regulating the auxin response
factor  ARF10  in Arabidopsis[74].  In  addition,  rice  miR393  nega-
tively mediates coleoptile elongation under flooded conditions
by  regulating  the  expression  of  the  auxin  receptor-encoding
genes OsTIR1 and OsAFB2[119]. MiRNAs have also been found to
affect  seed  germination  by  regulating  epigenetic  factors.  For
example,  miR402  regulates  seed  germination  under  stress
conditions  by  targeting  the  mRNA  of  DML3,  a  DNA  demethy-
lase,  and  promoting  its  degradation[120].  Overall,  only  a  few
small  RNAs  that  participate  in  seed  germination  in  crops  have
been identified to date. However, given their biological impor-
tance,  the  application  of  small  RNAs  for  the  improvement  of
seed germination deserves further investigation.

 Genomic imprinting
Genomic  imprinting  refers  that  one  parent  allele  is  silenced

while  the  other  parent  allele  remains  active,  which  caused  by
the  asymmetric  DNA  methylation  between  parental  alleles,
including  maternally  expressed  genes  (MEGs),  or  paternally
expressed genes (PEGs)[121].  In Arabidopsis,  DNA methylation is
an  important  imprinting  for  many  MEGs[122].  Trimethylation  of
histone H3 on lysine 27 (H3K27me3),  catalyzed by the PRC2, is
an  important  epigenetic  mark  involved  in  the  regulation  of
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some  imprinted  genes  in  the  endosperm[123].  Many  genes
marked  by  single  H3K27me3  have  been  found  to  be  induced
during  seed  germination[124].  In Arabidopsis,  H3K27me3  is
catalyzed by histone methyltransferases[125]. Arabidopsis endo-
sperms are  targeted by  the  H3K27me3 demethylase  REF6 and
became activated during germination[124].  Additionally, AtREF6
can  directly  targets  ABA  catabolizing  enzymes  CYP707A1  and
CYP707A3, which contributes to suppress seed dormancy (Fig.
2)[126]. DOGL4 is  an  imprinted  gene  in Arabidopsis endosperm,
and  it  negatively  affects  seed  dormancy.  DNA  demethylase
ROS1 negatively regulates DOGL4 imprinting via demethylation
of the DOGL4 promoter on the paternal allele,  and ROS1 regu-
lates  seed  dormancy  by  controlling DOGL4 expression[127].  In
castor bean, imprinted genes showed dynamic expression cha-
racteristics at different stages of endosperm, mainly involved in
endosperm  development  and  storage  material  accumulation,
and  MEGs  and  PEGs  had  obvious  functional  differentiation.  It
showed  that  imprinted  genes  persisted  in  germinated  endo-
sperm and participated in seed germination[128]. Overall, only a
few  genomic  imprinting  genes  that  participate  in  seed  germi-
nation in crops have been identified to date.

 Other modifications
Epigenetic modifications, including methylation, demethyla-

tion, deacetylase have also been reported to be involved in the
regulation of seed germination in plants[129] (Fig. 2). H3K27me3
plays a key role in regulating gene repression and cell fate spec-
ification.  Relative  of  Early  Flowering  6  (REF6)  mediates  the
demethylation  of  H3K27,  which  helps  to  activate  gene  tran-
scription and promote seed germination in Arabidopsis[130]. The
EARLY  FLOWERING  IN  SHORT  DAYS (EFS)  gene  encodes  a  H3K4

and H3K36 methyltransferase that inhibits seed germination in
Arabidopsis by  directly  binding  to  the  promoter  of
PHYTOCHROME-INTERACTING  FACTOR  1 (PIF1)  and  increasing
the  levels  of  H3K36me2  and  H3K36me3  at  the  binding  sites,
thus upregulating PIF1 expression[131]. The histone mark reader
Early Bolting in Short Days (EBS) is recruited by the transcription
factor Agamous-Like67 (AGL67) to H3K4me3 at the promoter of
the  gene  encoding  the  zinc-finger  protein  SOMNUS  (SOM),
thereby epigenetically activating SOM expression and suppress-
ing  seed  germination  under  high-temperature  conditions[132].
The histone deacetylase HDA15 is  recruited by the bHLH tran-
scription  factor  PIF1  to  the  promoters  of  hormone  signaling-
related  genes  and  inhibits  their  expression  by  reducing  H3
acetylation levels. Additionally, HDA15 was shown to negatively
regulate  phytochrome  B  (PhyB)-dependent  seed  germination
under dark conditions[133].

