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Grain size control in wheat: toward a molecular understanding
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Abstract
Grain size is a major determinant of bread wheat (Triticum aestivum) yield, which has a broad impact on worldwide food security. Not surprisingly,
grain size underwent extensive artificial selection during wheat domestication and breeding. Recent advances in wheat molecular genetics and
genomics have facilitated the elucidation of the molecular basis underlying grain size. Grain size determination is the cumulative result of source
strength,  photoassimilate  remobilization,  and  sink  strength.  Here,  we  systematically  review  the  recent  progress  in  the  cloning  and  molecular
mechanisms  of  genes  that  regulate  grain  size  in  wheat  following  the  source-to-sink  flow.  In  addition,  we  discuss  possible  strategies  for
overcoming the trade-off between grain size and grain number, as well as synergetic improvement of grain yield and grain quality.
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 Introduction

During  domestication  and  breeding,  bread  wheat  (Triticum
aestivum)  underwent  extensive  artificial  selection.  The  bread
wheat  genome  is  the  result  of  two  polyploidy  events.
Tetraploid wheat (AABB, 2n = 4x = 28) is the result of an ancient
polyploidy  event  between Triticum  urartu (AA,  2n  =  2x  =  14)
and Aegilops speltoides (BB, 2n = 2x = 14). The second polyploidy
event  occurred  approximately  10,000  years  ago  in  the  Fertile
Crescent between presumably cultivated tetraploid wheat and
wild Aegilops  tauschii (DD,  2n  =  2x  =  14)[1],  and  the  resulting
hybrid (AABBDD, 2n = 6x = 42) is the bread wheat used today.
Archaeobotanical  evidence  indicates  that  both  the  transitions
from  diploid  wild  einkorn  (Triticum  monococcum ssp
aegilopoides;  AmAm)  to  domesticated  diploid  forms  (T.  mono-
coccum ssp monococcum)  and  from  wild  tetraploid  emmer
wheat  (Triticum  turgidum ssp dicoccoides;  BBAA)  to  domesti-
cated tetraploid cultivars (T. turgidum ssp dicoccum) are associ-
ated  with  a  trend  toward  larger  grains.  For  hexaploid  wheat,
grain  size  continues  to  be  an  important  selection  trait.  Today,
wheat grains provide one-fifth of the calories and a substantial
proportion  of  protein  consumed  by  humans[2].  The  main
attributes of grain size, including grain width, grain length, and
length/width  ratio,  are  greatly  different  among  the  hexaploid
wheat  varieties[3].  Compared  to  the  early  common  wheat
landraces, such as T. aestivum ssp. spelta and ssp. macha,  grain
width  was  dramatically  increased  and  grain  length  was
decreased  in  the  early  stages  of  the  bread  wheat  breeding
process[3].  Therefore, the wheat grain shape has changed from
long and thin to shorter and wider in modern bread wheat vari-
eties[3].  In  addition,  as  wheat  is  a  staple  commercial  crop,  its
market  requirements  also  distinctly  influence  the  selection  of
grain size and shape. Important attributes, such as grain density,

uniformity,  end-use  quality,  protein  content,  and  trace
elements are also associated with grain size, and directly influ-
ence grain yield and flour quality, which determines the market
value of wheat grains[4].

Fertilization  initiates  grain  development.  Generally,  the
development  process  of  wheat  grains  is  divided  into  three
stages: the cell division and expansion stage that occurs 1−14 d
after anthesis (DAA), during which the basic structure of wheat
grains  are  formed;  the  grain  filling  stage  14−28  DAA,  during
which  the  accumulation  of  starch  and  protein  occurs  and  the
grain  dry  weight  increases  by  approximately  twofold[5];  and
grain maturation and desiccation that occurs from 28 DAA until
complete  maturation[6].  During  the  last  stage,  the  grain  filling
slows  and  is  complete  by  approximately  35  DAA.  The  fresh
weight  subsequently  decreases  rapidly  until  ~42  DAA  due  to
desiccation[6].

During  wheat  grain  development,  gene  expression,  and
translation  profiles  change  dynamically[6−9].  A  substantial
change in the transcriptome occurs during grain development[6].
Moreover,  different  subgenomes  of  wheat  are  unbalanced  at
both  the  transcriptional  and  translational  levels[7,8].  Dynamic
chromatin  landscape  changes  during  embryogenesis  is  corre-
lated  with  biased  gene  expression  among  homeolog  gene
triads and divergent expression among three subgenomes[9].

