

Studies in Fungi 2(1): 92–105 (2017) www.studiesinfungi.org ISSN 2465-4973 Article

> Doi 10.5943/sif/ 2/1/11 Copyright © Mushroom Research Foundation

Diversity of macrofungi and its distribution pattern of Gorakhpur District, Uttar Pradesh, India

Vishwakarma P, Singh P and Tripathi NN

Bacteriology and Natural Pesticide Laboratory, Department of Botany, DDU Gorakhpur University, Gorakhpur, 273009, UP, India

Vishwakarma P, Singh P, Tripathi NN 2017 – Diversity of macrofungi and its distribution pattern of Gorakhpur District, Uttar Pradesh, India. Studies in Fungi 2(1), 92–105, Doi 10.5943/sif/2/1/11

Abstract

The present study deals with the status of macrofungal diversity in Gorakhpur district and its distribution pattern. The macrofungal survey was undertaken during 2011-2014 in different localities of Gorakhpur district. A total of 114 species of macrofungi belonging to 58 genera and 33 families were collected and identified in to 31 edible species, 10 excellent edible species, 68 inedible species and 5 poisonous species. Agaricaceae family was found to be the dominant representing 18 species. Distribution of macrofungal species in different localities of Gorakhpur district was also evaluated on the basis of Shannon diversity index, Simpson diversity index and evenness. Highest Shannon diversity index, Simpson diversity index and evenness were found to be 3.61, 0.97 and 0.90 respectively in Sahjanwan tehsil. The results indicate a very high species richness of the study site.

Key words - Agaricales - Basidiomycota - Diversity index - Edible macrofungi

Introduction

Macrofungi are cosmopolitan, heterotrophic organisms that are quite specific in their nutritional and ecological requirements. Macrofungi occupy important place in the biodiversity of India. Macrofungi (also called mushrooms) are represented by 41,000 species across the globe out of which only ~2% have been reported from India, despite the fact that one-third of the total global fungal diversity exists in the tropical Indian region (Priyamvada et al. 2017). Many Asian countries use traditionally wild edible mushrooms as delicious and nutritional food and medicine. Wild edible macrofungi are appreciated not only for texture and flavour but also for their chemical and nutritional characteristics (Tapwal et al. 2013).

From time to time different workers had studied macrofungal diversity from Northern part of India which includes North Western region, Eastern Himalaya proper and North Eastern hilly areas. Lots of macrofungi were collected from Himachal Pradesh by Sohi et al. (1964, 1965). Ghosh & Pathak (1965) collected 3 species of *Macrolepiota* from Lucknow (U.P.), Ghosh et al. (1967) also described about some edible macrofungi of Lucknow. Chandrawati et al. (2014) collected 29 species of macrofungal belonging to 12 families from Gorakhpur while Vishwakarma et al. (2014) reported 12 taxa of macrofungi belonging to 8 families from here. Vishwakarma et al. (2017a) had provided a complete checklist of macrofungi of Gorakhpur district. Some works on nutritional property of macrofungi of this area were also carried out by Vishwakarma et al. 2016, 2017b.

North Eastern part of Uttar Pradesh is endowed with a rich biodiversity of flora and fauna. It is situated in Terai region of Himalaya and hence provides suitable climatic and environmental condition for successful establishment of all types of flora especially the macrofungi. So the main aim of the present study was to explore and identify the macrofungal diversity of Gorakhpur district.

Materials & Methods

Study area

Gorakhpur is situated in North Eastern part of Uttar Pradesh. Gorakhpur district is a one of the major and largest district of Uttar Pradesh. Gorakhpur is the headquarter of Gorakhpur division and district both. Gorakhpur district is divided into seven Tehsils (Revenue Sub-division) presided over by a Sub-Divisional Magistrate. It occupies an area of about 7,483.8 Km² with latitude and longitude of 26°43' to 26°50'N and 83°20' to 83°27'E respectively. The annual average temperature is 25-30°C. Gorakhpur region receives total annual average rainfall of about 1814mm, about 87% annual rainfall is received during warm rainy season and rest 13% is distributed in the form of occasional shower from November to May. Relative humidity ranges between 74-87%. The soil of this area is genetic alluvial brought down by river Rapti, Rohini, Ghaghara and Gandak from the Himalayas. It is situated on the basin of river Rapti and Rohini hence its geographical shape is a bowl type. Gorakhpur district has good vegetation cover and also have dense forest which is close to the foothills of Himalayas. All the areas of Gorakhpur district are rich in species composition of higher plants. North Eastern part of Uttar Pradesh with its varied topography, diverse vegetation and climatologically fluctuations can be successfully explored for the growth of macrofungi in wild habitat. In spite of the fact this region is rich in resources of edible macrofungi, no planned effort has been made so far to collect and conserve them. There is vast scope of edible macrofungi which grow wild in forests and grasslands of this region. The moderate rainfall in this part supports a rich flora. Collection of samples was done at tehsil level (which includes blocks and then villages). Different tehsil visited during the survey were Sahjanwan, Sadar, Khajni, Bansgaon, Campierganj and Gola.

