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Abstract
The  evolutionary  origin  of  fruits  represents  a  key  morphological  innovation  associated  with  angiosperm  diversification  by  promoting  seed

dispersal.  Fruits  are  also  a  nutritional  source  for  the  human  diet.  The  fruit  is  derived  from  the  gynoecium  stricto  senso,  which  is  the  female

reproduction produced at the center of a flower. Fruit development and gynoecium patterning are interconnected processes that require the

consecutive differentiation of multiple distinct tissues and rapid cell expansion after pollination. In the past decades, our understanding of fruit

development  has  been extensively  extended by  the  active  studies  in Arabidopsis.  More  importantly,  the  roles  of  phytohormones  in  directing

tissue  differentiation  along  the  polarity  axes  during  gynoecium  patterning  and  fruit  development  have  just  begun  to  be  recognized.  In  this

review,  we  provide  a  comprehensive  summary  of  the  latest  advancements  in  the  gene  regulatory  networks  (GRNs)  that  control  tissue

differentiation during gynoecium and fruit  development in Arabidopsis.  We also discuss hormonal crosstalk and associated pathways into the

GRNs  by  showing  the  examples  of  how  hormones  could  modify  GRNs  in  fruit  development.  We  further  highlight  the  unresolved  questions

concerning the development, with a particular focus on the evolution of fruit, which opens the avenue for further studies.
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Introduction

Angiosperms  are  the  most  successful  group  of  land  plants
that have colonized virtually all terrestrials on this planet[1]. This
evolutionary  success  largely  depends  on  two  related  morpho-
logical  innovations,  seed  production  via  sexual  reproduction
and  the  origin  of  fruits  that  facilitate  seed  dispersal[2−6].  A
successful sexual reproduction process requires both the devel-
opment  of  male  and  female  gametes  through  meiosis,  during
which  genetic  variations  are  generated  that  are  potentially
adaptive in a new environment[7]. Meanwhile, the fruits provide
an  enclosed,  stable  condition  for  the  developing  seeds,  and
when the seeds mature, the fruits promote the seeds to excavate
new habitat through distinct dispersal strategies[4,8−11]. The fruit
is  derived  from  the  gynoecium  consisting  of  one  or  more
carpels, which is the female reproductive organ that developed
in  the  center  of  a  flower[2,12,13].  In  addition  to  its  evolutionary
contribution  to  angiosperm  diversification,  the  fruits  are  also
the source of vitamins, proteins, fibers, and carbon-hydrates for
human  diet.  Deciphering  the  genes  and  genetic  networks
underlying  the  gynoecium  patterning  and  fruit  development
has been a central  topic in plant biology,  not only for  a  better
understanding  of  the  mechanism  underlying  plant  diversifica-
tion but also for providing the blueprint for crop improvement.

The gynoecium is inarguably the most complex plant organ
consisting of multiple tissues and distinct cell types elaborated
along the three axes: (i) the differentiation of gynophore, ovary,
style, and stigma along the proximal-distal axis; (ii) the replum,

placenta  tissues,  valve  margin  and  valves  along  the  medial-
lateral  axis;  and  (iii)  the  differentiation  of  endocarp,  mesocarp
and  exocarp  layer  in  the  valves  along  the  adaxial-abaxial  axis,
respectively[12−15].  The  correct  patterning  of  these  cells/tissues
requires  the  precise  territorial  expression  of  key  transcription
factors  in  the  gynoecium  morphogenesis  process[2,14−18].  In
addition, recent findings also suggest the involvement of plant
hormones  in  the  regulating  gene  activities  and  expression
during  gynoecium  and  fruit  development[19,20].  Altogether,
these  factors  constitute  robust  genetic  regulatory  networks
(GRNs) to ensure the correct patterning of the distinct tissues in
the gynoecium and the successful development of a fruit[2,18,19].

In this review, we integrate the key landmarks in gynoecium
patterning and fruit development in Arabidopsis into a develop-
mental  framework,  within  which  we  discuss  the  regulatory
networks  underlying  these  key  developmental  steps.  We  also
summarize  the  role  of  plant  hormones,  especially  auxin  and
cytokinin,  in  gynoecium  patterning  and  fruit  development,
respectively.  We  also  highlight  the  key  components  in  gynoe-
cium/fruit development that can be potentially utilized for crop
improvement by modern genetic toolkits. 

Key ontogenetic events in fruit development

The Arabidopsis is  a  representative  of  Brassicaceae,  whose
gynoecium  is  composed  of  two  congenitally  fused  carpels  in
the  middle  of  the  flower[12,13].  The  mature  fruit  is  a  dehiscent
dry  fruit  specialized  to  Brassicaceae,  termed  as  silique.  The
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whole developmental process of the Arabidopsis flower can be
meticulously divided into 20 sequential stages with the stage 6
to 13 related to gynoecium patterning whilst the stage 14 to 20
encompasses the fruit morphogenesis process after pollination
(Fig.  1a, b, c)[13].  The  gynoecium  primordium  is  initiated  as  an
elliptical flattened protrusion in the middle of the floral meristem
at  the  stage  6.  From  stage  6  to  8,  the  gynoecium  primordium
continues  to  grow  both  in  longitudinally  and  laterally  as  a
hollow tube, and at stage 9, the style and stigmatic papilla cells
start to differentiate (Fig. 1b, d)[13]. The gynoecium continues to
grow  longitudinally  from  stage  10  to  12.  At  late  stage  12,  the
valves,  valve  margins,  replum,  and  style  start  to  become
morphologically evident, and the gynoecium is ready for fertil-
ization  at  stage  13  (Fig.  1b, d)[13].  The  fruit  developmental
program starts  from stage 14 upon the fertilization of  the egg
cells.  The fruit  elongates  dramatically  from stage 14 to  16 and
reaches  the final  size  at  stage 17 (Fig.  1c)[13].  At  later  stage 17,
the  valve  margin  begins  to  differentiate  into  the  dehiscence
zone  and  lignified  cells  in  the  valve  margin  and  endocarp b
(enb)  layer  start  to  deposit  secondary  cell  walls[13].  Meanwhile,
the middle lamella of the separation layer starts to break down.
All these developmental and physiological processes make the
silique ready for dehiscence. The pods turn yellow and finalize
the shattering process from stage 18 to 20[13]. 