Although grain size is a key yield component in wheat[10], the
large  polyploid  wheat  genome  substantially  impedes  linkage
mapping  of  genes  regulating  grain  size  and  identification  of
molecular  functions.  More  information  on  wheat  grain  size
control  has  been  obtained  by  population  genetic  studies,  in
which putative regulatory genes or QTLs are found by genetic
mapping  or  genome-wide  association  studies  (GWASs).  With
the use  of  molecular  markers,  many QTLs  related to  grain  size
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or  grain  weight  have been identified on all  21  wheat  chromo-
somes  in  recent  decades,  and  utilized  in  breeding[11−19].
Recently,  with  the  rapid  development  of  wheat  genome
sequencing,  genetic  mapping  has  been  utilized  to  identify
causal genes for grain traits[20,21]. A subset of these causal genes
was  independently  confirmed  by  gene  knockout  and/or  over-
expression  methods.  There  are  excellent  recent  reviews
centered on the molecular regulation pathways of grain size in

rice and wheat[22−26].  In this review, we instead focused on the
source-flow-sink  system  to  summarize  the  genes  involved  in
photosynthesis,  and  carbohydrate  transportation,  as  well  as
their  roles  in  grain  size  determination.  We  also  investigated
genes directly affect grain size and grain filling, with particular
attention  given  to  the  regulation  of  starch  and  seed  storage
protein (SSP) biosynthesis (Fig. 1). We also discussed difficulties
and feasible strategies for grain size improvement.

 
Fig. 1    Genes and genetic pathways regulating grain size in bread wheat and rice. The components without underlines are positive regulators
of grain size, and those with underlines are negative regulators. The short connecting lines represent the proteins that physically interact. The
bond genes were selected during wheat breeding. The genes with the same colors are homologous gene between wheat and rice. References
for the individual genes are listed in Supplemental Tables S1 & S2 for wheat and rice genes, respectively.
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 Photosynthesis

During photosynthesis, solar energy is utilized and drives the
accumulation of plant biomass and sink storage, such as in crop
grains[27]. Genes related to chloroplast and chlorophyll synthesis
play  important  roles  in  photosynthetic  efficiency  and  capacity
and influence wheat grain size. Recently, three genes related to
chlorophyll  content  and  the  photosynthetic  rate  have  been
identified  as  grain  size  regulators[20,21,28].  Map-based  cloning
identified keto-acyl thiolase 2B (KAT-2B) as the causal gene for a
large-grain  mutant.  Analysis  of KAT-2B overexpressing  lines
revealed that KAT-2B can positively regulate grain size, weight,
and  yield.  In  addition,  the  leaf  area  and  chlorophyll  content
increase  in KAT-2B-overexpressing  lines,  indicating  that  the
photosynthetic capacity is enhanced[21]. HSP90.2-B is the causal
gene for  the CO2 ASSIMILATION  RATE  AND  KERNEL-ENHANCED1
(CAKE1) gene cloned from durum wheat[20]. It encodes a cytosolic
molecular chaperone folding nascent preprotein that is crucial
for the localization of nuclear-encoded photosynthesis units in
chloroplasts.  Mutation  of HSP90.2-B led  to  a  decreased  photo-
synthetic  rate,  decreased  grain  size,  and  an  80%  decrease  in
grain  yield[20].  Similarly,  the CAKE2 gene  has  been  mapped  to
ASPARTIC PROTEASE1 (APP-A1),  and a premature stop mutation
increases the photosynthetic rate, grain size, and grain weight.
The  APP-A1  protein  can  degrade  PsbO  which  is  an  important
member  of  photosystem  II[28].  By  producing  carbohydrates,
photosynthesis is the first step in the source-flow-sink. Identifi-
cation of genes that enhance photosynthetic capacity and effi-
ciency is a constructive and effective way to increase sink storage
at the source.

 Transportation

The long-distance transport of photosynthetic products is an
essential bridge connecting the source and the sink and is key
to the growth and development of  sink tissues,  such as grains
and fruits.  Sucrose is one of the main photosynthetic products
and is remobilized by sucrose transporters (SUTs) in the vascu-
lature leading to the grain. Among the 14 wheat sucrose trans-
porter  genes TaSUTs, TaSUT1 homeologous genes on chromo-
somes 4A, 4B, and 4D are expressed predominantly in the stem,
leaf  sheath,  rachis,  lemma,  and  developing  grain,  and  their
expression levels are significantly correlated with grain size and
weight[29].  The  peduncle  is  the  key  connection  between  the
spike and the stem and plays important roles in the transporta-
tion  of  water-soluble  carbohydrates[30].  Association  analysis
revealed  that TaSnRK2.3-1A and TaSnRK2.3-1B are  significantly
associated  with  the  length  of  the  peduncle  and  penultimate
node,  as  well  as  with  grain  size  and  weight.  Additionally,  one
haplotype  of TaSnRK2.3-1B was  shown  to  be  associated  with
increased  grain  weight  and  decreased  plant  height,  whereas
another was associated with increased grain weight, increased
stem  water-soluble  carbohydrate  contents,  and  decreased
plant  height;  thus  these  two  haplotypes  were  considered
elite[31].