Collection, identification and processing of macrofungi

Regular field trips were carried out in different places of Gorakhpur villages and forests, usually 4-5 times per months. Fruiting body/carpophores with stipe were picked up from substratum on which it was growing with the help of scrapper or knife or forceps and were wrapped individually in wax paper. Samples were photographed with proper scale in its natural habitats for its appropriate identification by using digital camera (Panasonic, DMC-F2). Place and date of collection, habit and habitat were noted down in the field diary at the time of collection and particular collection numbers was given to each specimen.

Samplings were done using quadrate method each measuring 20×20 m. Total of 28 sampling plots in the above 6 sampling sites were studied. Macrofungal specimens were preserved wet as well as dry following Ainsworth (1971). Fruiting bodies of macrofungi were preserved in solution of alcohol (15ml), formalin (25ml) and distilled water (100ml). Dry preservation of macrofungi were done by hot air oven at 40-50°C and stored in air tight zip lock polyethylene bags with naphthalene balls for further microscopic studies. The spore prints were taken according to the guideline given by Kuo (2001). Information regarding edibility and other uses of macrofungi species were collected by villagers, local inhabitants of the area and finally by consulting literature. Mycorrhizal associations were ascertained in species found just near the tree base by tracing out the root connection to the fructification.

Specimens were identified using the relevant literature (Alexopolous et al. 1996, Ellis & Ellis 1990, Jordan 1995, Moser 1983, Phillips 1981) and confirmed by mycokeys (www.mushroomexpert.com and www.mycokeys.com).

Data analysis

Diversity index of macrofungi was calculated as followed by Pushpa & Purushothama (2012).

Shannon diversity index for macrofungi was calculated by using following formula:

$$H = \Sigma \left(\frac{n}{N}\right) \ln\left(\frac{n}{N}\right)$$

H is the diversity index; N is the total number of individuals of all the species and n is the total number of individuals of particular species.

Simpson Index of Diversity=1-D

$$D = \Sigma n(n-1)/N(N-1)$$

D is the Simpson's index, N is the total number of individuals of all species and n is the total number of organism of a particular species

With the help of the values of diversity index, the evenness of the mushrooms was also calculated as

e = H/lnS

Where e is evenness, H is Shannon diversity index and S is the number of species

Results & Discussion

A total of 114 species of macrofungi belonging to 58 genera of 33 families were identified during the survey. Table 1 represents the list of collected species during the survey period and is arranged according to their representative families. Agaricaceae family (18 species) was found to be the most dominant while Clavariaceae, Geastraceae, Helotiaceae, Hygrophoraceae, Meripiliaceae, Meruliaceae, Mycenaceae, Russulaceae, Schizophyllaceae, Sparassidiaceae, Steraceae and Tuberaceae contains only one species each (Fig. 1).

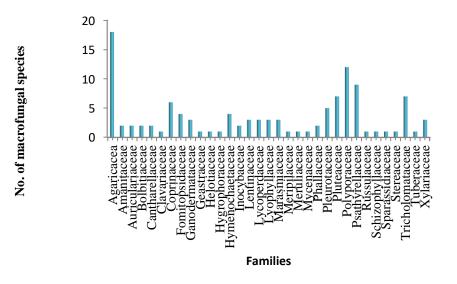


Fig. 1 – Family wise distribution of macrofungi in Gorakhpur district

The diverse climatic conditions of Gorakhpur make this area a natural habitat for a large number of macrofungi. Diversity of macrofungi varies greatly because of different ecological habitats viz., decaying wood logs, humid soil, sandy soil, humus, leaf litters etc. Mushrooms are seasonal fungi, which occupy diverse niches in nature in the forest ecosystem (Pushpa & Purushothama 2012). In present investigation (Fig. 2) the ecological preference of the species revealed that maximum number of (93) species were saprobic, 12 species were parasitic on higher trees, 6 coprophilous and 3 were symbiotic. The abundance of macrofungi on different substrate greatly depends up on the organic and nitrogenous content of the soil and also on the other nutrients factors which plays key role in the growth of fungi (Kumar et al. 2013).

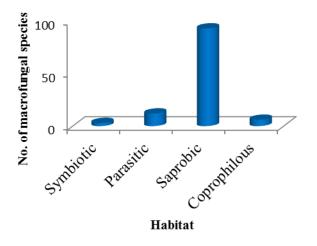


Fig. 2 – Distribution of different macrofungi groups

The survey related to the edibility status of macrofungi was also undertaken and the result revealed that out of 114 macrofungal species collected 31 macrofungal species were found to be edible, 10 excellent edible, 68 inedible while 5 poisonous (Fig. 3). Species such as *Agaricus, Calocybe, Pleurotus, Termitomyces, Tuber* and *Volvariella* are considered highly delicious. The usage of these macrofungi both commercially and domestically may be due to their appealing taste, frequent occurrence and the fact that they are easily identified by the local peoples as safe for consumption. Macrofungi contains high nutritive value. It contains low fat, rich in fibre, protein, minerals (Ca, P, K) and vitamins. It has high nutraceutical value which has created an interest of local peoples towards its use (Abolfazi & Janardhana 2012).