Gynoecium initiation and floral meristem
termination

Plants  continuously  generate  lateral  organs  to  sustain  their
growth  and  development  throughout  their  lifecycle[21].  This
feature  is  largely  attributable  to  the  activity  of  shoot  apical

meristem  (SAM)  located  at  the  very  tip  of  a  shoot[22].  In  the
SAM,  a  group  of  stem  cells  sustains  the  pluripotent  activity  of
the  meristem  so  that  new  organs  are  repeatedly  produced[23].
Under  certain  conditions,  such  as  long-day  light  period  and
vernalization, the SAM transits into the inflorescence meristem
(IM),  on  which  flanks  the  floral  meristems  (FMs)  are
produced[24].  During  the  development  of  a  FM,  four  types  of
floral organ are produced in whorls: sepals, petals, androecium,
and gynoecium. These floral  organs are specified by combina-
torial  protein  complexes  of  floral  organ  identity  genes  in  a
framework known as the ABC model[25,26]. The gynoecium iden-
tity  itself  is  defined by the quaternary protein complex consti-
tuting two AGAMOUS (AG) with two SEPALLATA (SEP) proteins.
Single ag loss-of-function mutation or multiple sep gene muta-
tion results in the loss of gynoecium identity[27,28].

Unlike  the  SAM  and  IM,  which  are  indeterminate,  the  FM  is
determinate  by  the  initiation  of  two  carpel  primordia.  In  both
SAM and IM, the indeterminacy is achieved by the maintenance
of stem cells, which is regulated by the negative feedback loops
between  the  homeodomain  transcription  factor WUSCHEL
(WUS) and the CLAVATA 3 (CLV3) ligand-receptor system[29,30]. In
the  SAM, WUS positively  regulates  stem  cell  maintenance  and
activates expression of CLV3, which in turn restricts the expres-
sion  domain  of WUS[31,32].  The  establishment  of  gynoecium
identity by AG is required for the FM termination as ag mutation
changes  the  gynoecium  primordium  into  an  indeterminate
meristem  with  repeated  floral  organ  initiation[27].  At  the  very
early developmental stages of a FM, both WUS and CLV3 can be
detected  in  the  center  of  the  FM,  where WUS together  with
LEAFY (LFY)  activate  the  expression  of AG at  stage  3  and
onward[33]. Indeed, expression of AG and the gynoecium identity
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Fig. 1    Overview of the gynoecium development in Arabidopsis. (a) Top view of an Arabidopsis inflorescence meristem (IM) consisting of stage
1 to stage 6 floral primordia. Dash lines indicate the position of cross section shown in panel D. (b) SEM micrographs of Arabidopsis gynoecium
from  stage  6  to  14.  (c)  A  mature  Arabidopsis  fruit  at  stage  17  showing  the  fully  differentiation  of  distinct  tissues.  (d)  Cross-section  of  the
gynoecium  at  stage  7,  10,  13,  16.  For  stage  13  and  16  samples,  both  the  ovary  and  style  were  included  for  comparison  of  the  symmetry.  i:
inflorescence meristem; the numbers indicate the developmental stages. Scale bars, 100 μm.
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is  diminished  in  either  weak wus mutant  or  null lfy mutant,
respectively[33].  In  addition,  the  bZIP  transcription  factor PERI-
ANTHIA (PAN)  was  also  identified  as  a  positive  regulator  of
AG[34]. AG is  down-regulated  in  the  fourth  whorl  of  the pan
mutant and results in an enlarged meristem consequent upon
the extension of WUS expression (Fig. 3; Table 1)[34,35].

Expression  of AG in  the  FM  gradually  shuts  down  the WUS
expression  at  stages  4  and  5  through  multiple  independent
pathways[33,36].  First, AG physically  interacts  with Polycomb
Group (PcG)  protein TERMINAL  FLOWER  2 (TFL2,  also  known  as
LIKE  HETEROCHROMATIN  PROTEIN  1, LHP1)  and  binds  to  the  3’
and 5’ regulatory sequences of WUS locus, respectively, resulting
in a chromatin loop, which in turn represses WUS expression by
decreasing  the  DNA  accessibility  for  RNA  polymerase  II[37,38].
Secondly, AG directly  activates  the  expression  of  C2H2  zinc-
finger domain and an EAR motif containing transcription factor,
KNUCKLES (KNU)[39].  Meanwhile, AG also  indirectly  induces  the
expression of MINI ZINC FINGER 2 (MIF2) (Fig. 3; Table 1)[40]. As a
result,  in  the  expression  domain  of AG,  two  repressive  protein
complexes  are  formed  on  the WUS locus:  i) KNU recruits  tran-
scription  co-repressor TOPLESS (TPL)  together  with HISTONE
DEACETYLASE  19 (HDA19)  and MIF2 that  removes  the  active
acetylation maker on the histones and represses WUS expression
(Fig. 3; Table 1)[41];  ii) KNU directly interacts with FERTILIZATION
INDEPENDENT ENDOSPERM (FIE), which is a component of Poly-
comb  Repressive  Complex  2 (PRC2)[42].  The  resultant  KNU-FIE-
PRC2 protein complex silence the WUS expression by catalyzing
trimethylation on lysine 27 of histone H3 (H3K27me3)[37,43]. Taken
together,  all  these  factors  form  a  multi-layered  regulatory
mechanism  ensuring  that WUS expression  is  repressed  during
the gynoecium development. 

Hormone crosstalk, transcriptional regulation,
and gynoecium patterning

As  discussed  above,  multiple  independent  pathways  are
recruited  to  ensure  the  balance  between  gynoecium
primordium  initiation  and  stem  cell  termination,  which  is
essential for the further gynoecium development.

