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Abstract
Addressing the global challenges of food security, environmental sustainability, and ecosystem preservation necessitates novel integrative approaches that

harmonize agricultural  productivity with ecological  stewardship.  Conventional  synthetic  nanoparticles,  though promising for  enhancing crop yields and

mitigating  environmental  stressors,  pose  risks  of  phytotoxicity,  cytotoxicity,  and  genotoxicity  manifested  through  stunted  plant  growth,  impaired

germination,  and root  defects.  This  highlights  the necessity  of  strategic  nanoparticle  concentration management and mitigation strategy development.

Green nanopriming has emerged as an eco-conscious panacea, harnessing the intrinsic reducing capabilities of plant extracts to synthesize nanoparticles

through  green  chemistry  principles  aligned  with  biocompatibility.  Green  nanopriming  epitomizes  the  synergistic  integration  of  cutting-edge

nanotechnology with nature's wisdom, transcending applications in crop enhancement to encompass green nanopesticides,  nutrient solubilization, and

quality optimization. This holistic approach catalyzes sustainable agricultural transformation to address food security while preserving ecological integrity.

Continuous  interdisciplinary  research  amalgamating  nanotechnology,  plant  biology,  and  environmental  sciences  is  crucial  for  elucidating  mechanisms,

assessing  risks  and  ensuring  responsible  deployment  of  this  innovative  technology.  The  advent  of  green  nanopriming  heralds  an  environmentally-

conscious  paradigm  shift  where  advanced  technology  coexists  symbiotically  with  nature,  paving  the  path  towards  resilient,  sustainable  agricultural

landscapes that meet growing global food demands while safeguarding planetary resources.
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Introduction

In recent decades, commensurate with the growing world popu-
lation and the mounting threat of climate change, food and nutrition
security  challenges  have,  by  instinct  become  much  more  transpa-
rent.  The  size  of  arable  land  areas  harvested  on  a  permanent  basis
decreases  because  of  reasons  including  urbanization,  land  erosion,
and  climate  change.  This  significantly  affects  the  sustainability  of
agricultural  systems[1].  In  a  similar  vein,  the  decreasing  amount  of
arable land in conjunction with the increasing demand for food has
created  a  dire  situation  where  increasing  productivity  is  the  only
course  of  action  that  takes  an  integrated  and  environmentally
sustainable approach.

Seed  quality  is  now  a  key  area  where  farmers  take  steps  to
improve  their  yields  and  there  is  also  a  need  to  support  them  in
dealing with stress caused by climate change[2]. Both pre- as well as
post-harvest  environmental  conditions  affect  seed  quality.  The
production  of  high-quality  seeds  is  an  expensive  process,  more  so
than  the  production  of  high-quality  seeded  crops.  Also,  the  ideal
maintenance of these seeds is a continuous and expensive process.
The  viability,  vigor,  and  germination  ability  of  quality  seeds  are
reduced under various stressed conditions, leading to poor seedling
establishment.  These  factors  are  crucial  indicators  of  seed  quality,
directly  impacting  yield  potential.  High  germination  rates  paired
with strong seedling vigor are the foundation for quality seeds that
ensure  robust  crop  stands  and  contribute  to  good  yield.  Therefore
effective strategies to manage and mitigate such damage are crucial
to  preserve  seed  quality  and  ensure  optimal  germination  and
vigor[3].  Seed  deterioration,  initiated  by  adverse  environmental

conditions  in  the  field,  continues  through  storage,  also  impacting
seed  quality.  This  deterioration,  accelerated  by  long-term  air-dry
storage, leads to carryover or marginal seeds with reduced quality.

Consequently,  initiatives  should  be  devised  that  will  make  it
possible  to improve the seed quality  and enhance the tolerance of
plants to biotic and abiotic stresses. One of the promising methods
that  have  emerged  recently  is  using  priming  techniques,  as  these
produce positive results by improving seed health, germination, and
stress  tolerance  of  crops  over  conventional  technology[4].  While
multiple primary methods are available in seed quality enhancement
techniques,  the  nanopriming  technique  stands  out  as  the  most
advanced  and  efficient,  as  opposed  to  the  conventional  primary
methods.  The  application  of  nanomaterials  to  augment  priming
responses known as nanopriming, has recently drawn a lot of interest
by researchers because of the special qualities and capacity of nano-
materials. Every stage of agriculture, including germination, fertiga-
tion, priming, crop protection, seed storage, and post-harvest could
benefit  from  increased  agricultural  output  and  quality  due  to
nanotechnology[5].  Higher  reproducibility  and  reliability  can  result
from  this  enhanced  stability  in  priming  applications.  While  using
seed  treatment  technology,  it  was  found  that  nanopriming  has
improved germination rate, seedling vigor, plant tolerance to stress
factors, as well as productivity[6].