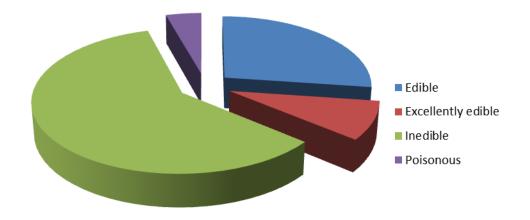


Fig. 3 – Edibility status of collected macrofungi in per cent

Diversity of an area is greatly affected by the environmental condition experience by that particular habitat and this impart variation in occurrence of macrofungi in different seasons. It is clear from the fig 4 that during four year of survey greater number of species were recorded during the rainy season. Months of July followed by August and September each year (2011-2014) contains highest number of macrofungi, while there was complete absence of macrofungal species

in the months of January and November of all year (Fig. 5). In months of July, August and September the environmental conditions are very favorable for the growth of various macrofungi. Rainy season supports more macrofungal growth. Some woody macrofungi are present throughout the year while some occurs only at specific time of the year.

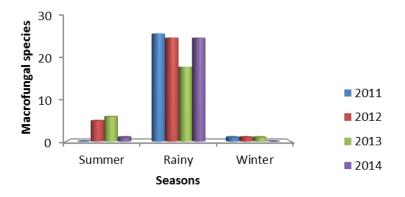


Fig. 4 – Distribution of macrofungal species in different seasons (2011-2014)



Fig. 5 – Distribution of macrofungal species in different months (2011-2014)

The diversity index is a mathematical representation of species diversity in a community. Diversity indices provide important information about rarity and commonness of species in a community. It takes in to account the number of species present (species richness), as well as the abundance of each species (evenness). Simpson's diversity index (1-D) is a simple method to measure species diversity in a community. The value of D ranges between 0 and 1. Greater the value of D greater is the diversity. Shannon diversity index is commonly used to characterize species diversity in a community. Macrofungi were collected from six different sites of Gorakhpur district to evaluate the macrofungi richness. Species diversity and species richness of macrofungi are shown in table 2. The area wise sampling for macrofungi shows that Sahjanwan tehsil contains highest number of species (53), followed by Sadar tehsil which contains 34 species, Khajni tehsil

Table 1 Diversity of macrofungi in Gorakhpur District

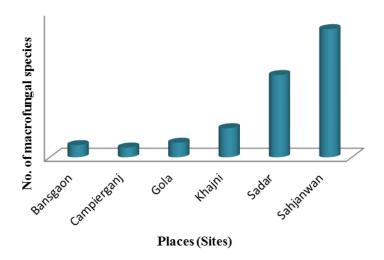
Voucher no.	Family	Macrofungi	Date of collection	Ecological habitat	Property	
DDUNPL206	Agaricaceae	Agaricus arvensis Schaeffe.	23/9/11	Saprobic, on grassy area, in group	Excellent edible	
DDUNPL207	Agaricaceae	A. bernardii Quèl.	11/7/12	Saprobic, on grassy area, in group	Excellent edible	
DDUNPL208	Agaricaceae	A. bitorquis (Quèl) Sacc.	5/7/14	Saprobic, on manure in group	Edible	
DDUNPL209	Agaricaceae	A. impudicus (Rea) Pilát	11/7/12	Saprobic, on humus in group	Edible	
DDUNPL210	Agaricaceae	A. langei (F.H. Møller)	5/7/14	Saprobic, under mixed wood on soil in group	Edible	
DDUNPL211	Agaricaceae	A. silvaticus Schaeff. ex.Secr.	20/7/12	Saprobic, on soil, solitary to in group	Edible	
DDUNPL212	Agaricaceae	A. silvicola (Vittad.) Peck	11/8/11	Saprobic on decaying litters, solitary, scattered	Edible	
DDUNPL213	Agaricaceae	<i>Chlorophyllum molybdites</i> (G. Mey.) Massee	3/7/13	Saprobic, growing gregariously in lawn and garden	Inedible	
DDUNPL214	Agaricaceae	icaceae C. rhacodes (Vittad.) Vellinga 9/7/13 Saprobic, growing		Saprobic, growing in group in gardens	Edible, choice	
DDUNPL215	Agaricaceae	Lepiota aspera (Pers.) Quell.	1/10/11	Saprobic, on leaf litters in group	Edible	
DDUNPL216	Agaricaceae	L. atrodisca Zeller	4/7/14	Saprobic, on leaf litters in group	Inedible	
DDUNPL217	Agaricaceae	L. castaneidisca Murrill	23/9/11	Saprobic, under hardwood trees solitary to scattered	Inedible	
DDUNPL218	Agaricaceae	L. ignivolvata Bousset & Joss.	23/08/11	Saprobic on soil	Inedible	
DDUNPL219	Agaricaceae	Leucoagaricus americanus (Peck) Vellinga	5/7/13	Saprobic on humus, in group	Edible	
DDUNPL220	Agaricaceae	L. rubrotinctus (Peck) Singer	29/9/11	Saprobic in group near <i>Bambusa</i> arundinacea culm	Inedible	
DDUNPL221	Agaricaceae Leucocoprinus brebissonii (Godey) Locq.		16/7/12	Saprobic on litter, solitary, scattered	Inedible	
DDUNPL222	Agaricaceae	L. cepestipes (Sowerby) Pat.	24/2/13	Saprobic on humus rich soil, in group	Inedible	
DDUNPL223	Agaricaceae Macrolepiota procera (Scop.) Singer		23/7/12	Saprobic on decaying litter in group	Edible	
DDUNPL204			20/7/12	Symbiotic with <i>Tectona grandis</i> , solitary, scattered	Inedible	
DDUNPL205	Amanitaceae	A. virosa Fr.	18/8/11	Solitary on humus rich soil	Highly Poisonous	