Immediately  after  initiation,  the  gynoecium  starts  to  grow
rapidly  along  the  medial-lateral  and  adaxial-abaxial  axes,
during  which  distinct  cell  types  are  differentiated  and
patterned  into  tissues.  A  recent  study  employed  quantitative
live imaging technique showing that the Arabidopsis gynoecium
development  is  determined  by  two  orthogonal,  time-shifted
differentiation  gradients:  an  early  mediolateral  gradient
controlling valve morphogenesis and a late longitudinal gradi-
ent  regulating  style  differentiation[20].  It  is  proposed  that
regional  growth  gradients  fine-tune  the  developmental
program  of  the  gynoecium  patterning  process  (Fig.  2A,  C)[20].
The  rapid  growth  of  the  gynoecium  primordium  is  driven  by
fast  cell  expansion,  which  mainly  relies  on  the  modification  of
cell  wall  components,  such  as  cellulose,  pectin,  and  glycopro-
teins[44−45].  Auxin  in  the  cells  promotes  the  cell  wall  loosening
and expansion[46]. Indeed, one of the AG-mediated pathways is
the  upregulation  of YUCCA  4 (YUC4)  by  directly  activating  the
YABBY transcription factor CRABS CLAW (CRC) expression (Fig. 3;
Table 1)[47]. YUC4 encodes a flavin monooxygenase involved in
auxin  biosynthesis[48].  The  resultant YUC4 expression  in  the
gynoecium  primordium  generates  an  auxin  maximum  in  the
abaxial cell layer at the gynoecium apex that facilitates the fast
cell expansion (Fig. 3; Table 1)[47−49].
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Fig.  2    Complex  GRNs  underlie  gynoecium  patterning  and  fruit  development  in Arabidopsis.  (a)  A  longitudinal  section  of  a  stage  11/12
Arabidopsis gynoecium showing the differentiation of complex tissues along the proximal-distal axis.  The auxin gradient along the proximal-
distal  axis  is  shown  by  a  triangle  red  gradient.  (b)  GRNs  and  the  hormone  dynamic  patterning  the  gynoecium  apical  region.  (c)  Auxin  and
cytokinin signaling distribution pattern during gynoecium development from stage 6 to 12. (d) GRNs governing the differentiation of medial-
lateral axis of Arabidopsis gynoecium. (e) GRNs and the hormone dynamic controlling the dehiscence zone differentiation. (f) GRNs controlling
the cell differentiation responsible for seed abscission.
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Auxin maximum and proximal-distal axis
establishment

In  addition  to  promoting  cell  elongation,  auxin  also  plays  a
prominent  role  in  patterning  the  gynoecium  along  the
proximal-distal  axis.  In  agreement  with  this  notion,  blocking
polar  auxin  transport  (PAT)  by N-1-naphthylphthalamic  acid
(NPA)  or  mutations  affecting  the  integrity  of  auxin  pathway
result  in  deformation  of  the  tissues  along  the  proximal-distal
axis (Fig. 2A, C)[50,51].

During the gynoecium development, the earliest hallmark of
auxin signaling is the observation of two lateral foci at the apex
of  the  primordium,  which  manifests  the  two  carpels[52].  These
two auxin maxima are generated by combination of the apical
localization  of  the  auxin  efflux  carrier  PIN-FORMED  1  (PIN1)
proteins in the epidermis, which transport auxin from the base
to the apex and local auxin biosynthesis by YUC4 (Fig. 3; Table
1)[48,52,53].  The establishment of these two lateral auxin maxima
is  crucial  for  the  early  outgrowth  of  lateral  domains  in  the
gynoecium  as  NPA  treatment  retards  the  lateral  development
of  the  gynoecium  primordium[19,54].  At  stage  10  of  gynoecium
development,  the  gynoecium  is  fused  at  the  apex  forming  a

radially symmetrical structure that allows the differentiation of
style and stigmatic tissues[11]. The switch in this symmetry tran-
sition  is  facilitated  by  the  establishment  of  two  additional
medial auxin foci and subsequently a ring-formed auxin signal
at the gynoecium apex[52,54]. At the genetic level, the establish-
ment  of  the  two  medial  auxin  foci  is  promoted  by  two  basic
helix-loop-helix  (bHLH)  transcription  factor SPATULA (SPT)  and
INDEHISCENT (IND)  (Fig.  3; Table  1).  In  both spt and ind;spt
mutants,  the  stepwise  auxin  distribution  is  blocked  at  the
lateral  two-foci  stage,  the  two  medial  and  the  following  ring-
formed auxin distribution failed to establish[52,55]. The resultant
fruits  from spt or ind;spt mutants  develop  unfused  gynoecia
with a cleft in the medial region[52]. At the gynoecium apex, SPT
and IND form heterodimers, which in turn repress the expression
of AGC3-type protein kinase PINOID (PID)[57]. PID phosphorates
PIN proteins that facilitate their polar localization at the plasma
membrane  (Fig.  3; Table  1)[58].  Due  to  the  repression  of PID at
the  gynoecium  apex, PIN proteins  become  apolarly  localized,
resulting in the establishment of two additional auxin signaling
points at the medial region, which are important for subsequent
transformation  into  a  radial  ring  pattern  at  the  gynoecium
apex[52,59,60].  It  was  recently  discovered  that  SPT-IND  complex

 

Table 1.    A list of genes involved in the gynoecium patterning and fruit development.