Two distinct approaches have emerged in the nanopriming tech-
nique:  chemical-based  nanopriming  and  plant-based  nanopriming.
To boost priming efficiency, the small  size and high surface area to
volume ratio (A/V) of nanoparticles can promote improved penetra-
tion,  cellular  absorption,  and  interaction  with  the  targeted  sites[7].
While  the  chemically-synthesized  nanoparticles,  in  particular,  have
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shown  great  promise  in  nanopriming  applications.  The  small  size
and high surface area-to-volume ratio of nanoparticles can facilitate
enhanced  penetration,  cellular  uptake,  and  interaction  with  target
systems, leading to improved priming efficacy[7]. Chemically synthe-
sized nanoparticles have been thoroughly studied for their potential
in  nanopriming,  and  plant-derived  nanomaterials  and  present  a
strong and environmentally friendly substitute. A cutting-edge agri-
cultural  practice  called  'green  nanopriming'  uses  nanoparticles
which  make  it  an  eco-friendly  manner  by  which  to  improve  seed
germination  and  seedling  health.  Because  of  its  ability  to  increase
crop  output  sustainably,  this  strategy  is  becoming  more  and  more
popular. These plant-based nanoparticles often referred to as phyto-
nanoparticles,  possess  inherent  biocompatibility,  biodegradability,
and natural  functionalities that can be leveraged for priming appli-
cations. While the potential of chemically synthesized nanoparticles
in  nanopriming  has  been  extensively  investigated,  plant-derived
nanomaterials offer a potent and sustainable alternative.

This  review  paper  provides  a  comprehensive  analysis  of  the
nanopriming technique and its  potential  to  address  the challenges
faced by modern agriculture.  We will  explore the distinct  characte-
ristics,  mechanisms,  and  applications  of  these  two  nanopriming
paradigms,  highlighting  the  unique  advantages  and  trade-offs  of
each  approach.  Furthermore,  we  will  delve  into  the  environmental
impact, biodegradability, and life cycle considerations of the respec-
tive nanomaterials, as well as the potential for circular economy and
green  chemistry  principles  to  be  integrated  into  nanopriming
technologies. 

Historical background

Seed  priming,  a  method  credited  to  the  Greeks  has  attracted
attention from researchers over the years[8]. A study by May et al.,[9]

demonstrated that seeds treated and dried under controlled circum-
stances exhibited germination rates when encountering challenges.
The  application  of  solutions  containing  salts  like  NaCl,  K3PO4 and
KNO3 was found to stimulate the growth of tomato seedlings[10]. The
term 'priming' was coined by Heydecker et al.[11] in 1973 to describe
the practice of soaking and drying seeds before planting. The team
further  delved into seed priming as  a  technique to improve germi-
nation under conditions involving treating seeds before planting in
an environment to trigger germination without root emergence, as
noted  by  Kaur  et  al.[12] in  2002,  and  Giri  &  Schilinger[13] in  2003
(Fig. 1). 

Priming concept

Priming is a water-based technology that enables controlled rehy-
dration of seeds to initiate the metabolic processes typically activated
during the early stages of germination (referred to as 'pre-germina-
tive  metabolism'),  while  preventing  the  complete  transition  of  the
seed  into  germination.  Consequently,  the  priming  treatment  must
be terminated before the loss of desiccation tolerance[14].  The rehy-
dration  process  triggers  various  crucial  cellular  mechanisms,  inclu-
ding  the  de  novo  synthesis  of  nucleic  acids  and  proteins,  ATP
production, accumulation of sterols and phospholipids, and the acti-
vation of DNA repair and antioxidant mechanisms[15,16] (Fig. 2). 

Sub-cellular changes occur during priming

During  the  process  of  priming,  different  sub  cellular  changes
occur  such  as  biochemical,  molecular,  and  physiological  during
germination. This is due to the slow imbibition of water by seeds but
ceases  the  water  uptake  before  radicle  protrusion.  Varier  et  al.[17]

noted  that  several  proteins  like  globulin,  and  cruciferin  are  only
detected during priming.  Furthermore,  the enzymatic  activities  like
catalase,  peroxidase,  esterase,  phosphatase,  superoxide  dismutase
activities, and α- amylase were higher in primed seeds as compared
to  unprimed  seeds[18,19].  On  the  contrary,  the  lipid  peroxidation
activity reduced due to priming. After the imbibition process (Phase-
I),  DNA  repair,  cell  division,  starch  break  down,  and  repairing  of
cellular  damage  that  may  occur  during  maturation,  dehydration,
and  storage[20].  Sathish[21] found  no  significant  difference  in  DNA
content up to 6 h of germination as a result of priming. However, at
12 h of germination, there was a twofold increase in DNA content in
maize genotypes that were primed with 1% KH2PO4 for 6 h. Subse-
quently, the rate of increase in DNA content at 24 and 48 h of germi-
nation was lower compared to the rate at 12 h of germination. The
pattern  of  water  uptake  during  germination  and  priming  is  similar
and the only  difference is  the  rate  of  water  uptake which is  slower
and controlled to prevent radicle emergence during priming (Fig. 3).