Voucher no.	Family	·		Ecological habitat	Property
DDUNPL163	Auriculariaceae	<i>Auricularia auricula-judae</i> (Bull.) Quél	4/7/14	Parasitic on healthy tree (<i>Tecoma capensis</i>), in group	Edible
DDUNPL164	Auriculariaceae	A. mesenterica (Dicks.) Pers.	14/7/13	Saprobic, in group on decaying wood log	Inedible
DDUNPL255	Bolbitiaceae	<i>Bolbitius coprophilus</i> (Peck) Hongo	13/7/12	Coprophilous on compost, in group	Inedible
DDUNPL256	Bolbitiaceae	B. vitellinus (Pers.) Fr.	8/7/12	Coprophilous on goat dung, growing alone scattered	Poisonous
DDUNPL167	Cantharellacea	Cantharellus minor Peck	19/8/11	Saprobic, growing solitary or in groups under <i>Bambusa arundinacea</i>	Inedible
DDUNPL168	Cantharellacea	C. subalbidus Smith & Morse	31/8/12	Saprobic on decaying litter, in group	Edible
DDUNPL169	Clavariaceae	<i>Clavulinopsis laeticolor</i> (Berk. & M.A. Curtis) R.H. Petersen	16/7/12	Saprobic on decaying wood log, scattered, in group	Inedible
DDUNPL231	Coprinaceae	<i>Coprinus comatus</i> (O.F. Müll.) Pers.	7/7/12	Saprobic on manure, in group	Inedible
DDUNPL232	Coprinaceae	C. disseminates (Pers.:Fries) J.E. Lange	23/9/11	Saprobic on rotting tree branch, in group	Edible
DDUNPL233	Coprinaceae	C. domesticus (Bolton) Gray	4/7/12	Saprobic on decaying wood log, gregariously in small troops	Inedible
DDUNPL234	Coprinaceae	C. lagopus (Fr.) Fr.	7/7/12	Saprobic on decaying wood log, solitary to in group	Inedible
DDUNPL235	Coprinaceae	C. pellucidus P. Karst.	19/9/11	Saprobic on dead hardwood stump, in group	Inedible
DDUNPL236	Coprinaceae	C. truncorum (Scop.) Fr.	25/6/13	Saprobic on decaying wood log, in group	Inedible
DDUNPL171	Fomitopsidaceae	<i>Fomitopsis cajanderi</i> (P. Karst) Kotl. & Pouzar	6/9/13	Saprobic on dead wood, in group	Inedible
DDUNPL172	Fomitopsidaceae	F. pinicola (Sw.) P. Karst.	5/8/12	Saprobic on decaying tree (<i>Mangifera indica</i>), solitary to in group	Inedible
DDUNPL173	Fomitopsidaceae	<i>Laetiporus sulphurous</i> (Bull.) Murrill	26/9/11	Saprobic on cut wood log forming shelves	Edible
DDUNPL174	Fomitopsidaceae	Postia stiptica (Pers.) Jülich	5/7/14	Saprobic on decaying wood log, in group	Inedible