Gene name AG code Family Function Reference

AGAMOUS (AG) AT4G18960 MADS-box Gynoecium primordium specification [27]
ALCATRAZ (ALC) AT5G67110 bHLH Separation layer development [119]
APETALA 2 (AP2) AT4G36920 AP2/EREBP Valve development [112,122]
ARABIDOPSIS RESPONSE REGULATORS 1(ARR1) AT3G16857 ARR CMM development [84]
ARABIDOPSIS RESPONSE REGULATORS 10 (ARR10) AT4G31920 ARR CMM development [84]
ARABIDOPSIS RESPONSE REGULATORS 12 (ARR12) AT2G25180 ARR CMM development [84]
AUXIN RESPONSE FACTOR 3/ ETTIN (ARF3/ETT) AT2G33860 ARF Distal end of the gynoecium and in replum

development
[72]

BRASSINOSTEROID ENHANCED EXPRESSION1 (BEE1) AT1G18400 bHLH Reproductive tract development [107]
BRASSINOSTEROID ENHANCED EXPRESSION3 (BEE3) AT1G73830 bHLH Reproductive tract development [107]
BREVIPEDICELLUS (BP) AT4G08150 Homeobox Replum development [105]
CUP-SHAPED COTYLEDON 1 (CUC1) AT3G15170 NAC SAM development and organ boundary definition [89,90]
CUP-SHAPED COTYLEDON 2 (CUC2) AT5G53950 NAC SAM development and organ boundary definition [89]
CRABS CLAW (CRC) AT1G69180 YABBY Gynoecium primordium specification [47]
FILAMENTOUS FLOWER (FIL) AT2G45190 YABBY Valve development [102]
FRUITFULL (FUL) AT5G60910 MADS-box Valve development [103]
HALF FILLED (HAF) AT1G25330 bHLH Reproductive tract development [107]
HECATE 1 (HEC1) AT5G67060 bHLH adaxial-identity in gynoecium [62]
HECATE 2 (HEC2) AT3G50330 bHLH adaxial-identity in gynoecium [62]
HECATE 3 (HEC3) AT5G09750 bHLH adaxial-identity in gynoecium [62]
INDEHISCENT (IND) AT4G00120 bHLH Valve margin tissue development and seed

dispersal
[55,127]

NGATHA (NGA) AT2G46870 AP2/B3-like Style specification [65,66]
NO TRANSMITTING TRACT (NTT) AT3G57670 C2H2 Transmitting tract development [99-101,106]
PIN-FORMED 1 (PIN1) AT1G73590 PIN Proximal-distal axis establishment [53]
PIN-FORMED 3 (PIN3) AT1G70940 PIN Proximal-distal axis establishment [129,130]
REPLUMLESS (RPL) AT1G02065 Homeobox CMM development and replum morphogenesis [98]
SEPALLATA (SEP) AT5G15800 MADS-box Gynoecium identity [28]
SHATTERPROOF 1 (SHP1) AT3G58780 MADS-box Dehiscence zone differentiation [116]
SHATTERPROOF 2 (SHP2) AT2G42830 MADS-box Dehiscence zone differentiation [116]
SPATULA (SPT) AT4G36930 bHLH Style development [55,85]
SEEDSTICK (STK) AT4G09960 MADS-box Funiculus and ovule development [113]
STYLISH (STY) AT3G51060 SHI Gynoecium apex development [68]
SHOOT MERISTEMLESS (STM) AT1G62360 Homeobox SAM development [95,96]
TEOSINTEBRANCHED1/ CYCLOIDEA/PCF15 (TCP15) AT1G69690 TCP Gynoecium apex development [76]
YABBY 3 (YAB3) AT4G00180 YABBY Valve development [102]
YUCCA 4 (YUC4) AT5G11320 YUC Gynoecium primordium specification and

gynoecium apex
[67]

WUSCHEL (WUS) AT2G17950 Homeobox FMs development [29]

Gynoecium and fruit patterning in Arabidopsis  
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activates  the  expression  of  core  cell-cycle  regulators, CYCLIN-
D1;1(CYC-D1;1)  and CYC-D3;3,  thus  maintaining  cell  division
orientation perpendicularly to the direction of organ growth in
medial-apical  cells.  This  anticlinal  (transversal  cell  division)  is
required to symmetry transition[61].

In  addition  to  setting  up  the  medial  auxin  foci,  a  functional
SPT is also indispensable to the formation of ring-formed auxin
signaling  at  the  gynoecium  apex[62].  During  this  process, SPT
exerts its function in conjunction with a set of bHLH transcription
factors, HECATE (HEC1-3),  to  regulate  the  expression  of HOME-
OBOX  ARABIDOPSIS  THALIANA  3 (HAT3)  and ARABIDOPSIS
THALIANA  HOMEOBOX  4 (ATHB4),  thereby  mediating  the  final
step in  the style  radialisation process  by  establishing the ring-
formed auxin pattern (Fig. 3; Table 1)[62].  Interestingly, a recent
study revealed that SPT function is modified at the post-transla-
tional  level  by O-glycosylation[63].  The  attachment  of O-fucose
and O-GlcNAc,  respectively,  to  the SPT enhances  the  binding
affinity  of SPT to  the PID locus[63].  Two O-glycosyltransferase,
SPINDLY (SPY)  and SECRET  AGENT (SEC),  synergistically  control
style  morphogenesis  by  promoting  the  activity  of SPT via O-
glycosylation[63].  Therefore,  the boundary delineation between
ovary  and  style  is  defined  by  the  dynamic  changes  in  auxin
signaling pattern at the gynoecium apex, which is promoted by
apolar PIN locations  mediated  by SPT and  associated  factors
(Fig. 2B).

