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The plant cell wall is a unique and complex extracellular matrix
that defines cell shape, ensuring structural integrity, growth, and
environmental sensing. This sophisticated framework primarily
consists of cellulose microfibrils embedded in a matrix of hemicellu-
loses, pectins, and structural proteins. Unlike the rigid secondary
walls of mature tissues, the primary walls of meristematic and grow-
ing cells exhibit remarkable viscoelastic properties that permit
controlled cell expansion while resisting turgor pressurel'-2], Pectins,
the most complex family of cell wall polysaccharides, are highly
hydrated, gel-forming components of this matrix©.. A central regula-
tor of wall mechanics is pectin methylesterification, which acts as a
biochemical rheostat!*. Newly synthesized pectin is deposited in a
highly methylesterified form, which is subsequently modified by
pectin methylesterases (PMEs) that remove methyl groups from
homogalacturonan chains!®, allowing for two divergent fates: it can
enable CaZ* cross-linking to form stiff 'egg-box' structures or facilitate
polygalacturonase-mediated degradation®. This post-synthetic
modification system, regulated by pH gradients, and PME inhibitors
(PMEIs), defines regional mechanical domains that influence wall
flexibility for cell expansion and morphogenesistl.

This principle is exquisitely illustrated at the single-cell level. In
the rapidly growing pollen tube, a steep biochemical gradient of
pectin methylesterification is closely associated with a corresponding
mechanical heterogeneity®. At the tip, highly esterified and
thus extensible and soft pectins facilitate tip extension under turgor
pressurel®l, Over a short distance behind the apex, the accumulated
demethylesterified pectins facilitated by PMEs are cross-linked by
Ca?t, reinforcing the wall of the cylindrical shank['%. Finite element
models predict that this precise compartmentalization—a soft apex
transitioning sharply to a stiff shank—is essential for maintaining
the cylindrical shape of the growing tube and directed growth('"l,
Consequently, this precise control by localized pectin chemistry
dictates local wall mechanics, enabling rapid tip extension while
maintaining structural integrity.

At the tissue level, pectin methylesterification patterns play an
instructive role in organ initiation and morphogenetic patterning!'2.
In the shoot apical meristem (SAM), the emergence of a new organ
primordium is preceded by localized pectin demethylesterification,
which is associated with a mechanical softening of the cell walll'3.14],
Perturbing this pattern, either by overexpressing PME or PME! in the
meristem or by locally applying PME, is sufficient to alter primor-
dium outgrowth and disrupt phyllotactic patterningl'34l. Similar
pectin-based asymmetries have also been implicated in other deve-
lopmental contexts, including lateral root initiation[’>], and apical
hook bendingl'®l. Collectively, coordinated pectin remodelling
across cell populations helps define tissue-level morphogenesis by
establishing mechanical contexts that physically permit or restrict
growth in specific domains. An important remaining question is
how such spatial specificity is established with sufficient precision in
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proliferating tissues, where new cell walls are continuously generated
during cell division and must rapidly acquire distinct pectin states.

A recent breakthrough by Zhu and colleagues uncovered a novel,
mechanically distinct pectin pattern within the SAM itself, one that
spatially regulates stem cell dynamicsl'”). Through systematic cell
wall immunolabelling and super-resolution imaging, they showed
that mature cell walls of the shoot meristem cells exhibit high
methylesterification, whereas demethylesterified pectins are specifi-
cally deposited at new cross walls formed during cell division. This
spatial heterogeneity is established through an unexpected mecha-
nism: nuclear sequestration of PECTIN METHYLESTERASE5 (PME5)
mMRNA. The transcription of PME5 is activated by the R1R2R3-MYB
transcription factor MYB3R4 at the onset of mitosis!'819, However,
rather than being immediately exported for translation, the PME5
transcripts are strictly retained within the nucleus. This retention
ensures that PME5 enzyme activity is precisely synchronized with
cell division. Only upon nuclear envelope breakdown are the PME5
mMRNAs released for translation, which enables localized pectin
demethylesterification specifically at division planes while preserving
the high methylesterification of mature walls essential for stem cell
maintenance (Fig. 1).