Voucher no.	Family	Family Macrofungi		Ecological habitat	Property	
DDUNPL189	Ganodermataceae	Ganoderma applanatum (Pers.) Pat.	23/9/11	Parasitic on <i>Tectona grandis</i> , in group	Inedible	
DDUNPL190	Ganodermataceae	G. lucidum (Curtis) P. Karst.	6/8/12	Saprobic on dead woods, solitary or in groups of 2-3	Edible	
DDUNPL191	Ganodermataceae	G. tsugae Murrill	21/10/11	Saprobic on decaying tree, solitary	Inedible	
DDUNPL271	Geastraceae	Geastrum rufescens Pers.	24/8/11	Saprobic on soil among leaf litters, solitary or in small groups of 2-3	Inedible	
DDUNPL162	Helotiaceae	Ascocoryne sarcoides (Jacq.) J.W. Groves & D.E. Wilson	7/4/12	Parasitic on <i>Ficus racemosa</i> , gregarious, in group	Inedible	
DDUNPL196	Hygrophoraceae	<i>Hygrophorus eburneus</i> (Bull.) Fr.	23/9/11	Saprobic on humus rich soil and on straw heap, solitary	Edible	
DDUNPL192	Hymenochaetaceae	<i>Coltricia cinnamomea</i> (Jacq.) Murrill	18/10/11	Saprobic on humid soil, growing alone under hardwood	Inedible	
DDUNPL193	Hymenochaetaceae	Inonotus cuticularis (Bull.) P. Karst.	9/2/12	Saprobic on decaying wood log forming shelves, in group	Inedible	
DDUNPL194	Hymenochaetaceae	I. hispidus (Bull.) P. Karst.	6/7/14	Saprobic to parasitic on trees, either alone or forms shelves by joining with other caps	Inedible	
DDUNPL195	Hymenochaetaceae	I. radiatus (Sowerby) P. Karst.	5/7/13	Saprobic on decaying wood log, in group	Inedible	
DDUNPL257	Inocybaceae	<i>Inocybe dulcamara</i> (Pers.) P. Kumm.	4/7/14	Saprobic on decaying leaf litter, solitary to in group	Poisonous	
DDUNPL258	Inocybaceae	I. fastigiata (Schaeff.) Quèl	3/7/14	Saprobic present on soil, solitary to in group	Poisonous	
DDUNPL252	Lentinaceae	Lentinus conatus Berk.	4/7/14	Saprobic on decaying wood log, in group	Edible	
DDUNPL253	Lentinaceae	L. squarrosulus Mont.	23/6/14	Saprobic on decaying wood log, in group	Edible	
DDUNPL254	Lentinaceae	L. tigrinus (Bull.) Fr.	16/7/12	Saprobic, growing on rotting wood log	Inedible	
DDUNPL268	Lycoperdaceae	Bovista plumbea Pers.	10/7/13	Saprobic, scattered in troops in short grasses	Edible	
DDUNPL269	Lycoperdaceae	B. pusilla (Batsch) Pers.	5/7/14	Saprobic, scattered in troops in short grasses	Inedible	

 Voucher no.	Family	Family Macrofungi		Ecological habitat	Property
 DDUNPL270	Lycoperdaceae	Lycoperdon perlatum Pers.	7/7/12	Saprobic, scattered along road side in group	Edible
DDUNPL259	Lyophyllaceae	Calocybe gambosa (Fr.) Donk	7/7/12	Symbiotic, in association with <i>Azadirachta indica</i> and <i>Ficus</i> bengalensis, in group	Excellent edible
DDUNPL260	Lyophyllaceae	C.indica Purkay. & A.Chandra	18/6/13	Saprobic on manure and husk residue, in group	Excellent edible
DDUNPL261	Lyophyllaceae	<i>Termitomyces heimii</i> K. Natarajan	14/7/12	Symbiotic in association with termites nest	Excellent edible
DDUNPL262	Marasmiaceae	<i>Marasmius curreyi</i> Berk. & Broome	24/8/11	Saprobic on rotting wood log, in group	Inedible
DDUNPL263	Marasmiaceae	M. pulcherripes Peck	5/7/14	Saprobic on litter, solitary to in group	Inedible
DDUNPL264	Marasmiaceae	M. sicci Murrill	29/8/13	Saprobic, on decaying wood log and leaf litter	Inedible
DDUNPL175	Meripilaceae	Grifola frondosa (Dicks.) Gray	25/8/11	Saprobic in association with decaying <i>Tectona grandis</i>	Edible
DDUNPL176	Meruliaceae	Abortiporus biennis (Bull.) Singer	24/6/13	Parasitic with living trees especially with <i>Bambusa arundinacea</i> , growing alone or in group forming shelves	Inedible
DDUNPL265	Mycenaceae	Favolaschia pustulosa (Jungh.) Kuntze	21/10/11	Saprobic on dead wood, gregarious	Inedible
DDUNPL266	Phallaceae	Mutinus caninus (Huds.) Fr.	5/7/14	Saprobic, growing alone or gregariously in garden	Inedible
DDUNPL267	Phallaceae	Phallus duplicates Bose	6/7/13	Saprobic, growing alone or gregariously in garden	Inedible
DDUNPL246	Pleurotaceae	<i>Pleurotus cystidiosus</i> O.K. Mill.	21/7/13	Parasitic on <i>Ficus benghalensis</i> , in group	Excellent edible
DDUNPL247	Pleurotaceae	P. dryinus (Pers.) P. Kumm.	22/8/13	Parasitic in association with Dalbergia sissoo tree, in group	Inedible
DDUNPL248	Pleurotaceae	P. flabellatus Sacc.	24/6/13	Saprobic on decaying wood, in group	Excellent edible
DDUNPL249	Pleurotaceae	P. florida (Mont.) Singer	25/8/12	Parasitic in association with <i>Ficus</i> religiosa in group forming shelves	Edible
DDUNPL250	Pleurotaceae	P. ostreatus (Jacq.) P. Kumm.	8/7/12	Parasitic on <i>Mangifera indica</i> , forming shelves	Excellent edible
DDUNPL224	Pluteaceae	Pluteus luteovirens Rea	4/7/14	Saprobic on leaf litters, in group	Inedible
 DDUNPL225	Pluteaceae	P. petasatus (Fries) Gillet	19/8/11	Saprobic on wood debris, in group	Edible