The  resulting  ring-formed  auxin  maxima  at  the  gynoecium
apex  promote  the  further  differentiation  of  apical  structures,
including  the  stigma  and  style[64].  The  expression  of IND and
SPT is sequentially activated by HEC proteins together with the
B3 transcription factor NGATHA (NGA)[65,66].  Then SPT-IND inter-
acts with HECs and NAG to form a high-order protein complex
to  repress PID expression,  and  therefore  induce  the  apolar
localization of PIN proteins to sustain the auxin maxima at  the
gynoecium apex[66].  Additionally, NGA activates the expression
of SHORT NTERNODES/STYLISH (SHI/STY),  which encodes a zinc-
finger domain containing transcription factor, and cooperatively
functions  with STY to  induce  auxin  biosynthesis  by  activating
YUC4 expression  (Fig.  3; Table  1)[67−69]. NGA, STY and YUC4 are
expressed  in  the  distal  end  of  the  gynoecium,  resulting  in  a
local  auxin  production  at  the  gynoecium  apex  (Fig.  3; Table
1)[65−67].  The  auxin  maximum  in  the  style  and  stigma  is
disrupted  in  either spt, hec1;hec2;hec3 or  high  order nga
mutants[66,69].  In plant cells,  auxin signal is translated into tran-
scriptional  output by AUXIN RESPONSE FACTOR (ARF)  transcrip-
tion factors[70,71]. ARF3,  also  known as ETTIN (ETT),  is  expressed
in  the  distal  end  of  the  gynoecium  and  in  the  replum  (Fig.  3;
Table 1)[72]. The gynoecium of ett mutant displays strong polarity
defects  including  extended  style  and  gynophore  regions,  a
reduction  in  the  ovary  size  and  ectopic  extension  of  papillae
cells in the style and replum[72]. Interestingly, ETT was found to
bind  to  auxin  and  interact  with  a  plethora  of  transcription
factors  in  an  auxin-sensitive  manner[73−75].  It  is  therefore
suggested that ETT acts as an interpreter of auxin concentration
in the apical part of the gynoecium by interacting with specific
proteins, leading to the differential downstream transcriptomes
in  response  to  auxin  signals[74].  However,  how ETT interprets
the auxin gradient along the distal-proximal in delineating the
boundaries  of  stigma,  style,  and  replum  remains  largely
unknown.

Finally,  differentiation  of  style  and  stigma  is  a  determinate
process  that  is  redundantly  regulated  by TEOSINTE  BRANCHED

1/CYCLOIDEA/PCF (TCP)  transcription  factors[76].  Expression  of
TCPs is  predominantly  localized  in  the  apex  of  the  gynoecium
(Fig. 3; Table 1)[76]. Gynoecia of high-order tcp mutants develop
longer and narrower style[76].  However,  when crc or nga muta-
tion  was  introduced  into  the  high-order tcp mutant,  the  style
was  changed  into  fascinated  indeterminate  lamellar
structures[76].  Like TCP genes, STIGMA  AND  STYLE  STYLIST (SSS)
genes  are  also  expressed  in  the  apical  part  of  the  gynoecium.
SSS encodes angiosperm-specific proteins with unknown func-
tion[77]. SSSs act  downstream  of NGA transcription  factors  and
cooperatively regulate the style and stigma growth via control-
ling cell elongation (Fig. 3; Table 1)[77]. 

Cytokinin signaling, Carpel Margin Meristem
(CMM) maintenance and Medial-lateral axis
establishment

The  FM  stops  producing  new  organs  after  the  initiation  of
gynoecium[12,13].  However,  new  tissues  and  cell  types,  e.g.,
septa,  placenta  tissues,  and  ovules,  continue  to  differentiate
inside  the  gynoecium,  indicating  the  maintenance  or  the  re-
establishment of the meristematic identities within the gynoe-
cium[14,15].  This “meristematic-like  zone” was  termed  as  the
carpel  margin meristem (CMM),  located in the medial  domain,
which is established along with the differentiation of the medio-
lateral axis in early gynoecium development[14,15].

In the SAM, the stem cell identity is maintained by increasing
cytokinin  levels  or  sensitivity[78,79].  Reduced  cytokinin  levels  or
signaling results in a smaller SAM[79]. Analysis of cytokinin tran-
scriptional  response reporter  two-component signaling sensor
(TCS)  has  shown  that  cytokinin  signaling  is  evidently  active  in
the  medial  domain  of  the  gynoecium  primordium,  where  the
potential  CMM  will  be  initiated[80].  Later  in  development, TCS
activity  is  specifically  localized  in  the  CMM  and  the  tissues
differentiated from the CMM (placental tissues, septa), and the
valve  margins  of  the  mature  gynoecia  and  young  fruits[80].
Therefore,  the  CMM  cells  are  reminiscent  of  the  stem  cells  in
the SAM in terms of cytokinin signaling properties.

In  plants,  cytokinins  are  synthesized  by  the ISOPENTENYL
TRANSFERASE (IPT)  and LONELY  GUY (LOG)  enzymes  and
metabolically  degraded  by CYTOKININ  OXIDASE (CKX)
enzymes[81−83]. The cytokinins are perceived by the ARABIDOPSIS
HISTIDINE  KINASE (AHKs)  receptors,  and  then  the  signals  are
transduced  as  transcriptional  output  via  phosphorating  the  B-
type ARABIDOPSIS  RESPONSE  REGULATORS (ARRs)[83,84].  Gynoe-
cium  with  increased  cytokinin  levels  by  exogenous  cytokinin
treatment  or IPT over-expression  leads  to  over  proliferation  of
the  medial  tissues  from  the  CMM,  whilst  the  gynoecium  of
arr1;arr10;arr12 mutant has limited capacity of  tissue prolifera-
tion from the CMM, as evidenced by fewer ovules,  a reduction
in transmitting tract tissues, and defects in septum fusion (Fig.
3; Table  1)[84,85].  Intriguingly,  CKX  genes  are  dynamically
expressed  in  the  CMM  cells,  suggesting  cytokinin  levels  and
signaling are strictly fine-tuned in a spatio-temporal manner[86].
Additionally,  the CUP-SHAPED  COTYLEDON  1 (CUC1)  and CUC2
encode paralogous NAC transcription factors  that  are involved
in SAM development and organ boundary definition[87]. Expres-
sion  of CUC genes  is  negatively  regulated  by microRNA164
(miR164)  at  the post-transcriptional  level[88].  In the gynoecium,
both CUC1 and CUC2 are  specifically  expressed  in  the  CMM
region (Fig. 3; Table 1)[89]. CMM identity, placenta development
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and ovule initiation are severely compromised in the cuc1;cuc2
double  mutant,  whilst  plants  expressing  miR164-resistant
forms of CUC1 and CUC2 resulted in extra CMM activities[80,88,89].
In  the  SAM, CUCs are  activated  by  class  I  KNOX  transcription
factor SHOOT MERISTEMLESS (STM) and then CUCs reinforce the
STM expression  constituting  a  double  positive  feedforward
loop  to  sustain  the  SAM  function  (Fig.  3; Table  1)[89−92]. STM is
known  to  balance  the  stem  cell  proliferation  by  activating
cytokinin  biosynthesis  while  repressing  gibberellin
activities[93,94].  Interestingly,  expression  of STM is  specifically
localized in the CMM but significantly reduced in the cuc1;cuc2
mutant[95]. STM knock down by RNAi produces flowers without
the gynoecium[96].  Taken together,  these observations suggest
CUCs promote the stem cell maintenance in the CMM by induc-
ing cytokinin biosynthesis through the STM-mediated pathway.
This assumption is in agreement with the strong expression of
TCS::GFP in the CMM[80]. In addition to CUCs and STM, SPT is also
found to be expressed in the CMM and mediates the cytokinin
signaling  by  directly  binding  to  the ARR1 promoter[85,96,97].  In
summary, all these studies revealed the critical role of cytokinin
in  the establishment  of  the CMM and the development  of  the
middle region of a gynoecium.