Several  studies  have  demonstrated  that  epigenetic  factors
regulate seed germination via their effects on hormone-related
metabolism  and  signaling  pathways  (Fig.  2).  The  non-coding
RNA  HIDDEN  TREASURE  1  (HID1)  promotes  PhyB-dependent
seed  germination  by  directly  inhibiting  the  expression  of
NCED9, which encodes the rate-limiting enzyme in ABA biosyn-
thesis in Arabidopsis[134]. Switch/sucrose non-fermentable (SWI2
/SNF2)  chromatin  remodeling  ATPase  BRAHMA  (BRM)  directly
represses  the  expression  of  ABI5  and  the  loss  of  function  of
BRM  results  in  ABA  hypersensitivity  during  seed
germination[135].  The  JmjC  domain-containing  demethylase
JMJ17  participates  in  the  response  to  ABA  during  seed  germi-
nation  in Arabidopsis by  co-regulating  WRKY  DNA-BINDING
PROTEIN  40  (WRKY40),  HYPOCOTYL5  (HY5),  and  ABI5[136].  The

 
Fig.  2    Internal  regulatory  factors  regulate  seed  germination.  Arrows  and  lines  with  slanted  dashes  indicate  positive  and  negative  effects,
respectively.
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histone  methylase  SUVH5  regulates  light-dependent  seed
germination  by  suppressing  the  ABA  signal  and  reducing  the
expression of DOG genes via H3K9 dimethylation[137].  The lack
of  DNA  demethylation  by  the  plant-specific REPRESSOR  OF
SILENCING 1 (ROS1) gene impairs seed germination by activating
the  ABA  pathway  and  impacting  germination-related  gene
expression  under  heat  stress  in Arabidopsis[138].  The  histone
arginine  demethylases  JMJ20  and  JMJ22  act  redundantly  as
positive regulators of seed germination through the removal of
repressive  histone  arginine  methylations  at GA3ox1/GA3ox2 in
Arabidopsis[139].  Also  in Arabidopsis,  the loss  of  function of  two
histone deacetylase-binding factors, SWI-INDEPENDENT3 (SIN3)-
LIKE1 (SNL1) and SNL2, results in accelerated radicle protrusion
and  growth  during  seed  germination via the  regulation  of
AUX1  expression,  IAA  levels,  and  signal  transduction  in
Arabidopsis[72].  The  roles  of  epigenetic  modifications  in  the
regulation of plant phenotypes and environmental adaptability
have been widely investigated[140,141]. Nonetheless, how epige-
netic modifications influence seed germination under environ-
mental stress conditions remains unclear.

 Post-translational modifications

 Phosphorylation
Protein  phosphorylation,  which  refers  to  the  transfer  of  a

phosphate  group  from  adenosine  triphosphate  (ATP)  to  a
specific  amino  acid  residue  in  a  substrate  protein  by  protein
kinases  (PKs)[14],  is  widely  involved  in  the  regulation  of  seed
germination[142]. Four types of kinases—sucrose non-fermenta-
tion  1-related  protein  kinases  (SnRKs)[143],  mitogen-activated
protein  kinases  (MAPKs)[37,144],  calcium-dependent  protein
kinases  (CDPKs)[145],  and  receptor-like  kinases  (RLKs)[146] have
been  widely  shown  to  play  significant  roles  in  seed  dormancy
and  germination.  Studies  have  reported  that  phosphorylation
related  to  seed  germination  mainly  affects  the  ABA  signaling
pathway (Fig. 2). For example, the binding of ABA to its receptors
PYR1/PYL/RCAR activates SnRK2s by inhibiting the phosphatase
activity of PP2Cs. The activated SnRK2s subsequently phospho-
rylate  ABI5  and  promote  its  stability,  thereby  inhibiting  seed
germination[147].  The  Glycogen  Synthase  Kinase  3-like  kinase
BRASSINOSTEROID INSENSITIVE2 (BIN2) enhances ABA signaling
by phosphorylating ABI5 during seed germination in Arabidopsis
[9].  The  Arabidopsis  RAV  (Related  to  ABI3/VP1)  transcription
factor  RAV1  is  phosphorylated  by  SnRK2.2,  SnRK2.3,  and
SnRK2.6, leading to an increase in the expression levels of ABI3,
ABI4,  and  ABI5  during  seed  germination  and  early  seedling
development[143].  SOS2-LIKE  PROTEIN  KINASE5  (PKS5)  phos-
phorylates ABI5, which activates the expression of downstream
genes involved in seed germination in Arabidopsis[148]. Similarly,
the  protein  phosphatases  FyPP1  and  FyPP2  directly  dephos-
phorylate ABI5 and act antagonistically with SnRK2 to regulate
ABA  responses  in  seed  germination[149].  The  receptor-like
protein kinases  CARK1 and CARK6 interact  with and phospho-
rylate the ABA receptors RCAR11–14, which enhances the ABA
signal  and  inhibits  seed  germination  in Arabidopsis[150].  The
calcium-dependent  protein  kinase  CPK12  of Arabidopsis phos-
phorylates  and  stimulates  the  type  2C  protein  phosphatase
ABI2,  a  negative  regulator  of  ABA  signaling,  while  also  phos-
phorylating two ABA-responsive transcription factors, ABF1 and
ABF4,  during  seed  germination[145].  In  addition,  MAPK11  posi-
tively  influences  ABA  signaling  by  upregulating  both NCED1
expression and ABA biosynthesis, and also negatively regulates