Seed  priming  enhances  germination  and  vigor  by  triggering
various  molecular,  physiological,  and  biochemical  changes.  These
include improved reserve mobilization, faster RNA and protein syn-
thesis,  increased  nutrient  content,  better  membrane  integrity,
reduced  oxidative  stress,  and  enhanced  enzyme  activity.  These
factors  collectively  contribute  to  the  improved  performance  of
primed seeds[22−24].
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Fig. 1    Representation of periodical evolution of priming techniques.
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Gene expression studies in osmoprimed seeds of Brassica oleracea
on  a  cDNA  microarray  depicted  that  in  primed  seeds,  genes  for
serine  carboxypeptidase  (involved  in  reserve  protein  mobilization
and transacylation) and cytochrome B (involved in the mitochondrial
electron transport)  are expressed[17].  Seed priming is  also shown to
enhance seedling performance by increasing the proportion of cells
in  the  G2 phase  relative  to  the  G1 phase.  Seed  priming  resulted  in
the activation of DNA repair mechanisms, synchronization of the cell
cycle  in  G2,  and  preparation  for  cell  division[25].  The  process  of  cell
division  in  a  germinating  seed  begins  shortly  after  the  radicle
(embryonic  root)  emerges.  Seed priming,  a  technique that  extends
the  duration  of  Phase  II  of  seed  germination,  is  completed  just
before the radicle protrudes. Therefore, while seed priming does not
directly  influence  cell  division  itself,  it  prepares  the  seed  for  the
subsequent  phase  of  cell  division.  Rasool  Mir  et  al.[26] reported  the
beneficial  effect  of  priming  on  seedling  performance  due  to  the

action of replicative DNA synthesis processes before seed germina-
tion in hydroprimed maize seeds.

Reactive  oxygen  species  (ROS)  also  play  a  crucial  role  in  plant
growth  and  development  by  acting  as  signaling  molecules.  They
regulate  various  processes,  including  programmed  cell  death  and
hormone signaling. ROS, such as superoxide radicals (O2

·−), hydrogen
peroxide (H2O2),  and hydroxyl  radicals (OH·),  are produced through
redox  reactions  in  seeds[27].  Seed  priming  treatment  enhances  the
ROS  mechanism  within  the  seeds,  leading  to  improved  seed
performance[28].

Priming enhances the activities of cell wall hydrolases as endo-β-
mannanase  that  helps  in  lowering  mechanical  constraints  during
the  initial  period  of  germination  and  radical  protrusion[29].  During
priming  under  abiotic  stresses,  the  cellular  structures  and  proteins
accumulated  during  water  uptake  are  known  to  be  protected  by
specific proteins such as late embryogenesis abundant (LEA) protein
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and  dehydrins[30].  The  expression  of  LEA  proteins  undergoes
sequential  changes  with  a  decline  during  the  imbibition  phase,
upregulation  in  the  dehydration  phase  followed  by  degradation
during the germination phase[31]. 

Nanopriming and its salient features

Nanopriming, which is a new seed technology, substitutes nano-
particles  (NPs)  with  seed  functions  and  crop  productivity.  Here  the
seeds  are  covered with  extremely  thin  nanoparticles  such as  metal
oxides and polymers and they can use the nanoparticles as delivery
tools of beneficial compounds directly to the seed or the emerging
seedling. As part of the nanopriming process, nanoparticles quickly
permeate  the  seed  coat,  increasing  the  efficiency  of  the  intake  of
nutrients and water and promoting seed germination[32]. The funda-
mental material of nanoparticles (organic or inorganic) distinguishes
them from one another. The categories of inorganic NPs are further
divided as metal (Al, Au, Fe, Cu, In, Mo, Ti, W, Ni, Bi, Co, Si, Ag, Sn, Zn),
metal  oxide  (CeO2,  CuO,  MgO,  SnO2,  ZnO,  NiO,  Cu2O,  Al2O3,  La2O3,
SiO2, In2O3, TiO2, ZrO2) out of which CuO, ZnO, FeO, TiO2, and Ag are
often practiced[33,34].  Several genes,  particularly those connected to
plant  stress  tolerance,  are  active  during  the  germination  of  nano-
primed seeds, according to recent publications[6,35,36]. By protecting
seeds during storage, enhancing germination, synchronizing germi-
nation,  and  promoting  plant  growth,  nano-priming  can  also  help
crops become more resilient to biotic and abiotic stressors, thereby
lowering  the  need  for  pesticides  and  fertilizers[37].  Nano-particles
have  a  dual  purpose;  in  addition  to  being  carriers,  they  are  also
distributors;  they  can  carry  nutrients,  growth  regulators,  or  maybe
pesticides and allow access to plant cells with these molecules. Such
practice may alter the way organic substances are utilized by plants
and pests' populations so that fewer resources are being used and a
lesser impact on the environment is  caused. The nanopriming con-
cept also provides a way in which the efficiency and effectiveness of
fertilizers  can  be  enhanced.  Nanoparticles  can  serve  as  carriers  or
binders  to  fertilizers  and  they  will  determine  when  and  which
nutrients  are  needed  by  plants,  thus  releasing  more  slowly.  This

would  help  to  decrease  the  fertilizer  runoff,  reduce nutrient  losses,
and produce higher nutrient use efficiency to bring more sustainable
agronomical  practices.  It  offers  benefits  in  the  form  of  selective
delivery, enhanced seed performance. and stress tolerance (Fig. 4). 