Voucher no. Family		Macrofungi	Date of collection	Ecological habitat	Property
DDUNPL226	Pluteaceae	P. rimulosus Kühner & Romagn.	7/7/14	Saprobic on rotting wood, solitary to in small groups	Inedible
DDUNPL227	Pluteaceae	Volvariella bombycina (Schaeff.) Singer	31/8/12	Parasitic in association with <i>Ficus</i> bengalensis tree, in group	Edible
DDUNPL228	Pluteaceae	V. indica M.K. Saini, N.J. Kaur & N.S. Atri	6/7/14	Saprobic abundant in garden, in group or scattered	Edible
DDUNPL229	Pluteaceae	V. <i>taylori</i> (Berk. & Broome) Singer	25/6/13	Saprobic, scattered in open field, solitary to in group	Edible
DDUNPL230	Pluteaceae	V. volvacea (Bull.) Singer	3/9/12	Saprobic on wheat straw or husk, in group	Excellent edible
DDUNPL177	Polyporaceae	Fomes hemitephrus (Berk.) Cooke	17/8/13	Parasitic on Tectona grandis, solitary	Inedible
DDUNPL178	Polyporaceae	<i>Funalia trogii</i> (Berk.) Bondartsev & Singer	5/7/14	Parasitic on <i>Artocarpus heterophyllus</i> , in group	Inedible
DDUNPL179	Polyporaceae	Lenzites betulina (L.) Fr.	4/4/12	Saprobic on deadwood, in group with overlapping cluster	Inedible
DDUNPL180	Polyporaceae	L. sepiaria (Wulfen) Fr.	13/7/12	Saprobic on decaying wood log, in group	Inedible
DDUNPL181	Polyporaceae	<i>Microporus xanthopus</i> (Fr.) Kuntze.	27/6/12	Saprobic on deadwood of hard wood, in group	Inedible
DDUNPL182	Polyporaceae	Polyporus alveolaris (DC.) Bondartsev & Singer	4/7/14	Saprobic on decaying logs, solitary to cluster	Inedible
DDUNPL183	Polyporaceae	P. brumalis (Pers.) Fr.	27/3/12	Saprobic on decaying wood	Inedible
DDUNPL184	Polyporaceae	<i>Pycnoporus cinnabarinus</i> (Jacq.) P. Karst.	27/3/12	Saprobic on dead wood, solitary to group	Inedible
DDUNPL185	Polyporaceae	Trametes elegans (Spreng.) Fr.	6/8/13	Saprobic on dead wood of hard woods, solitary or in groups	Inedible
DDUNPL186	Polyporaceae	T. gibbosa (Pers.) Fr.	5/12/11	Saprobic on decaying wood log, forming rosettes on top of cut stump	Inedible
DDUNPL187	Polyporaceae	T. hirsutus (Wulfen) Pat.	5/7/14	Saprobic on dead woods, in group	Inedible
DDUNPL188	Polyporaceae	Polyporaceae T. versicolor (L.) Lloyd 13/09/12 Saprobic on decaying wood log,		Saprobic on decaying wood log, forming rosettes on top of cut stump	Inedible
DDUNPL237	Psathyrellaceae	<i>Coprinellus micaceus</i> (Bull.) Vilgalys, Hopple & Jacq. Johnson	19/8/11	Saprobic on humus rich soil, in group	Edible