seed germination by influencing the phosphorylation status of
SnRK2.2  in  tomato[37].  Totally,  most  relevant  studies  have
reported  that  phosphorylation  plays  an  important  role  in  the
ABA  signaling  pathway-mediated  regulation  of  seed  germina-
tion. However, whether phosphorylation is also involved in the
regulation  of  seed  germination  in  other  signaling  pathways
needs to be further investigated.

 Ubiquitination
Protein ubiquitination is a multi-stage enzyme-linked reaction

involving the concerted activity of ubiquitin-activating enzyme
E1,  ubiquitin-conjugating  enzyme  E2,  and  ubiquitin  ligase  E3,
which  results  in  the  transfer  of  ubiquitin  molecules  to  lysine
residues  in  target  proteins[151,152].  Ubiquitination  modification
regulates  seed  germination  involving  ABA  and  GA  signaling
pathways (Fig. 2)[16].  CUL4-based E3 ligases (DWA1 and DWA2)
directly  interact  with  each  other  and  negatively  regulate  ABA
signal transduction during seed germination[153]. The Arabidop-
sis ubiquitin E3 ligase MYB30-INTERACTING E3 LIGASE 1 (MIEL1)
directly  mediates  the  proteasomal  degradation  of  ABI5  and
inhibits  its  activity  during  seed  germination[154].  The  single-
subunit RING-type E3 ubiquitin ligase RSL1 can ubiquitinate the
ABA receptors PYRABACTIN RESISTANCE1 (PYR1) and PYR1-LIKE
4  (PYL4),  which  weakens  ABA  signaling  and,  consequently,
promotes  seed  germination[155]. Arabidopsis ABI3-interacting
protein (AIP2) and its rice homolog Delayed Seed Germination
1  (OsDSG1),  a  RING  ubiquitin  ligase,  can  ubiquitinate  the  core
transcription  factor  ABI3,  thereby  diluting  the  ABA  signal  and
promoting seed germination[156,157].  GA promotes  seed germi-
nation by binding to the GA receptor and subsequently forming
a complex with the DELLA protein REPRESSOR OF GA1–3 (RGA).
This  leads  to  RGA  ubiquitination  and  its  degradation  through
the  26S  proteasome  pathway,  which  relieves  the  inhibitory
effect of DELLA on GA signal transduction[158,159]. Similarly, RGA-
like2  (RGAL2)  is  degraded via F-box  protein  SLY1  E3  ubiquitin
ligase-mediated ubiquitination during seed germination[160,161].
Phosphorylation and ubiquitination are widely reported involv-
ing  seed  germination via influencing  protein  activities  and
gene expression levels[16].  However, the regulatory roles of the
other  above-mentioned  post-translational  modifications  in
seed germination require further exploration.

 Environmental factors that regulate seed
germination

 Light signals
Light  is  an  important  environmental  factor  that  regulates

seed germination[19,21,162]. Phytochromes (Prs) are key photore-
ceptors that regulate responses to light and are responsible for
initiating between 10% and 30% of the transcriptional cascades
of the entire transcriptome[163]. Under red light illumination, the
inactive  form,  Pr,  is  transformed  into  the  biologically  active
form,  Pfr,  thus  promoting  seed  germination;  however,  Pfr  is
converted into Pr under far-red light conditions, leading to the
inhibition of seed germination[164]. In Arabidopsis, there are five
phytochrome proteins — PhyA, PhyB, PhyC, PhyD, and PhyE —
with  PhyB  playing  a  dominant  role  in  light-mediated  seed
germination  (Fig.  3)[21,165].  The  bHLH  transcription  factor  PIF1
plays an important role in phytochrome-mediated seed germi-
nation[20,166]. The F-Box protein Cold Temperature-Germinating
10  (CTG10)  of Arabidopsis can  sense  light  signals.  PIF1  and
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CTG10 coexist  under  dark  conditions;  however,  after  exposure
to  light,  CTG10  helps  reduce  PIF1  levels,  thereby  promoting
seed germination[167].