 Size determination

Genes involved in grain development may directly determine
grain  size.  Cloning  and  functional  analysis  of  such  genes  have
been a key research direction for grain size[24,26]. Since the large
polyploid  wheat  genome  substantially  hinders  the  use  of

forward  genetic  methods  and  molecular  functional  identifica-
tion,  many  grain  size  regulatory  genes  in  wheat  were  studied
by reverse genetic  analysis  of  genes homologous to rice  grain
size  regulators  or  by  association  analysis,  which  revealed
homologs of  rice grain size regulators.  Here,  we organized the
genes related to grain size in wheat according to known regula-
tory pathways.

 Ubiquitin-proteasome pathway
Ubiquitin‒proteasome degradation is extensively utilized by

plants  to  regulate  development.  Several  grain-size  regulatory
genes  were  found  to  encode  ubiquitin‒proteasome  degrada-
tion  pathway  proteins,  including  E2,  E3  and  their  regulators.
GRAIN  WIDTH2 (GW2)  encodes  a  RING-type  E3  ubiquitin  ligase
in rice[32]. Downregulation of three homeologous TaGW2 genes
by  RNA  interference  (RNAi)  leads  to  significant  increases  in
grain width and grain weight[33]. TaGW2-B1 has stronger effects
on  grain  size  regulation  than TaGW2-D1 does,  and TaGW2-B1
and TaGW2-D1 double  gene  knockdown  plants  have  signifi-
cantly larger grain sizes than single gene knockdown plants[34].
TaDA1 negatively regulates grain size in wheat. Downregulation
of TaDA1 increases  grain  size  and  grain  weight.  In  addition,
TaDA1-A physically interacts with TaGW2-B1 and subsequently
affects grain size in an additive way[35].

Salt  and  drought-induced  RING  finger1  (SDIR1),  is  a  RING-
type E3 ubiquitin ligase that has been identified as a key player
in  the  response  to  both  salinity  and  drought  stresses[36].  The
grain  size  of  the TaSDIR1-4A-silenced  lines  increased,  and  one
haplotype  showed  a  significant  association  with  increased
grain  size  and  greater  grain  weight[37].  Another  E3  ligase
TaPUB1 can interact with TaPYL4 and TaABI5, both of which are
components  of  the  ABA  signaling  pathway,  and  subsequently
induces the degradation of TaPYL4 and TaABI5. TaPUB1 overex-
pressing plants exhibit larger grains, whereas the corresponding
RNAi  lines  exhibit  smaller  grains[38].  Similarly,  ZnF-B,  which  is
also a RING-type E3 ligase, positively regulates grain size[39].

Rice  OsOTUB1  is  a  deubiquitinating  enzyme,  whose  mutant
exhibits  decreased grain  width and thickness[40].  Rice  OsSPL14
is degraded by OsOTUB1, which controls grain development[41].
In  wheat,  upon  cleavage  by  miR156,  the  triple  mutant  of
TaSPL14-5A, -5B and -5D exhibited  reduced  grain  size  and
weight[42].  For  another TaSPL14 member TaSPL14-7A,  the
preferred  haplotypes  are  correlated  with  increased  grain  size
and weight,  which underwent positive selection during wheat
breeding worldwide[43].

 G protein signaling
The  G  protein  signaling  pathway  plays  important  roles  in

various developmental processes in plants and animals. Gener-
ally,  the G protein complex has three subunits,  Gα,  Gβ and Gγ.
In rice, both the Gα-encoding gene RGA1 and the Gβ-encoding
gene RGB1 positively regulate grain size[44−46]. Rice GRAIN SIZE3
(GS3), which encodes a noncanonical Gγ subunit, was identified
as the causal gene that determines grain length[47,48]. Alternative
splicing  of  the  heterotrimeric  G-protein  encoding  gene TaGS3
controls wheat grain size. Different alternative splicing isoforms
of TaGS3 have  different  functions  related  to  grain  size
control[49].  The splicing isoforms TaGS3.2–3.4 have no effect on
grain size, whereas the splicing isoform TaGS3.1 overexpression
line  has  deduced  grain  weight  and  grain  length.  In  contrast,
upregulation of TaGS3.5 can significantly increase grain weight
and grain length[49].