Voucher no.	Family	Family Macrofungi		Ecological habitat	Property	
DDUNPL238	Psathyrellaceae	Coprinopsis atramentaria (Bull.) Rehead, Vilgalys & Moncalvo	collection 26/9/11	Saprobic, on rotting tree stump in group	Edible	
DDUNPL239	Psathyrellaceae	<i>C. cothurnata</i> (Godey) Redhead	23/6/14	Coprophilous on animal dung	Inedible	
DDUNPL240	Psathyrellaceae	<i>C. ephemeroides</i> (D.C.) G. Moreno	4/7/14	Saprobic on humus, solitary to in group	Inedible	
DDUNPL241	Psathyrellaceae	<i>C. foetidella</i> (P.D. Orton) Atri, A. Kaur & M. Kaur	23/6/14	Coprophilous on animal dung	Inedible	
DDUNPL242	Psathyrellaceae	C. friesii (Quèlet) P. Karsten	19/8/11	Saprobic on husk residue, solitary to in group	Inedible	
DDUNPL243	Psathyrellaceae	Panaeolus ater (J.E. Lange) Kühner & Romagn.	11/8/11	Coprophilous on animal dung, in small group	Inedible	
DDUNPL244	Psathyrellaceae	P. papilionaeous (Bull.) Quèlel	11/8/11	Coprophilus on cow dung manure, in group	Inedible	
DDUNPL245	Psathyrellaceae	<i>Psathyrella automata</i> (Fr.) Quèl.	11/8/11	Saprobic on soil in grassland, solitary, scattered	Inedible	
DDUNPL251	Russulaceae	Russula sororia Fr.	7/7/14	Saprobic on litter, solitary to in group	Edible	
DDUNPL165	Schizophyllaceae	Schizophyllum commune Fries	11/8/11	Parasitic on <i>Mangifera indica</i> tree in group	Inedible	
DDUNPL170	Sparassidiaceae	Sparassis crispa (Wulf) Fr.	18/8/11	Saprobic on decaying wood log, in group	Edible	
DDUNPL166	Stereaceae	Stereum hirsutum (Wild.) Pers.	9/5/13	Saprobic on deadwood, gregarious	Inedible	
DDUNPL197	Tricholomataceae	<i>Clitocybe inversa</i> (Scop.) Quèl.	18/8/11	Saprobic on litter, solitary or in groups	Inedible	
DDUNPL198	Tricholomataceae	C. vibecina (Fr.) Quèl	23/9/11	Saprobic on decaying litter, scattered	Poisonous	
DDUNPL199	Tricholomataceae	<i>Collybia fuscopurpurea</i> (Pers.) P. Kumm.	5/7/13 Saprobic on decaying litter, in group		Inedible	
DDUNPL200	Tricholomataceae	Lepista flaccid (Sowerby) Pat.	4/7/14	Saprobic, abundant in mixed forest, in group	Inedible	
DDUNPL201 DDUNPL202	Tricholomataceae Tricholomataceae	L. luscina (Fr.) Singer Omphalina ericetorum (Pers.) M. Lange	31/8/12 7/7/14	Saprobic on humus, in group Saprobic on <i>Bambusa arundinacea</i> leaf litter, in small groups	Edible Inedible	

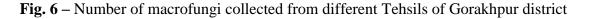

Voucher no.	Family	Macrofungi	Date of collection	Ecological habitat	Property
DDUNPL203	Tricholomataceae	O. postii (Fr.) Singer	5/7/14	Saprobic in grassy areas, solitary to in group	Inedible
DDUNPL161	Tuberaceae	Tuber aestivum Vitt.	10/7/13	Saprobic under broad leaf trees on calcareous soil	Excellent edible
DDUNPL158	Xylariaceae	<i>Daldinia concentric</i> (Bolton) Ces. & De Not.	29/8/11	Saprobic on decaying wood log, in group	Inedible
DDUNPL159 DDUNPL160	Xylariaceae Xylariaceae	<i>Xylaria hypoxylon</i> (L.) Grev. <i>X. longiana</i> Rehm	3/7/14 27/6/13	Saprobic on rotting wood, scattered Saprobic on decaying wood, in group	Inedible Inedible

Table 2 Shannon diversity index, Simpson diversity index, richness and evenness of macrofungi in Gorakhpur district (Tehsil wise)

	Bansgaon	Campierganj	Gola	Khajni	Sadar	Sahjanwan
No. of species (s)	5	4	6	12	34	53
Total no. of individuals (N)	55	105	30	140	314	644
Shannon diversity index (H)	1.13	0.16	1.43	2.08	3.04	3.61
Simpson diversity index (1-D)	0.64	0.29	0.74	0.85	0.94	0.97
Evenness (E)	0.82	0.49	0.62	0.87	0.86	0.90

contains 12 species, Gola tehsil contains 6 species, Bansgaon tehsil contain 5 species and Campierganj tehsil contains 4 species (Fig. 6). Sahjanwan tehsil shows the maximum diversity index. The Shannon's diversity index and Simpson's diversity index were found to be 3.61 and 0.97 respectively and evenness to be 0.90 in Sahjanwan tehsil. The highest number of species in Sahjanwan tehsil was contributed by the frequent collections made during the study period compared to other study sites in present study. The difference of the occurrence of macrofungi in the various localities in the study area also can be attributed to several factors such as rainfall, quantities of suitable substrate, damp forests with constant high air humidity and type of forest. The lower number of macrofungi recorded in this study could be because; only one to two collecting visits were made to each site. In fact complete knowledge of the fungi for any locality would require continuous observation and collection over many years (Bolhassan et al. 2012). Species diversity and occurrence increase with the increasing number of visits over a longer period.