Nanopriming in agriculture

The  development  of  electron  exchange  and  improved  surface
reaction  capabilities  linked  to  diverse  plant  cell  and  tissue  compo-
nents  are  the  key  characteristics  of  nanoparticles  in  seed  priming.
Nano-priming  causes  the  creation  of  nano-pores  in  the  shoot,  aids
the  intake  of  water,  activates  antioxidant  and  reactive  oxygen
species  (ROS)  mechanisms  in  seeds,  and  creates  hydroxyl  radicals,
which weaken cell walls and accelerate the hydrolysis of starch[38]. It
also  triggers  the  expression  of  genes  called  aquaporins,  which  are
involved in the uptake of water and in the mediation of ROS or H2O2

distributed  across  biological  membranes.  By  stimulating  amylase,
nanopriming  causes  starch  breakdown  and  thus  accelerates  seed
germination.  The  generation  of  secondary  metabolites  and  stress
tolerance are aided by the mild ROS that is induced by nanopriming,
which  serves  as  the  main  signaling  cue  for  a  variety  of  signaling
cascade events[6]. In essence, it initiates biological activities intrinsic
to the early stages of germination which results in accelerated water
absorption, expedited breakdown of starches, softening of cell walls,
and weakening of endosperm all leading towards swift development
of the embryo along with root-shoot progress. Recently, nanomate-
rials have been employed as a seed priming agent to enhance plant
development and seed germination. They have also been shown to
upregulate  the  defense  system  by  modulating  enzymatic  activities
and  preventing  stress[39]. Table  1 lists  several  nanoparticles  that
have been successfully used in field crops. 

Differences between conventional agriculture and
nanopriming

The fundamental difference between nanopriming and traditional
priming is the size and scale of the particles involved. Nanopriming
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involves  particles  that  are  within  the  nanometer  range  and  for  the
most part, are less than 100 nm. The nanoscale properties are bene-
ficial  and  advantageous  compared  to  particles  that  are  in  the
micrometer  scale  more  commonly  in  the  form  of  microspheres,
micelles,  or  micro-particles  used  in  traditional  priming  methods[75].
The  reasons  are  that  the  nanoparticles  are  within  the  size  of  the
target cells and tissues. Consequently, they can efficiently penetrate
the target and they also possess enhanced bioavailability and target
delivery of the nanoparticles' active agents. Further, the mechanism
of action between the two sizes differs vastly. Nanopriming uses the
physio-chemical  properties  of  the  nanomaterials  to  achieve  target-
specific  actions  and  related  mechanisms.  Nanoparticles'  surface
characteristics  and  functions  can  be  engineered  to  selectively
engage with and transport payloads to particular molecular or cellu-
lar  targets.  On  the  other  hand,  conventional  priming  is  based  on

passive  distribution  and  absorption  of  larger  particles,  leading  to
less efficient and less targeted chemical  receptivity.  Also,  improved
stability  and  extended  shelf  life  of  nanopriming  formulations  are  a
clear  advantage  over  conventional  priming  techniques.  Nanoparti-
cles have small sizes and distinguished surface properties that resist
environmental  degradation,  thus  allowing  for  longer  storage  and
steady  performance.  Nanopriming,  a  key  application  of  nanotech-
nology  in  agriculture,  has  shown  promising  results  in  enhancing
crop  productivity,  improving  nutrient  utilization,  and  mitigating
environmental challenges[76−78] (Table 2). 

Conventional or synthetic nanopriming

Natural resources or artificial fabrication are two sources of nano-
materials.  Engineered  nanomaterials  are  defined  as  those  that  are

 

Table 1.    Effect of various nanoparticles in different field crops.

Sr. no Crops Types of nanoparticles Effect of nanoparticles Ref.