Grain size control in wheat  
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Rice DENSE  AND  ERECT  PANICLE1 (DEP1)  shares  homology
with  rice GS3,  and  a  gain-of-function  mutant  of DEP1 with  a
truncated  ORS  domain  shows  decreased  grain  size,  grain
weight,  and  dense  and  erect  panicles  and  increased  grain
number  per  panicle  and  grain  yield  per  plant[50].  The TaDEP1
locus was also identified within a key QTL correlated with grain
thickness  by  GWAS.  It  has  been proposed that  the  function of
TaDEP1 is  conserved,  and  rice DEP1 is  a  regulator  of  grain
weight and size[51].

 Phytohormones
The  phytohormone  brassinosteroids  (BRs)  regulate  multiple

plant growth and development processes[23,52]. The BR signaling
component  rice  OsGSK2,  which  encodes  an  ortholog  of
Arabidopsis BIN2,  negatively  regulates  grain  size[53],  and  phos-
phorylates  DWARF  AND  LOW-TILLERING  (DLT,  also  known  as
OsGRAS32,  DWARF62,  and  GRAIN  SIZE6)[54].  Wheat Tasg-D1 is
an ortholog of OsGSK2 and plays a conserved role in negatively
regulating grain size and weight[55].

The  causal  gene  of  a  rice  grain  length  QTL, qGL3/GL3.1,  is
OsPPKL1,  which  encodes  a  Ser/Thr  phosphatase  with  a  Kelch-
like  repeat  domain[56−58].  OsPPKL1  dephosphorylates  cyclin-
T1;3  and  subsequently  regulates  cell  division  in  spikelets.  A
reduction in  OsPPKL1 activity  results  in  increased grain  length
and grain yield without affecting grain quality. In fact, the qgl3
allele has been utilized in breeding[56].  The wheat homologous
gene TaGL3-5A harbors a SNP in the 11th exon that leads to an
amino acid change, and the resulting TaGL3-5A-G allele is corre-
lated  with  increased  grain  size  and  grain  weight[59]. OsPPKL2
and OsPPKL3 are two OsPPKL1 homologs in the rice genome[56].
OsPPKL1 and OsPPKL3 decrease grain length, whereas OsPPKL2
increases  grain  length. TaGL3.3-5B is  the  homolog  of OsPPKL3,
with one allele associated with large grain size and under selec-
tion in breeding[60]. Taken together, the results of these studies
in  rice  have  shown  that  BR  signaling  plays  important  roles  in
regulating grain development,  not only in grain size and grain
filling  but  also  grain  number  per  panicle.  Wheat  homologous
genes are frequently found in seed trait QTLs, suggesting possi-
ble  conservative  roles  in  seed  development.  Wheat TaD11-2A
positively regulates the endogenous BR content, and TaD11-2A
mutants  exhibit  dwarfism  and  small  grains.  In  addition,  wheat
TaD11-2A is significantly associated with plant height, grain size,
and grain yield per plant, with an elite haplotype that has been
positively selected during wheat breeding[61].

In  addition  to  BR,  auxin  also  plays  important  roles  in  deter-
minating  grain  size.  Rice THOUSAND-GRAIN  WEIGHT  6 (TGW6)
encodes  indole-3-acetic  acid  (IAA)-glucose  hydrolase,  which
catalyzes  the  transformation  of  IAA-glucose  back  to  IAA  and
regulates  early  endosperm  development. TGW6 negatively  re-
gulates grain size and weight without affecting grain quality[62].
Wheat TaIAA21 negatively  regulates  grain  length,  width,  and
weight.  TaIAA21  can  physically  interact  with  TaARF25  and
subsequently  positively  regulates  grain  size  and  weight  in
tetraploid  wheat.  TaARF25  further  positively  regulates  the
expression of TaERF3, whose mutants exhibit reduced grain size
and weight. Therefore, TaIAA21 is a negative regulator of grain
size  and  weight via interaction  with  the  TaARF25–TaERF3
module in wheat[63].