Exogenous  light  signals  regulate  seed  germination  mainly
via the  ABA  and  GA  pathways  (Fig.  3).  For  example,  PhyA  and
PhyB mediate ABA and GA synthesis and catabolism by binding
to PIF1 and inhibiting SOM activation, thus exerting a regulatory
effect on seed germination[168]. In darkness, PIFs directly bind to
the  promoter  of  the  key  transcription  factor  ABI5  and  activate
its transcription, thereby positively regulating the ABA signaling
pathway[169]. PIF1 can repress the expression of GA biosynthetic
genes (GA3ox1 and GA3ox2) and activate that of a GA catabolic
gene (GA2ox) in PhyA- and PhyB-dependent seed germination,
which  blocks  GA  degradation  and  increases  GA
biosynthesis[22,170].  PIF1  interacts  with  REVILLE1  (RVE1),  and,
together, they synergistically regulate the expression of multiple
genes in the ABA and GA pathways that are involved in PhyB-
mediated seed germination[22].  Mutations in the AP2/ERF tran-
scription  factors  ERF55  and  ERF58  result  in  stronger  light
dependency during seed germination by  influencing ABA and
GA  levels  in Arabidopsis[171].  MFT  is  a  key  negative  regulatory
factor for seed germination;  the expression of the MFT gene is
promoted  by  far-red  light  through  the  PIF1/SOM/ABI5/DELLA
pathway but is inhibited by red light through the transcription
factor  SPATULA  (SPT)[172].  MFT  affects  the  levels  of  the  JA
precursor  oxylipin cis-12-oxo-phytodienoic  acid  (OPDA)  and
ABA  under  shading  conditions,  which  inhibits  seed
germination[173].  Light  signals  regulate  seed  germination

mainly  by  influencing  ABA  and  GA  signaling  pathways;  how-
ever,  whether  they  also  influence  seed  germination via other
signaling pathways is not known.

 Temperature
Temperature  is  another  important  factor  affecting  seed

germination.  Both  too-high  and  too-low  temperatures  inhibit
or delay seed germination by disrupting a variety of molecular
and physiological processes[174]. Under low-temperature condi-
tions,  seeds  experience  reduced  water  absorption,  protein
degradation, carbohydrate metabolism, and energy production
but  an  increase  in  ABA  synthesis,  which  delays  seed
germination[175]. When seeds are exposed to heat stress, mean-
while,  ROS,  malondialdehyde,  antioxidant  enzyme,  and  ABA
levels  are  increased,  which  suppresses  seed  germination[176].
Molecular  analysis  indicated that ABI3,  ABI5,  and DELLA target
the  promoter  of  the  transcription  factor SOM and  activate  its
transcription,  which  suppresses  seed  germination  under  high
temperatures (Fig. 3)[177]. Similarly, the epigenetic factor Power-
dress (PWR) interacts with ABI3 and activates SOM transcription
through  epigenetic  modifications,  leading  to  the  suppression
of  seed germination under high-temperature conditions[178].  A
mitochondrial  heat  shock  protein  GhHSP24.7  regulates  seed
germination in  response to  temperature  in  cotton.  GhHSP24.7
promotes seed germination under both high and low-tempera-
ture conditions by inducing ROS production, thereby accelerat-
ing  endosperm  breakdown[100].  Heat  shock  protein  70-16
(HSP70-16)  and  voltage-dependent  anion  channel  3  (VDAC3)

 
Fig.  3    Environmental  factors  regulate  seed  germination.  Arrows  and  lines  with  slanted  dashes  indicate  positive  and  negative  effects,
respectively.
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jointly suppress seed germination by promoting ABA flow from
the  endosperm  to  the  embryo  under  low-temperature  condi-
tions[179].