1 Wheat Multi-walled carbon nanotubes Improved seed vigor, plant morphology, and harvest [40]
2 Wheat Iron nanoparticles Improved seed vigor and plant morphology, and increased harvest yield [41]
3 Wheat Silicon nanoparticles Increased biomass and biochemical activity, and reduced cadmium uptake [42]
4 Wheat Zinc oxide nanoparticles Reduced cadmium uptake [36]
5 Wheat Zinc oxide nanoparticles Improved growth biomarkers under salt stress [43]
6 Wheat Copper nanoparticles Abiotic stress resistance development [44]
7 Wheat Silver nanoparticles Increased seed and seedlings vigor [45]
8 Rice Iron (II) sulfide aqua nanoparticles Improved seed vigor and disease resistance [46]
9 Rice Silver nanoparticles Upregulation of aquaporin gene expression, improved seed and seedlings

vigor
[6]

10 Rice Zinc oxide Improved biofortification [47]
11 Rice Iron nanoparticles Improved enzymatic activity [48]
12 Rice Silver nanoparticles Increased aquaporin gene expression [49]
13 Maize Chitosan nanoparticles containing zinc Improved seed and seedling vigor, and biotic resistance [50]
14 Maize Chitosan nanoparticles containing copper Improved seed and seedling vigor [51]
15 Maize Gold nanoparticles Improved seed and seedling vigor [34]

16 Maize Zinc oxide Increase grain weight, K+ content, and α-amylase activity under salt stress [52]
17 Common bean Zinc nanoparticles Increased biomass [53]
18 Common bean Copper nanoparticles Increased seed vigor, and biomass [44]
19 Common bean Copper nanoparticles High concentrations showed toxic effects on seed germination [44]
20 Soybean Cobalt and molybdenum oxide

nanoparticles
Improved seed vigor, and plant morphology with increased biomass [54]

21 Soybean Silver nanoparticles Potential antimicrobial activity [55]
22 Tomato Chitosan loaded with gibberellic acid Improved seed vigor and plant morphology with increased biomass [56]
23 Tomato Lignin nanoparticles loaded with

gibberellic acid
Improved seed and seedling vigor [57]

24 Tomato Selenium nanoparticles Increased total antioxidant capacity, and chlorophyll content [58]
25 Watermelon Silver nanoparticles Improved seed vigor, and plant morphology [59]
26 Watermelon Iron nanoparticles Increased the activity of plant growth regulator [60]
27 Watermelon Iron oxide nanoparticles Improved plant morphology, reduced phytotoxicity [61]
28 Chili titanium and silver Improved seed vigor, increased disease resistance [62]
29 Chili Zinc oxide nanoparticles High antimicrobial activity [62]
30 Chili Manganese (III) oxide nanoparticles Increased salinity resistance, and antioxidant enzymes [36]
31 Chickpea Lignin nanoparticles loaded with

gibberellic acid
Improved seed and seedling vigor [57]

32 Chickpea Zinc oxide nanoparticles Significantly mycelial growth inhibition of Fusarium oxysporum, and increase
biochemical activity

[63]

33 Chickpea Molybdenum Increased antioxidant enzymes, and harvest [64]
34 Sorghum Iron oxide nanoparticles Increased biochemical activity and biomass, and improved water content in

leaves
[65]

35 Pearl millet Zinc oxide nanoparticles Antimicrobial resistance [66]
36 Onion Silver nanoparticles Potentially increased bio-chemical activity [67]
37 Onion Gold nanoparticles Improved seed and seedling vigor [68]
38 Pea Platinum nanoparticles Decreased microorganism colonization [69]
39 Spinach Zinc nanoparticles Alleviation of salt stress [70]
40 Rapeseed Cerium oxide nanoparticles Upregulates the expression of salicylic acid biosynthesis under salt stress [71]
41 Cucumber Nanoparticles of water treatment residuals Increase salinity stress tolerance, and biomass [72]
42 Radish Manganese oxide nanoparticles Enhanced nutritional richness [73]
43 Lettuce Zinc, silicon, iron, copper, cerium, and

titanium oxide nanoparticles
Reducedthe accumulation of reactive oxygen species, and malondialdehyde
content under cadmium toxicity