Overexpression  of TaCYP78A5 specifically  in  the  maternal
integument significantly enhanced grain size, grain weight, and
grain yield per plant in field trials. TaCYP78A5 is involved in the

auxin  synthesis  pathway  and  increases  auxin  accumulation  in
the  ovary. TaCYP78A5 expression  prolongs  the  proliferation  of
maternal  epidermal  cells  and  increases  the  number  of  seed
coat  cells  through  auxin  mediated  flowering  delay,  thereby
promoting  grain  enlargement[64].  Similarly,  upregulation  of
TaCYP78A3 expression can increase grain size by regulating the
number of cells in the seed coat[65].

Rice OsCKX2 controls  grain  number[66],  and  several  wheat
homologs of OsCKX2 are associated with grain size traits. An 18-
bp deletion in the 2nd intron of TaCKX6-D1[67] and a novel allele
of TaCKX6a02[68] are  associated  with  grain  size  and  weight.  In
addition, TaCKX2A_2, TaCKX4A_2, TaCKX5A_3,  and TaCKX9A_2
are also significantly associated with increased grain weight in
the Chinese wheat micro-core collection (MCC) and a landrace
wheat population[69].

PYLs,  which  are  abscisic  acid  (ABA)  receptors,  respond  to
plant  drought  stress.  Overexpression  of TaPYL1-1B improved
drought  tolerance  and  increased  grain  size  and  weight.  The
elite  allele TaPYL1-1B confers  not  only  drought  tolerance  but
also increases grain size and yield[70].

TaGL1-B1 has  been  identified  as  a  regulator  of  grain  length
by  GWAS.  A  mutant  of TaGL1-B1 exhibits  dramatically  shorter
grain  lengths,  and TaGL1-B1-overexpressing  lines  exhibit
increased grain lengths. Moreover, TaGL1-B1 physically interacts
with  TaPAP6  which  positively  regulates  grain  length.  The
content  of  jasmonic  acid  (JA)  is  significantly  increased  in  both
the TaGL1-B1- and TaPAP6-overexpressing  lines,  suggesting
that the JA pathway may influence grain length[71].

 Other regulators of grain size
Among the genes affecting grain size, some are not associated

with  the  abovementioned  pathway.  Wheat TaGW8 is  an
ortholog  of  rice GW8/OsSPL16 that  increases  grain  size  and
grain  yield  by  promoting  cell  division  and  grain  filling[72].  The
TaGW8-B1a haplotype is associated with greater grain size and
greater  grain weight,  which is  in  contrast  with the TaGW8-B1b
haplotype,  which  lacks  a  276-bp  indel  in  the  first  intron[73].
Using GWAS, wheat TaSPL17 was identified as a positive regula-
tor  of  grain  size  and  grain  number  by  regulating  spikelet  and
floret meristem development, which in turn leads to increased
grain  yield  per  plant[74].  An  elite TaSPL17 haplotype  results  in
wider and longer grains and greater grain weight, accompanied
by more spikelets per spike[74].

Polish  wheat  (Triticum  turgidum ssp. polonicum,  previously
known  as Triticum  polonicum)  is  a  subspecies  of  tetraploid
wheat with long glumes,  lemmas and grains.  Map-based clon-
ing  identified  a  MADS-box  TF  encoding  gene VEGETATIVE  TO
REPRODUCTIVE TRANSITION2 (VRT2) as the causal gene underly-
ing the long-glume P1 locus[75,76]. Ectopic expression of VRT-A2
in  hexaploid  bread  wheat  causes  longer  glumes  and  grains,
leading to larger grain sizes, confirming that the VRT-A2 expres-
sion level affects glume and seed length[75].

Two  members  of  the  wheat TaSnRK2 family  are  reportedly
involved  in  the  regulation  of  grain  size[77,78].  Two  favored
TaSnRK2.9-5A haplotypes  are  associated  with  higher  grain
weight and have been positively selected in wheat breeding in
China[77].  The TaSnRK2.10 haplotype  is  significantly  associated
with larger grain size[78].

Using GWAS, wheat TaARF12 was identified as a plant height
and spike length regulator[51]. Knockout of TaARF12 can signifi-
cantly  increase  grain  number  per  spike  and  result  in  higher
grain weight[79].

  Grain size control in wheat
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Wheat TaGS5-3A has  two  alleles  that  are  discriminated  by  a
G/T  SNP  in  the  coding  region,  and  the TaGS5-3A-T allele  was
associated  with  larger  grain  size  and  higher  grain  weight  in  a
population  analysis[80,81]. Schizosaccharomyces  pombe express-
ing TaGS5-3A-T was shown to exhibit higher total serine carbo-
xypeptidase activity than TaGS5-3A-G[80]. In addition, transgenic
experiments  in  rice  showed  that TaGS5-3A-T overexpression
lines  are  superior  to TaGS5-3A-G overexpression  lines  in  grain
width,  length and weight[80].  Furthermore,  population analysis
indicated that TaGS5-3A-T is a favored haplotype under positive
selection[80].