Conclusion

North Eastern part of Uttar Pradesh with its varied topography, diverse vegetation and climatologic fluctuations can be successfully explored for the growth of macrofungi in wild habitat. In spite of the fact that this region is rich in resources of edible macrofungi, no planned effort has been made so far to collect and conserve them. There is vast scope of edible macrofungi which grow wild in forests and grasslands of this region. The moderate rainfall in this part supports a rich flora. These macrofungi can be widely used as food and medicine besides maintaining strength of ecosystem. Therefore it is very important to completely explore, document and conserve this natural wealth.

Acknowledgements

The authors wish to thank Head, Department of Botany DDU Gorakhpur University and Gorakhpur for providing necessary Lab. facilities.

References

Abolfazi P, Janardhana GR. 2012 – Diversity of *Termitomyces* in Kodagu and need for conservation. Journal of Advanced Laboratory Research in Biology 3, 54-57.

Ainsworth GC. 1971 - Ainsworth and Bisby's dictionary of Fungi. CMI, Kew, Surrey, England.

Alexopolous CJ, Mims CW, Blackwell M. 1996 – Introductory Mycology. John Wiley & Sons, New York.

- Bolhassan MH, Abdullah N, Sabaratnam V, Tsutomu H, Abdullah S, Rashid NMN, Musa M Y. 2012 Diversity and distribution of polyporales in Peninsular Malaysia. Sains Malaysiana 41(2), 155–161.
- Chandrawati, Singh P, Kumar N, Tripathi NN. 2014 Macrofungal wealth of Kusumhi Forest of Gorakhpur, U.P., India. American International Journal of Research in Formal, Applied and Natural Sciences 5(1), 71-75.
- Ellis MB, Ellis JB. 1990 Fungi without Gills (Hymenomycetes and Gasteromycetes), London: Chapman and Hall.
- Ghosh RN, Pathak NC, Tewari I. 1967 Studies on Indian Agaricales. Indian Phytopathology 20, 237-242.
- Ghosh RN, Pathak NC. 1965 The genus *Macrolepiota* in India. Indian Phytopathology 18, 360-362.
- Jordan M. 1995 The Encyclopedia of fungi of Britain and Europe, John Taylor Book Venture Ltd., Newton Abbbot, Devon.
- Kumar R, Tapwal A, Pandey S, Rishi R. 2013 Fungal diversity associated with bamboo litter from Bambusetum of rain forest research institute, North East India. Biodiversitas 14, 79-88.
- Kuo M. 2001 Making spore prints. Retrieved from the MushroomExpert.com Website :http://www.bluewillopages.com/mushroomexpert/herbarium.html.
- Moser M. 1983 Keys to Agarics and Boleti. Stuttgart: Gustav Fischer Verlag.
- Phillips R. 1981 Mushrooms and other fungi of Great Britain & Europe. London: Pan Books.
- Priyamvada H, Akila M, Singh RK, Ravikrishna R, Verma RS, Philip L, Marathe RR, Sahu LK, Sudheer KP, Gunthe SS. 2017 – Terrestrial Macrofungal Diversity from the Tropical Dry Evergreen Biome of Southern India and Its Potential Role in Aerobiology. PLoS ONE 12(1): e0169333. doi:10.1371/journal.pone.0169333
- Pushpa H, Purushothama KB. 2012 Biodiversity of mushrooms in and around Bangalore (Karnataka), India. American-Eurasian Journal of Agricultural and Environmental Sciences 12(6), 750-759.
- Sohi HS, Kumar S, Seth PK. 1964 Some interesting fleshy fungi from Himachal Pradesh. Indian Phytopathology 17, 317-322.
- Sohi HS, Kumar S, Seth PK. 1965 Some interesting fleshy fungi from Himachal Pradesh. Journal of Indian Botanical Society 54, 69-73.
- Tapwal A, Kumar R, Pandey S. 2013 Diversity and frequency of macrofungi associated with wet ever green tropical forest in Assam, India. Biodiversitas 14, 73-78.
- Vishwakarma P, Singh P, Mishra P, Tripathi NN. 2014 Diversity of Some Wild Mushroom from Gorakhpur, Uttar Pradesh, India. Int. J. Pharm. Life Sci 5(7), 3643-3647.
- Vishwakarma P, Singh P, Tripathi NN 2016 Nutritional and antioxidant properties of wild edible macrofungi from North-Eastern Uttar Pradesh, India. Indian Journal of Traditional Knowledge 15(1), 143-148.
- Vishwakarma P, Tripathi NN, Singh P 2017a A checklist of macrofungi of Gorakhpur District, U.P. India. Current Research in Environmental & Applied Mycology 7(2), 109–120.

Vishwakarma P, Singh P, Tripathi NN 2017b – *In-vitro* antioxidant activity and nutritional value of four wild oyster mushroom collected from North-Eastern part of Uttar Pradesh. Mycosphere 8(4), 592–602.