[74]
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created  artificially  or  vary  from  naturally  occurring  nanoparticles.
Engineered  nanoparticles  (ENs)  fall  into  three  broad  categories
based on their composition: organic nanomaterials, inorganic nano-
materials,  and  hybrid  nanomaterials  combining  organic  and  inor-
ganic  components.  A  specific  example  of  a  hybrid  EN  is  surface-
modified clay, where the surface properties of clay nanoparticles are
altered  through  chemical  treatment[90].  Nanopriming  based  on
chemicals is a method in agriculture that utilizes nanoscale materials
like  nanoparticles  of  metals  or  their  oxides  to  precondition  seeds
before  sowing.  Abiotic  stressors  can  be  detrimental  to  crops,  but
they  can  be  effectively  mitigated  by  using  metal  and  metalloid
nanoparticles[91].  These minuscule particles can beneficially interact
with  both  the  seed  and  its  immediate  surroundings,  fostering
enhancement in plant evolution and vigor across its entire lifecycle.
The  tiny  size  and  distinctive  physicochemical  characteristics  of
nanoparticles render them perfectly suited for their uses. By treating
seeds  with  these  particles,  enhancements  in  sprouting,  seedling's
emergence,  as  well  as  augmented  growth  and  productivity  of  the
plant are facilitated[92]. This improvement stems from the nanoparti-
cle's capacity to influence metabolic pathways and signaling within
the  seed.  In  the  realm  of  environmental  remediation,  nanopriming
techniques  have  shown  promising  results  in  addressing  various
forms  of  pollution.  Nanoparticles  can  be  engineered  to  selectively
adsorb  and  remove  contaminants,  such  as  heavy  metals,  organic
pollutants, or radioactive materials, from contaminated soil or water
sources[82,89,93]. Nanopriming, a technique that involves the utilization
of  nanoparticles  to  augment  the  catalytic  activity  of  materials,  has
garnered  applications  across  diverse  domains,  encompassing  che-
mical  synthesis,  energy  production,  and  environmental  catalysis.
Nano-catalysts,  in  particular,  have  demonstrated  the  capability  to
enhance  reaction  selectivity,  diminish  activation  energy  barriers,
and  accelerate  chemical  reactions[94].  These  advantages  are  attri-
buted to the elevated specific surface area and surface energy inhe-
rent  to  nanoscale  catalysts,  which  contribute  to  their  heightened
catalytic activity. The controlled synthesis of nanocrystals exhibiting
high-energy surfaces, coupled with a comprehensive understanding
of  the  synthesis-structure-performance  relationships,  constitute
pivotal  challenges  in  realizing  the  widespread  industrial  and  envi-
ronmental deployment of nano-catalysts[95]. More work is needed to
understand the underlying mechanics of seed nanopriming, despite
its  encouraging  results  and  significant  potential  for  application  in
agriculture.  It  has  been demonstrated that  nanoceria  seed priming
increases  salt  tolerance  in  a  variety  of  plants,  such  as  cotton  and

rapeseed,  via  modifying  plant  signaling  pathways  related  to  ROS
and ion homeostasis[35,96].  This  priming method has  been found to
improve  seedling  morphological,  physiological,  and  biochemical
traits, as well as root vitality, under salt stress[35]. It also increases the
activities  of α-amylase,  an  enzyme  involved  in  starch  degradation,
and  reduces  oxidative  damage  in  plant  tissues[96].  Furthermore,
nanoceria  seed  priming  has  been  associated  with  an  improved
maintenance  of  the  cytosolic  potassium/sodium  (K+/Na+)  ratio,
which is crucial for salt tolerance. Several known or proposed mecha-
nisms of seed nanopriming have been identified. Firstly, the applica-
tion  of  zinc  oxide  (ZnO)  nanoparticles  has  been  shown  to  reduce
electrolyte leakage and increase the activities of superoxide dismu-
tase  (SOD)  and  peroxidase  (POD)  enzymes[97].  These  effects  contri-
bute  to  enhanced  oxidative  stress  tolerance  and  membrane
integrity. Secondly, iron oxide (Fe2O3) nanoparticles have been asso-
ciated  with  decreased  lipid  peroxidation,  increased  plant-relative
water content, and improved photosynthetic performance[65]. These
mechanisms aid in maintaining cellular homeostasis and enhancing
the plant's overall  physiological state.  Additionally,  the use of silver
nanoparticles  has  been linked to  lower  percentages  of  micronuclei
and  chromosomal  abnormalities[98],  suggesting  a  potential  role  in
mitigating  genotoxic  effects  and  promoting  genomic  stability.
Moreover,  silver  nanoparticles  have  been  found  to  increase α-
amylase  activity,  leading  to  higher  soluble  sugar,  which  supports
seedling growth and upregulates aquaporin genes, potentially facili-
tating  greater  water  uptake[6].  These  processes  contribute  to
improved seedling establishment and water management. Further-
more,  iron  oxide  (Fe2O3)  nanoparticles  have  been  implicated  in
reducing the level of 12-oxophytodienoic acid, which aids in breaking
seed dormancy[61]. This mechanism promotes germination and early
growth  stages.  These  proposed  mechanisms  highlight  the  multi-
faceted  effects  of  nanoparticles  in  seed  priming,  encompassing
physiological, biochemical and molecular processes that collectively
enhance plant performance under various stress conditions. 