TaTGW-7A transcription  levels  were  found  to  be  positively
associated with  grain  size  and grain  weight  using the  Chinese
mini-core  collection with  501  varieties.  The  elite  allele TaTGW-
7Aa exhibits  higher  expression  levels  and  has  been  under
strong and positive selection during wheat breeding[82].

TaFlo2-A1,  an ortholog of rice FLOURY ENDOSPERM2,  is  asso-
ciated with grain size and weight in bread wheat[83]. Population
genetics analysis was used to identify the TaFlo2-A1b allele as a
positively selected haplotype[83].

Ectopic  expression  of TaBG1,  the  homologous  gene  of  rice
BIG  GRAIN1,  leads  to  a  larger  grain  size,  but  transgenic  lines
exhibit  a  trade-off  in  grain  number  per  plant,  resulting  in  no
significant overall increase in gain yield[84].

 Grain filling

The  grain  filling  stage  is  a  key  step  that  determines  grain
weight  and  grain  size.  During  this  stage,  starch,  protein,  and
other  organic  matter  produced  through  photosynthesis  are
assimilated in wheat grains.  The duration and velocity of grain
filling are two factors that affect grain size and weight. Cell wall
invertases  catalyze  the  irreversible  hydrolysis  of  sucrose  to
glucose and fructose and play a key role in sink strength. Based
on  the  nucleotide  polymorphisms  at  the TaCwi-A1 locus,  one
haplotype was found to be associated with lower grain weight,
whereas another was found to be associated with higher grain
weight[85].  Similarly,  a TaCWI-5D haplotype  was  shown  to  be
distinctly  associated  with  greater  grain  weight  and  is  strongly
selected  during  wheat  polyploidization,  domestication,  and
breeding[86].  TaSus  converts  sucrose  to  fructose  and  UDP-
glucose during seed development. Both TaSus1 and TaSus2 are
associated  with  grain  size  regulation[87,88].  The  trehalose-6-
phosphate  phosphatase-encoding gene, TaTPP-7A,  was  identi-
fied as a putative grain size regulator that is expressed specifi-
cally in developing grains and significantly influences grain fill-
ing.  Identification  of TaTPP-7A-overexpressing  wheat  plants
confirmed that TaTPP-7A is  a  key  regulator  of  source-flow-sink
interactions and sucrose allocation. Population genetic analysis
revealed  that TaTPP-7A is  a  domestication-  and  breeding-
selected target gene[89].

As  an  important  posttranslational  protein  modification,
asparagine  N-glycosylation,  which  is  catalyzed  by  the  oligo
saccharyl  transferase  (OST)  complex,  plays  essential  roles  in
plant  development[90].  STAUROSPORINE  AND  TEMPERATURE
SENSITIVE3  (STT3)  is  one  of  the  subunits  in  the  OST  complex
that  catalyzes  the  subunit  encoding  oligosaccharyl
transferase[91].  Overexpression  of TaSTT3b-2B distinctly
increases grain size and weight by increasing the expression of
genes encoding starch synthase, and sucrose synthase[92].