The nuclear sequestration of PME5 mRNA represents an uncon-
ventional regulatory strategy for gene expression control. Zhu et al.
demonstrated that disrupting this mechanism by engineering a
truncated PME5 mRNA, PME547-102 that escapes the nucleus led to
ectopic PME5 production, widespread pectin demethylesterifica-
tion, and severe developmental defects, including reduced cell divi-
sion and meristem termination!'’]. These findings elegantly establish
nuclear mRNA compartmentalization as a critical post-transcriptional
mechanism that spatially restrict enzyme activity, thereby maintain-
ing distinct pectin modification states in neighbouring cellular
domains and ensuring proper stem cell homeostasis.

The mechanistic link between RNA processing and cell wall
dynamics was uncovered by the identification of RZ-1B and RZ-1C[20]
as the proteins mediating PME5 mRNA nuclear retention. These
glycine-rich RNA-binding proteins with zinc finger domains localize
to nuclear speckles and function redundantly to retain PME5 tran-
scripts in the nucleus. In vitro pull-down assays, and in vivo immuno-
precipitation showed that both proteins directly bind PME5 mRNA.
In rz-1b rz-1c double mutants, PME5 mRNA sequestration was abol-
ished and precociously exported for translation, leading to pectin
demethylesterification throughout the cells. These mutants recapitu-
lated the phenotypes observed in PME547-702 overexpression lines,
confirming their essential role in maintaining stem cell homeostasis.

Further investigation revealed that nuclear sequestration is not
unique to PME5 but represents a more widespread regulatory strat-
egy among PME family members. Moreover, comparative immuno-
fluorescence analysis in soybean, tomato, and maize revealed a
conserved accumulation of demethylesterified pectin at newly
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Fig. 1 Working model for RZ-1B/1C-PME5-mediated precise pectin modification in stem cell dynamics and meristem homeostasis. During formation and
maintenance of the shoot apical meristem, PME5 transcripts (encoding a cell-wall pectin methylesterase) are not immediately exported to the cytoplasm
after transcription but are bound by the nuclear RNA-binding proteins RZ-1B and RZ-1C, and retained within the nucleus, thereby limiting PME5 protein
production, and maintaining a highly methyl-esterified pectin state in pre-existing cell walls. Upon entry into mitosis and nuclear-envelope breakdown,
the previously sequestered PME5 mRNAs are rapidly released into the cytoplasm and are efficiently translated into PME5 protein. Zhu et al.l'”) propose
that newly synthesized PMES5 is transported through the secretory pathway to specific domains of the nascent cell wall, where it catalyzes local pectin
demethylesterification. This spatially and temporally restricted remodeling of pectin architecture is proposed to fine-tune cell-wall mechanical properties
and the local extracellular microenvironment, thereby contributing to the coordination of stem-cell behaviour with shoot apical meristem homeostasis.

Created in BioRender: https://BioRender.com/6edfu6t.

formed cross walls in dividing cells, indicating evolutionary conser-
vation of this spatiotemporal regulatory mechanism despite the
phylogenetic divergence of these species. This conservation under-
scores the fundamental importance of precise pectin modification
control in plant development.

In conclusion, the work by Zhu et al. represents a major conceptual
advance in plant developmental biology, revealing how the integra-
tion of transcriptional control, mRNA localization, and protein-RNA
interactions enables precise spatiotemporal regulation of cell wall
remodelling to maintain stem cell homeostasis!'’\. This study also
highlights several intriguing questions for future research. First, how
exactly do RZ-1B and RZ-1C recognize and retain specific PME
mRNAs, and what structural features determine the target
specificity? Second, to what extent does this mechanism contribute
to the regulation of other cell wall-modifying enzymes beyond
PMEs? Third, how is the release of sequestered mRNAs coordinated
with cell cycle progression? Given that shoot apical meristem stem
cells generate all aerial organs, including the reproductive structures
that give rise to seeds, manipulating pectic cell wall modification
could offer a new approach to optimizing stem cell activity, seed
yield, and crop quality.
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