Adverse impacts of synthetic nanoparticle-based
nanopriming

These  synthetic  nanoparticles  have  beneficial  impacts  on  the
agriculture sector  as  explained above,  but  the negative impact  has
also  been  observed  by  these  nanoparticles  on  crop  production
higher  than  specific  concentrations.  Plants  that  are  exposed  to
nanoparticles (NPs) experience cytotoxic, genotoxic, and phytotoxic
abnormalities  that  result  in  slowed  germination,  reduced  plant
growth,  and  elongated  roots[99,100].  In  addition  to  making  plants
toxic,  they  also  have  an  impact  on  aquatic  life,  humans,  and  soil
bacteria  through the food chain.  It  was  discovered that  in  the  root
tips  of  onions (Allium  cepa),  silver  nanoparticles  (Ag NPs)  and silver
ions  (Ag+)  reduced  the  mitotic  index  and  severely  chromosomal
aberrations[101].  Similarly,  exposure  to  ZnO  and  CuO  nanoparticles
caused  significant  morphological  and  molecular  modifications[102].
Lv et al.,[103] found phytotoxicity due to ZnO nanoparticles size of 9
mm  in  maize  roots,  alteration  in  root  tip  morphology,  cortical
collapse and vacuolation, and destruction of the epidermis and root
cap of ryegrass. Zn, Cu, Ce oxide nanoparticles leads to chronic toxi-
city  due  to  dietary  intake  of  metal  components  in  carrot[104].
Asgari-Targhi et al.[105], and Maity & Pramanick,[106] observed inhibited
plant  growth,  seed  germination,  and  gene  expression  due  to
chitosan-based  polymeric  nanoparticles.  Through  the  inhibition  of
lignin-specific gene expression, Yttrium NPs caused oxidative stress,
reduced bud elongation, root elongation, root activity, protein, and
phototoxicity[107].  According  to  Mosquera  et  al.  and  Kibbey  &
Strevett[108−109],  the  introduction of  nanoparticles  in  soil  and plants

 

Table 2.    Comparative analysis of nanotechnolgy and conventional agriculture
technology.

Factors Conventional
technology

Nanotechnology
mediated agriculture Ref.

Yield and quality Low High [67]
Crop productivity Low High [79]
Nutrient use efficiency Low High [46]
Effect on soil health and quality Negative Positive [80]
Sustainable crop production Low High [81]
Environment remediation Low High [82]
Biotic stress and disease
tolerance

Low High [83]

Usage of natural and waste
resources for yield attributes

Limited Exclusively high [84]

salinity stress tolerance Low High [85]
Drought stress tolerance Low High [86]
Ecofriendly approach No Yes [87]
Biomass production Low High [62]
Reduction in Mn toxicity Low High [88]
Reduction in Cd toxicity Low High [89]
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may have a direct or indirect impact on the diversity and functions
of  microorganisms.  Sułowicz  et  al.[110] reported  that  the  ZnO  and
SiO2-based  nano-fungicides  changed  many  microbial  properties,
which in turn affected soil microorganisms. 

Green synthesized nanopriming

The concept of 'green nanopriming' was introduced as a method
to  enhance  seed  germination  using  environmentally  friendly
synthesized nanoparticles. This approach emerged as a response to
the need for non-toxic alternatives to traditional chemical methods
in  agriculture[111].  Using  nanoparticles  (NPs)  produced  via  green
chemistry—which  uses  plant  extracts  as  reducing  agents  rather
than hazardous chemicals—is known as 'green nanopriming'. As an
eco-friendly  and  economical  alternative  to  conventional  chemical
synthesis,  this  approach  shows  promise[111].  For  example,  extract
from  kaffir  lime  leaves  was  used  to  create  silver  nanoparticles
(AgNPs),  and  extract  from  coriander  herbs  was  used  to  create
copper  oxide  (CuO)  nanoparticles[6,112].  It  is  then  utilized  to  prime
seedlings  with  these  green-synthesized  nanoparticles,  increasing
their  germination,  and  growth  potential.  The  process  of  creating
nanoparticles  (NPs)  usually  involves  chemical  reduction.  However
the  majority  of  the  lowering  agents  are  extremely  hazardous
substances.  Because  plant  alternatives  are  more  environmentally
friendly  than  such  hazardous  reductants,  green  synthesis  of
nanoparticles  (NPs)  has  emerged  as  an  emergent  technique[113,114].
Green nanopriming works well because it can improve several phy-
siological and biochemical functions in seeds. The creation of nano-
pores  by  nanoparticles  can  improve  the  generation  of  reactive
oxygen species (ROS), enable water uptake and increase the activity
of  hydrolytic  enzymes  such  as α-amylase,  which  is  essential  for
starch  metabolism[6,84].  When  taken  as  a  whole,  these  procedures
increase  seed  germination  rates  and  seedling  health.  For  instance,
it  has  been  demonstrated  that  priming  maize  seeds  with  gold
nanoparticles  (GNPs)  greatly  raises  the  emergence  percentage  and
seedling vigour index[6]. The low cost and environmental friendliness
of  the  green-synthesized  approach,  in  comparison  to  the  conven-
tional  synthetic  method's  high  energy-intensive,  multi-step  pro-
cesses or formulations of harmful chemicals, have drawn increasing
attention[115,116].  It  synthesizes NPs using plant  extracts  and among
its benefits are low cost, environmental friendliness, and biocompa-
tibility.  The  plant  extracts  are  obtained  by  boiling  various  plant
components  (leaves,  stems,  roots,  etc.)  in  distilled  water  after  they
have been cleaned with distilled water[67,117].  In  a  few environmen-
tally  friendly  minutes,  the  extracts  are  simply  combined  with  the
metallic salt solution at a particular temperature to transform metal
ions  into  NPs.  Green  nanopriming  is  the  process  of  seed  priming
using green synthetic nanoparticles[117].