 Starch and SSPs

Starch and seed storage proteins (SSPs) are the main compo-
nents of wheat grains; they account for approximately 70% and
13%, respectively, of the weight of ripen grains and play essential
roles  in  determining  grain  weight,  size  and  quality[93].  Several
key  genes  involved  in  starch  synthesis,  including  ADP-glucose
pyrophosphorylase  (AGPase),  starch  synthase  (SS),  starch-
branching enzyme (SBE), and debranching enzyme (DBE), have
been  studied  in  wheat.  AGPase  catalyzes  the  conversion  of
glucose-1-Pi to ADP-glucose, which is a rate-limiting enzyme in
the  starch  synthesis  pathway[94].  The  AGPase  tetrameric
complex  comprises  two  large  subunits  (LSUs)  and  two  small
subunits (SSUs)[94]. A haplotype of TaAGP-L-1B and a haplotype
of TaAGP-S1-7A are associated with larger grain size and greater
weight, respectively, in modern wheat cultivars, and their addi-
tive  effects  on  the  determination  of  grain  size  have  been
detected  in  wheat  populations[95].  Starch  synthesis  IV  (SSIV)  is
an important starch synthesis isoform, and its mutation reduces
the number of starch granules per chloroplast in wheat. An elite
SSIV  allele  is  significantly  associated  with  grain  size  and
weight[96]. BRITTLE1 (BT1) is responsible for the transport of ADP-
glucose which is essential for starch synthesis in Arabidopsis[97].
Knocking down the expression of TaBT1-6B in wheat decreases
grain size and starch content[98]. TaBT1-6B-Hap1 and TaBT1-6B-
Hap2 are  two  useful  alleles  under  selection  during  modern
wheat  breeding[98].  In  addition,  a  polymorphism  in  a  starch-
debranching  enzyme-encoding  gene, TaSBEIII-A,  is  associated
with grain size and grain weight[99]. T. aestivum Positive Regulator
of  Grain  Size  1 (TaPGS1)  is  a  bHLH  transcription  factor  (TF)
encoding gene that is strongly expressed in the endosperm at
10-20  d  postanthesis  in  wheat.  Ectopic  expression  of TaPGS1
increases  grain  weight  (up  to  13.81%  in  wheat  and  18.55%  in
rice) and grain size with decreasing starch granule size (smaller
and  tighter)  in  the  proteinaceous  matrix[100].  Furthermore,
TaPGS1 can regulate the expression of TaFI3 by binding to the E-
box motif in its promoter region.

SSPs are also essential determinants not only of wheat grain
weight  but  also  of  the  end-use  quality  of  wheat  flour[101,102].
SSPs include glutenin and gliadins. Based on their mobilities in
sodium  dodecyl  sulfate  polyacrylamide  gel  electrophoresis
(SDS‒PAGE), glutenin can be further divided into high-molecu-
lar-weight  glutenin  subunits  (HMW-GSs)  and  low-molecular-
weight  glutenin  subunits  (LMW-GSs)[102].  Gliadins  consist  of
α/β-, γ-, ω- and δ-gliadin based on their different primary struc-
tures[103].  The expression and abundance of SSPs are regulated
by  the  complicated  network  of  TFs[104].  Wheat  storage  protein
activator  (TaSPA),  a  bZIP  TF,  is  expressed  specifically  in  grains
and  binds  to  the  GCN4-like  binding  motif  in  the  promoter  of
LMWG-1D1[105].  Wheat prolamin-box binding factor (WPBF) is a
DNA-binding  TF  with  one  finger  (Dof)  that  can  bind  to  the
promoter regions of gliadin-encoding genes, and LMW-GS and
HMW-GS-encoding TaGlu-1By8 and -1Dx2 loci[106,107]. TaGAMyb,
which  is  a  companion  of  the  GCN5-like  histone  acetyltrans-
ferase,  regulates the expression of  the HMW-GS 1Dy encoding
gene by binding to its promoter directly[108].

The  starch  content  in  grains  directly  determines  grain  size
and weight. However, the increase in SSPs usually occurs at the
cost  of  grain  weight.  Therefore,  the  coordination of  the  starch
content and SSPs content is  crucial  for  balancing of  grain size,
weight and quality. Three NAC (NAM-ATAF-CUC) TFs, NAC-A18,
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TaNAC019  and  TaNAC100,  are  coordinators  of  starch  and  SSP
accumulation[109−111].  Ectopic  expression  of NAC-A18 in  rice
dramatically  decreased  the  starch  content  and  increased  the
SSP  content,  grain  size  and  weight.  Moreover,  NAC-A18  can
upregulate  the  expression  of TaLMW-D6 and TaLMW-D1 by
binding directly to their promoters and suppressing the expres-
sion of TaGBSSI-A1 and TaGBSSI-A2. TaNAC019 binds to specific
motifs  in  the  promoters  of TaGlu-1Bx, TaGlu-1By, TaGlu-1Dx,
TaSuSy1,  and TaSSIIa and  positively  regulates  their  expression.
Compared to those of the wild type, the triple mutant of three
homeologous TaNAC019 exhibits  lower  gluten  contents  and
smaller grain sizes with shorter grain widths and lengths[109]. In
contrast,  TaNAC100  negatively  regulates  the  expression  of
GLU-1 through  binding  to  its  promoter.  Overexpression  of
TaNAC100 suppresses Bx14, By15 and Dx2 expression  and
further decreases their protein levels[110]. Similarly, the TF TaB3-
2A1 binds to the cis-element CCRM1-1 in the promoter of GLU-1.
TaB3-2A1 overexpression  significantly  reduces  the  contents  of
HMW-GSs  and  other  seed  storage  proteins  but  increases  the
starch content,  leading to increased grain size,  including grain
length  and  width[112].  Another  B3-superfamily  TF,  TaFUSCA3,
interacts with TaSPA and subsequently activates Bx7 by binding
to its promoter[113].