The differentiation of distinct tissues along the medio-lateral
axis  is  governed  by  a  regulatory  pathway  with  multiple  tran-
scription  factors  involved,  many  of  which  are  exclusively
expressed  in  distinct  domains[14].  In  the  medial  region  of  a
gynoecium, the replum is derived from the CMM[11]. The home-
odomain transcription factor, REPLUMLESS (RPL), is expressed in
the medial regions and plays a crucial role in CMM development
and  replum  morphogenesis  (Fig.  3; Table  1)[98].  The rpl gynoe-
cium exhibits severe defects in the CMM, leading to a reduction
in replum size and ovule number, loss of the septum and carpel
fusion  defects[98].  Inside  the  CMM,  the  differentiation  of  trans-
mitting  tract  is  governed  by NO  TRANSMITTING  TRACT (NTT)
gene[99,100].  Interestingly,  the  replum  is  completely  lost  in  the
rpl;ntt double  mutant,  indicating a  synergistic  development of
replum and transmitting tract in the middle region[101].  On the
other  hand,  the  establishment  of  valve  identity  in  the  lateral
region is defined by the specific expression of two YABBY tran-
scription  factors, FILAMENTOUS  FLOWER (FIL)  and YABBY  3
(YAB3),  in  the  valves  (Fig.  3; Table  1)[102].  The fil;yab3 double
mutant  develops  gynoecia  with  mis-patterned  valve
identities[102]. FIL and YAB3 affect  the  valve  development
partially by activating the expression of MADS-box transcription
factor, FRUITFULL (FUL)[103].  The  valves  of ful mutant  are
deformed  and  failed  to  grow  after  pollination[102,103] (Discuss
below).  Another  important  function  of FUL is  to  repress  the
expression of RPL in the valve cells and restrict its expression in
the medial region (Fig. 3; Table 1)[101,104]. The expression of RPL
in  the  CMM  is  positively  regulated  by  a  class  I  KNOX  home-
odomain  transcription  factor BREVIPEDICELLUS (BP)  (Fig.  3;
Table 1)[101,102,105].  BP is activated by NTT in the CMM and then
physically  interacts  with  RPL  to  form  a  heterodimer  that
restricts  the YAB gene  expression  to  the  lateral
region[101,102,105,106]. Therefore, the gynoecium patterning along
the  medio-lateral  axis  depends  on  both  the  maintenance  of
CMM  activity  and  the  antagonistic  action  of  valve  and  replum
identity genes, respectively (Fig. 2D; Fig. 3). 

Regulation of fruit growth after pollination

In Arabidopsis, the gynoecium starts to grow into a fruit after
pollination[11].  The  directional  growth  of  the  pollen  tube  from
the stigma to the unfertilized ovules is facilitated by the devel-
opment  of  transmitting tract.  Three closely  related bHLH tran-
scription  factor, HALF  FILLED (HAF), BRASSINOSTEROID
ENHANCED EXPRESSION1 (BEE1) and BEE3, redundantly regulated
the  transmitting  tract  development  by  promoting  cell  death.
The  expression  of  these  genes  is  localized  in  the  transmitting
tract  depends  on  NTT  and  auxin  signaling  pathways  (Fig.  3;
Table 1)[107]. After pollination, the fruit growth is manifested by
the dramatic elongation along the proximal-distal axis, while in
the  medio-later  axis  is  less  pronounced.  A  recent  study
combined live-imaging with genetic analysis showed that fruit
elongation is  triggered by a  mobile  signal  generated from the
fertilized  ovules  at  stage  13[108].  This  active  fruit  growth  in  the
post-pollination stages is largely driven by extensive cell expan-
sions  with  little  if  any  contribution  from  cell  division[109].  The
fruit morphogenesis program is different from that observed in
leaves,  sepals,  or  roots,  in  which  a  spatial-temporal  dynamic
change in cell division and expansion is involved[109,110].  In this
regard, even if the fruits have evolved from the modified leaves,
the  genetic  pathway  underlying  their  morphogenesis  process
has  been  modified  to  optimize  the  fruit  development  process
triggered by the signal from fertilization.