 Water
Imbibition  is  the  first  step  in  seed  germination,  and  water

movement  thus  plays  a  crucial  role  in  the  breaking  of
dormancy[180−182].  Plant  aquaporins  (AQPs),  including  plasma
membrane  intrinsic  protein  (PIPs),  tonoplast  intrinsic  proteins
(TIPs),  nodulin 26 like MIPs (NIPs),  and small  and basic intrinsic
proteins (SIPs), are membrane channels that mediate intracellu-
lar  water  movements.  Most  PIPs  and  TIPs  are  water-selective
channel proteins[183−186].  In pea, PsPIP1;1, PsPIP2;1,  and PsTIP1;1
are  expressed  in  germinating  seeds. PsPIP1;1 plays  a  role  in
water absorption during seed imbibition, while PsPIP2;1,  possi-
bly  together  with PsPIP1;1,  may  be  involved  in  the  release  of
phloem  water  from  the  seed  coat  symplast  (Fig.  3)[187].  TIP3;1
and  TIP3;2  have  previously  been  implicated  in  water  or  solute
transport during seed germination under water stress conditions
in Arabidopsis[185]. Sesuvium  portulacastrum SpAQP1 promotes
seed  germination  and  root  growth  in  transgenic  tobacco  and
increases salt tolerance by increasing the activities of antioxida-
tive  enzymes[188].  Hydration is  the key trigger  for  the initiation
of  germination.  Recent  investigations  have  shown  that  the
Arabidopsis prion-like  protein  FLOE1  undergoes  phase  separa-
tion  upon  hydration,  which  allows  the  embryo  to  sense  water
stress,  and  hence  regulate  the  best  time  for  seed  germination
under  unfavorable  environments[189,190].  Overall,  the  mecha-
nisms that determine plant seed germination under drought or
submergence  conditions  remain  unclear  and  require  further
investigation.

 Perspectives

Seed  germination  is  a  key  determinant  of  crop  production
and final  yield.  An in-depth understanding of  the  internal  and
external  regulatory factors that determine seed germination is
crucial for achieving high crop yields. In this review, we summa-
rized the findings relating to molecular mechanisms involved in
seed  germination  in  plants.  Studies  on  seed  germination  to
date have mainly focused on Arabidopsis and rice, and relatively
little is known about this process in crops such as maize, wheat,
and barely.  This  situation needs to be addressed in the future.
Seed germination is a complex trait that is determined by both
genetic  and  environmental  factors.  Abiotic  stresses,  such  as
drought,  flooding,  salt,  heat,  and  cold,  are  the  most  common
adverse  environmental  conditions  affecting  seed  germination
in plants. Further unraveling the molecular mechanisms of seed
germination under stress conditions is needed in the future.

The  hormones  ABA  and  GA  are  the  key  regulators  of  seed
germination. Other hormones involved in this process, such as
AUX,  CTK,  JA,  and  BR,  in  addition  to  ROS,  function  mainly
through the ABA and GA signaling pathways. However, how to
precisely  control  the  levels  and  distribution  of  hormones  and
ROS in germinating seeds remains unclear. It is well known that
there  is  crosstalk  among  hormones  and  ROS  involved  in  seed
germination; nevertheless, the detailed molecular mechanisms
underlying  their  synergistic  and  antagonistic  relationships
remain  to  be  resolved.  Additionally,  it  would  be  interesting  to
reveal  whether  other  as  yet  unidentified  molecules,  besides
hormones and ROS, are involved in seed germination in plants.
The recent rapid development of  omics technologies provides

important tools for the identification of factors involved in seed
germination at the transcript, protein, and metabolite levels[191].
To date, the functional validation of newly identified regulators
of seed germination is lacking.

Seed germination is regulated by extremely complex signal-
ing networks.  The endosperm not only constitutes a  source of
nutrients but also controls seed germination by actively secret-
ing signals. The molecular mechanisms underlying how cell-to-
cell communication coordinates seed germination and the role
of  the  endosperm  in  seed  germination  also  require  further
investigation[174]. Environmental factors such as light, tempera-
ture,  and  humidity  play  crucial  roles  in  the  regulation  of  seed
germination in plants, but how seeds sense these environmental
factors  remains  incompletely  understood.  Recent  studies  have
indicated that environmental factors regulate seed germination
mainly via the  ABA  pathway,  and  whether  other  hormones
(AUX,  CTK,  JA,  BR)  and/or  ROS-related  pathways  are  also
involved needs to be further analyzed. Abiotic stresses are the
predominant environmental determinants of crop productivity
worldwide.  Despite  this,  the  mechanisms  that  regulate  crop
seed  germination  under  stress  conditions  such  as  drought,
flooding, salt, heat, and cold have not been studied in depth. A
combination  of  molecular,  organismal,  and  ecological  studies
will  reveal  the  mechanisms  of  seed  germination  with  direct
implications for the design of elite crops in the face of climate
change.
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