Rhamnus triquetra and Lantana camara are used to produce green
ZnO NPs, which have antibacterial qualities against microorganisms.
Using  leaf  extract  from Piper  colubrinum,  Santhoshkumar  et  al.[118]

produced  biocompatible  silver  nanoparticles  and  observed  increa-
sed  seed  germination,  seedling  growth  and  chlorophyll  content  in
rice. Similar findings were observed by Datta Gupta & Pattanayak in
potato,  and  Acharya  et  al.,  in  watermelons[59,119].  After  encasing
curcumin  as  a  priming  agent,  chitosan  nanoparticles  effectively
reduced the amount  of  ionic  toxicity  in  wheat  seedlings  under  salt
stress  by  upregulating  the  machinery  of  antioxidants  (CAT,  POD,
APX, and SOD), photosynthetic pigments (Chlorophyll (Chl) a, Chl b,
total  Chl,  and  lycopene),  tannins,  flavonoids,  and  protein  content.
Zinc  oxide  nanoparticles  synthesized  from Citrus  limmeta peel
extract against plant pathogenic bacteria showed complete elimina-
tion of  soft  and brown rot  infections  in  comparison to  non-primed

potato  tuber  slices[120].  Magnesium  sulphide  nanoparticles  (MgS
NPs) using an extract from Hordeumvulgare leaves enhanced average
root and shoot lengths, as well as accelerated germination in Brassica
nigra and Trigonellafoenum  graecum successfully[121].  Green  nano-
priming is  successfully effective against insect pest attacks and can
be used as nanopesticides.  Ibrahim et al.,[122] assessed the entomo-
toxic  properties  of  silica  nanoparticles  using  rice  straw  against C.
maculatus. Similarly, insecticidal activity was illustrated by Salem[123]

using silica nanoparticle with rice husk against Callosobrochus macu-
latus,  Rhythopertha  dominica, and Tribolium  confusum.  The  seed
quality  parameters  like  germination,  seedling  fresh  weight,  shoot
length,  root  length,  and  vigor  indices  were  enhanced  using  iron
oxide  nanoparticle  formation  with  an  aqueous  plant  extract  of
Salvinia molesta in tomato[124]. 

Lacuna for widespread use of such green priming

Despite impressive advancements, it is acknowledged that scien-
tists  still  lack  a  thorough  grasp  of  how  these  nanomaterials  may
impact  the  macro- and  micro-environments  of  seeds.  Given  the
current and anticipated levels of exposure, it is concerning that fun-
damental knowledge about the potential health and safety impacts
of manmade nanomaterials on both human and non-human recep-
tors  is  still  lacking.  There is  no universal  rule  governing seed nano-
priming  and  there  is  no  discernible  pattern  in  priming  responses
based on a species' taxonomic position. Certain nanopriming proce-
dures may cause the medium to become contaminated with bacteria
and fungi,  which could seriously impair  the germination of  succee-
ding  seeds.  Mature  seeds  take  longer  to  dehydrate  than  nano-
primed seeds, yet a nano-primed seed dries back to its initial moisture
content. Numerous scientists have postulated that harsh desiccation
techniques  modify  the  results  of  nanopriming[125].  Nano-primed
seed  material  may  therefore  be  less  stable,  which  results  in  increa-
sed  maintenance  expenses  for  farmers  and  seed  firms.  Repeated
nanopriming treatments can partially reduce seed viability losses in
certain situations,  but  in  others,  the losses  are  irreversible.  Because
germination potential might not be entirely recovered, the need for
a  second  treatment  could  be  both  an  additional  expense  and  a
source of unpredictability[126]. 

Conclusions

Green  nanopriming  represents  a  groundbreaking  approach  to
sustainable agriculture,  offering a novel alternative to conventional
synthetic  nanoparticles.  This  innovative  technique  harnesses  the
natural  reducing  capacities  of  plant  extracts  to  create  eco-friendly
nanoparticles,  aligning  seamlessly  with  green  chemistry  principles.
Its applications extend beyond crop enhancement to include green
nanopesticides,  nutrient  solubilization,  and  crop  quality  optimiza-
tion.  The future of  green nanopriming hinges on ongoing research
to elucidate its mechanisms and assess potential risks, necessitating
interdisciplinary  collaboration  among  experts  in  nanotechnology,
plant  biology,  and  environmental  sciences.  As  this  technology
matures, it promises to revolutionize agricultural practices, striking a
crucial  balance  between productivity,  food security,  and ecological
preservation.  The advent  of  green nanopriming marks  a  significant
paradigm  shift  towards  an  environmentally  conscious  farming
future,  potentially transforming how we approach sustainable agri-
culture on a global scale. 
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