As discussed above, the MADS-box transcription factor FUL is
a  master  regulator  of  valve  identities[103].  The FUL gene  is
strongly  expressed  in  the  inflorescence  meristem,  the  floral
shoot  apex,  and  then  specifically  in  the  ovary  walls  and  fruit
valves[103]. In the valve cells, FUL integrates the auxin signals by
forming  heterodimers  with ARF6 or ARF8.  The FUL-ARF6/8
complexes in turn activate the miR172C gene expression in the
valves[111]. miR172C negatively targets the mRNA of APETALA 2
(AP2),  which  is  a  transcriptional  repressor[111,112].  In  this  way,
FUL promotes  fruit  valve  growth  by  eliminating  the  negative
effect of AP2 in the valves (Fig. 3; Table 1)[111,112]. In addition to
the FUL-ARF6/8 mediated  auxin  pathway,  cytokinin  was
recently  demonstrated to have a  negative effect  on fruit  elon-
gation[113].  The  cytokinin  degrading  enzyme, CYTOKININ
OXIDASE/DEHYDROGENASE 7 (CKX7), is actively expressed in the
valves.  Expression  of CKX7 is  directly  activated  by  the  MADS-
box transcription factor SEEDSTICK (STK)[112]. In agreement with
this  regulatory  relationship,  both  the ckx7 and stk mutants
produce short fruits, as expected from the excessive accumula-
tion of cytokinins[113]. CKX7 is activated by the STK, which is also
responsible for ovule and funiculus development (Fig.  3; Table
1)[114].  Interestingly,  the  expression  of FUL is  also  found  to
depend  on  the STK,  indicating  a  crosstalk  between  auxin  and
cytokinin’s in fruit elongation[113]. However, the STK is primarily
expressed  in  the  funiculus  and  ovules,  where  it  regulates
funiculus  development  and  ovule  patterning[113,114].  Whether
the  shorter  fruits  in  the stk result  from  the  disruption  of
cytokinin degradation or defects in ovule development remains
to be clarified soon (Fig. 2D, E; Fig. 3). 

Valve margin specification and seed dispersal

The final developmental event of a fruit is to shatter the pod,
release the seeds, and ultimately promote seed dispersal[11,115].
Fruit  dehiscence  and  seed  abscission  depend  on  a  similar
mechanism  with  a  few  specialized  cells  in  the  dehiscent  zone
(DZ)[113,115,116].  For  separation  to  take  place,  mechanical  forces
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generated in the surrounding tissues or external agents trigger
the detachment of cells at the separation layer (SL)[117]. The DZs
in  the Arabidopsis silique  are  located  at  the  very  edge  of  the
valve and adjacent to the replum. In a cross section of a mature
Arabidopsis fruit, the DZ consists of two distinct cell types, i) the
SL: 1-2 layer of isodiametric parenchyma cells that are positioned
adjacent to the replum[11]; and ii) the lignified layer (LL), a single
cell  layer  with  rigid  secondary  wall  thickening  that  relates  to
the lignified enb layer of the valve[118].  When the fruits mature,
the shrinkage of the parenchyma cells in the valve generates a
mechanical  force  that  promotes  the  valve  to  release  the  force
at the weakest point,  the separation layer,  and hence, the pod
dehiscence occurs (Fig. 2E, F).

In Arabidopsis,  the  specification  of  the  DZ  is  governed  by  a
delicate genetic regulatory network with multiple transcription
factors and hormones involved[115]. This topic has recently been
extensively  reviewed[115].  In  brief,  the  MADS-box  transcription
factors SHATTERPROOF  1 and 2 (SHP1/2)  and IND determine
both SL and LL cell identities, whilst the SL layer differentiation
is  additionally  controlled  by  a  myb/bHLH  transcription  factor
ALCATRAZ (ALC) (Fig. 3; Table 1)[116−119]. All these four transcrip-
tion  factors  are  specifically  expressed  in  the  developing  DZ,
with SHP1/2 redundantly  activating IND and ALC
expression[116−119].  These  DZ  identity  genes  are  excluded  from
the replum and valve by RPL and FUL,  respectively[98,103,116,120].
In  either ful or rpl mutants,  the  LL  cell  identity  is  ectopically
extended  into  the  replum  and  valve  regions[98,103,118].  The
ectopic  lignification  of  the  parenchyma  cells  in  the  valves
partially explains why the ful fruits fail to elongate after pollina-
tion[103]. Interestingly, over-expression of NTT disrupts the valve
margin and lignified enb layer development by suppressing the
FUL expression,  indicating  a  regulatory  relationship  between
NTT and RPL[121].  In  addition, AP2 was  recently  discovered as  a
negative  regulator  of  both  replum  and  DZ  identities  by  fine-
tuning  the  expression  level  of SHP1/2 and IND in  the  DZ  and
RPL in the replum, respectively[122]. The output of the DZ identity
genes  is  the  differentiation  of  distinct  cell  types  by  activating
different  regulatory  cascades.  The  development  of  the
secondary cell wall in the LL is controlled by the NAC transcrip-
tion  factor NAC  SECONDARY  WALL  THICKENING  PROMOTING
FACTOR1 (NST1) (Fig. 3; Table 1)[123−125]. NST1 is a master regula-
tor of cell wall thickening by activating genes involved in lignin
and  cellulose  synthesis[124]. NST1 acts  downstream  of IND in
specifying  the  LL  cell  identities,  and  expression  of NST1 is
evident  in  both  the  LL  and  the  valve  enb layer[125].  The nst1
fruits  are indehiscent due to defects  in the secondary cell  wall
thickening in both LL and enb cells[125].  Meanwhile,  the break-
down  of  the  cell  extracellular  matrix  in  the  SL  cells  facilitates
the fruit dehiscence process[126].  The ARABIDOPSIS DEHISCENCE
ZONE  POLYGALACTURONASE  1 (ADPG1)  and ADPG2 encode
POLYGALACTURONASE (PG)  that are necessary for the degrada-
tion  of  cell  wall  matrix.  Both ADPG1 and ADPG2 are  positively
regulated by IND in the DZ region, where they are required to
trigger cell separation and fruit dehiscence at maturity[126].