Although  the  abovementioned  genes  independently  and
coordinately regulate the contents of starch and SSPs, the intri-
cate  mechanisms  underlying  their  regulatory  pathway  still
need  to  be  determined  to  accumulate  additional  genetic
resources for genome-wide target editing.

 Conclusions and perspectives

Grain size is a key agronomic trait in crop breeding. In recent
decades, there has been exciting progress in research on grain
size  development  in  rice.  Studies  in  wheat  suggest  that  some
grain size regulators have conserved functions in rice and other
plants[32,34,35,114−116].  However,  many  of  the  observed  associa-
tions  in  wheat  remain  unconfirmed  by  experiments.  Often,  a
homolog  of  the  rice  grain  size  regulatory  gene  is  found  in  a
grain trait QTL by GWAS in wheat. It is often difficult to experi-
mentally  validate  whether  a  favorable  haplotype  indeed
promotes a grain trait in wheat, as often only a single SNP exists
between two haplotypes, and we still  cannot edit the genome
precisely  to  reconstruct  the  haplotype  in  the  desired  genetic
background.  On  the  other  hand,  overexpression  of  an  allele
could  lead  to  misleading  results.  Because  of  these  difficulties,
we  sometimes  know  much  about  a  wheat  homolog  of  a  rice
grain  regulator,  including  its  interacting  proteins  and  binding
promoters, in the case of TFs; however, no solid data confirming
its  role  in  regulating  a  seed  trait,  such  as  for  its  rice  homolog,
have yet been obtained. Therefore, our understanding of wheat
grain  traits  heavily  relies  on  knowledge  from  rice,  and  the
proposed  roles  of  genes  often  need  validation.  For  grain  trait
regulators  that  are not  conserved in  rice or  have not  yet  been
found in rice, we know little about these regulators in wheat. In
addition,  as  an  allopolyploid  crop,  bread  wheat  exhibits
complex genetic regulation. For example, the effect of TaGW2-
B1 on grain size is significantly greater than that of TaGW2-D1,
and the grain sizes of double mutants are substantially greater
than  those  of  single  mutants[34].  The  interactions  among
subgenomes  need  to  be  elucidated,  especially  by  utilizing
improved genetic transformation and editing technology.

Like  for  other  crops,  maintaining  a  balance  in  yield  compo-
nents  are  essential  for  improving  wheat  yield.  Many  seed  trait
QTLs  or  genes  exhibit  intensive  genetic  trade-offs  between
grain  size/weight  and  seed  number,  which  substantially
impedes  the  utilization  of  these  genes[117].  Only  a  few  genes,
such as TaGSNE in wheat and OsOTUB1, OsSGL, and OsAGSW1 in
rice,  have  been  found  to  simultaneously  increase  both  grain
size  and  number  and  hold  promise  to  improve  wheat
yield[40,118,119].  Recently,  overexpression  of  an α-expansin gene
specifically  in  early  developing  grain  led  to  a  significant
increase in grain size without a negative effect on grain number,
resulting  in  an  increase  in  yield  under  field  conditions[120].
Similarly, targeted expression of TaCYP78A5 in integument also
enhances  grain  weight  without  negative  effects  on  grain
number  per  spike.  Therefore,  modifying  the  expression  of
genes in specific organs, developmental periods, or biogenesis
steps may be a feasible way to overcome the trade-off between
the grain size/weight and grain number.

Additionally,  grain  size  and  weight  usually  have  a  negative
correlation  with  grain  quality,  as  indicated  by  the  protein
content  and  end-use  quality[4].  Therefore,  synergetic  improve-
ment of grain yield and end-use quality is also a goal for wheat
breeding. In rice, both OsPPKL1 (qGL3/GL3.1) and TGW6 influence
grain  size  but  have  no  significant  influence  on  grain
quality[56,62],  which  are  potentially  useful  for  improving  grain
weight  and  quality.  Additionally,  some  TFs  can  regulate  the
contents of starch and SSPs by binding directly to the promoters
of related genes, such as TaNAC019 andNAC-A18[109,111]. There-
fore, identifying additional genes that regulate grain size deve-
lopment  and  SSPs  is  still  an  effective  way  to  coordinately
improve grain size, weight, and quality.
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