On  top  of  transcription  factors,  phytohormones  also  have
been  elucidated  to  play  important  roles  in  specifying  the  DZ
identities.  During  fruit  development,  cytokinin  signal  reporter
(TCS::GFP)  is  specifically  active  in  the  DZ,  and  exogenous
cytokinin  (benzylaminopurine,  BAP)  application  restored  the
indehiscent  fruit  defect  in  both ind and shp1;shp2 double
mutant[80].  Moreover,  the TCS::GFP expression  is  absent  in  the

DZs  of  either ind or shp1;shp2 double  mutants[80].  It  is,  there-
fore,  likely  that  one  of  the  downstream  events  of SHP-IND
module  is  to  generate  a  cytokinin  maximum  in  the  DZ.
However, strong expression of CKX7 in the fruit valve under the
control  of STK-FUL module  could  also  potentially  restrict  the
cytokinin  to  the  DZs.  It  would  be  interesting  to  test  if  the
cytokinin maximum in the DZ is generated by local biosynthesis
or  suppression  of  degradation  by  the SHP-IND module  in  the
DZ[80,127].  In  addition  to  cytokinins,  IND  also  regulates  the  PIN
localization by directly  activating PID and WAG2[128,129].  Conse-
quently, a dynamic auxin signaling pattern is established in the
DZ in a stage specific manner to ensure the precise differentia-
tion  of  DZs.  At  the  stage  14-16,  when  the  LL  and  SL  start  to
differentiate  via  asymmetric  cell  divisions,  IND  represses  the
expression of WAG2 and PID[127].  Because of this IND-mediated
repression of WAG2 and PID, PIN3 plasma membrane abundance
is  decreased,  which  in  turn  causes  influxes  of  auxin  from  the
surrounding  tissues  and  generates  an  auxin  maximum  in  the
DZ[127].  This  auxin maximum is  required to promote the asym-
metric  cell  divisions  characterizing  the  early  dehiscence  zone
patterning[127]. At stage 17, when the fruit reaches its full length
with cells  in  the DZ finalizing their  differentiation,  IND directly
activates WAG2 while  continuing  to  repress PID[129].  Upregula-
tion of WAG2 shifts PIN3 to the lateral side of the DZ cells that
efflux auxin out and generate auxin minimum in the DZ[129].  A
recent  mathematical  modeling study further  revealed that  the
"flux-passage" auxin flux pattern causes auxin minimum in the
DZ, substantiating the role of  apolar  localization of  PIN3 in DZ
cells[130]. Both the auxin maxima and minimum are required for
the DZ differentiation as  fluctuation in  auxin concentration by
ectopically  expressing  the  AGC3  protein  kinase  (WAG2 or PID)
or auxin synthetic gene (iaaM) disrupts DZ formation and abol-
ishes  fruit  dehiscence[127,129] Finally, IND also  mediates
gibberellin (GA) accumulation by directly activating the expres-
sion of  GA biosynthetic  enzyme GA3ox (Fig.  2E)[131].  High level
of GA in the DZ destabilizes DELLA repressors and free ALC from
DELLA-mediated  repression  in  SL  development[131].  In  conclu-
sion,  the  DZ  development  entails  cooperative  interactions
between  the SHP-IND module  and  associated  phytohormonal
networks.  It  is  apparent  that  cytokinin  and auxin  signaling are
overlapped and regulated by IND in the early patterning stage
of  the  DZ[80,127].  How  these  two  hormones  are  intercrossed  to
direct the DZ differentiation warrants further investigation.

Like  the  pod  dehiscence,  the  seed  abscission  from  the
funiculus depends on the development of  the seed abscission
zone  (SAZ)  in  the  distal  end  of  the  funiculus.  The  SAZ  is
composed  of  a  single  LL  in  a  ring  pattern  surrounding  the
vascular bundle and a SL with less lignified cells at the edge of
the funiculus[132]. STK interacts with SEUSS (SEU) co-repressor to
down-regulate the HEC3 expression in the LL. The seeds fail  to
abscise in the stk mutant due to ectopic expression of HEC3 and
lignification of the funiculus[132]. Since HEC3 is a close homolog
of IND,  while STK is  closely  related  to SHPs,  it  is  therefore
suggested  that  genetic  networks  regulating  pod  dehiscence
and  seed  abscission  are  highly  conserved[132].  However,  this
conclusion awaits further substantiation by elucidating the role
of hormones in SAZ differentiation (Fig. 2E, F). 

Concluding remarks and future perspectives

In the past decades, our understanding of the genetic regula-
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tion of gynoecium patterning and fruit development has been
greatly  advanced  by  the  continuous  effort  in  dissecting  the
genetic component involved in this process. We are also starting
to  appreciate  the  role  of  plant  hormones,  in  particular  auxin
and  cytokinin,  in  the  robust  GRN  balancing  cell  proliferation
and  differentiation  during  gynoecium  and  fruit  development.
Nonetheless,  some  important  questions  remain  to  be
addressed  in  the  near  future.  For  example,  gibberellins  are
known  to  be  important  hormones  in  stem  cell  maintenance
and fruit growth, however, it is unclear how gibberellin signals
are  rewired  with  CK  in  CMM  development  and  fruit  growth.
Analyzing the gibberellin signaling patterns using the recently
developed  ratiometric  GA  signaling  biosensor  would  help  to
clarify  this  question[133].  Additionally,  the  development  of  the
papillae  cells  at  the  top  of  the  gynoecium  is  unique  in
angiosperms,  which could be related to speciation as  they are
the  front  line  to  determine  if  the  plants  are  competent  to
outcross or not. The differentiation of stigmas is associated with
maxima  at  the  gynoecium  apex.  How  this  auxin  maximum  is
sensed and translated into the developmental program direct-
ing the stigma and style differentiation is a very intriguing topic
that warrants further in-depth investigation. Finally, in addition
to  the  cylindrical  fruit  shape  of Arabidopsis,  the  Brassicaceae
exhibits a great variation in fruit shapes, which are adaptive to
specific  dispersal  strategies.  Recent  studies  have  shown  that
while  most  of  the  genetic  components  have  been  largely
evolutionary  conserved in  different  species,  despite  that  some
of  them  have  been  diversified  in  terms  of  both  downstream
genes  and  expression  patterns[134,135].  Future  comparative
genomic and functional analysis in closely related Brassicaceae
species  with  distinct  fruit  shapes  will  test  conservation  of  the
genetic  pathway  underlying  fruit  development,  by  which  the
genetic targets could be identified to design better-performed
crops using CRISPR and other model genetic tools. 
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