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Abstract
Arbuscular Mycorrhizal  Fungi (AMF) are a group of soil-borne fungi that form symbiotic relationships with the roots of most plants,  including

crops.  In this  relationship,  the fungus provides the plant with nutrients,  such as phosphorus,  in exchange for  carbohydrates produced by the

plant  through  photosynthesis.  The  use  of  AMF  as  a  biofertilizer  involves  the  application  of  these  fungi  to  soil  to  enhance  plant  growth  and

improve nutrient uptake. Studies have shown that AMF can increase plant growth, drought tolerance, and nutrient uptake, leading to improved

crop yields. The fungi form a network of hyphae in the soil, which helps to increase the soil's water-holding capacity, as well as its ability to retain

nutrients. This can lead to improved plant growth and health, even in nutrient-poor soils. In addition, the use of AMF as a biofertilizer can help to

reduce the dependence on synthetic fertilizers, which can have negative environmental impacts. AMF can help to improve soil fertility, increase

plant  nutrient  uptake,  and  reduce  soil  erosion,  leading  to  more  sustainable  agriculture  practices.  However,  it  is  important  to  note  that  the

effectiveness of AMF as a biofertilizer can vary depending on several factors, including the species of AMF used, the type of crop being grown,

and  the  conditions  of  the  soil.  Additionally,  the  proper  application  and  management  of  AMF  is  important  to  ensure  its  effectiveness.  In

conclusion,  the  use  of  AMF  as  a  biofertilizer  has  the  potential  to  enhance  plant  growth,  improve  nutrient  uptake,  and  promote  sustainable

agriculture practices.
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 Introduction

Mycorrhizae are a type of symbiotic relationship that occurs
between  fungi  and  plant  roots.  There  are  two  broad  types  of
mycorrhiza:  ectomycorrhizae  and  endomycorrhizae.  Endomy-
corrhizae  are  further  classified  into  five  different  kinds  of
mycorrhizal  associations.  Ectendomycorrhizas  are  another
broad category of mycorrhizal association between plant roots
and fungi[1−3]. Ectomycorrhizae form a sheath around the roots
of certain plants, such as pines, oaks, and eucalyptus. The fungi
involved  in  ectomycorrhizae  forms  a  thick  layer  around  the
roots  known  as  fungal  sheath  or  mantle.  They  also  penetrate
between the epidermis  and cortex through a  structure known
as the Hartig net. This allows for the exchange of nutrients and
water between the plant and the fungus[4]. Ectomycorrhizae are
important for the health and growth of trees in forests, as they
help to improve the uptake of nutrients and water from the soil.
Endomycorrhizae, on the other hand, form a symbiotic relation-
ship with the plant by actually invading the cells of the root[4,5].
Endomycorrhizae  can  be  categorized  into  different  types,
which are summarized in the following paragraph[6].

Monotropoid  mycorrhiza  are  characterized  by  the  fact  that
the fungus is  unable to form a visible sheath around the roots
of  the  host  plant,  and  instead  forms  a  diffuse,  intraradical
mycelium that is intermingled with the plant's own root tissue.
The  second  type  of  endomycorrhizae  are  Ericoid  mycorrhiza.
There  is  a  symbiotic  relationship  between  certain  species  of
ericaceous  plants  (such  as  blueberries,  rhododendrons,  and

heaths)  and  a  group  of  fungi  known  as  ericoid  mycorrhizal
fungi  (EMF).  In  this  relationship,  the  EMF  colonize  the  roots  of
the  host  plant  and  form  a  dense  network  of  fungal  structures
called  hyphae,  which  increase  the  plant's  ability  to  absorb
water  and  nutrients,  particularly  phosphorus.  Ericoid  mycor-
rhiza  is  considered  a  'mycoheterotrophic'  symbiosis,  meaning
that the host plant is dependent on the EMF for carbon, which
is  obtained  by  the  fungus  through  its  association  with  other
plants. The third type are Orchidaceous mycorrhizae which are
mutualistic  associations  between  orchid  plants  and  fungi.
These  relationships  are  formed  in  the  roots  of  orchids,  where
the fungus colonizes  the root  cells  and provide the plant  with
essential  nutrients,  such  as  phosphorus.  In  return,  the  orchid
provides the fungus with organic carbon through photosynthe-
sis. Orchid mycorrhizae are considered to be obligate, meaning
that  the  orchid  cannot  survive  without  the  fungus  and vice
versa. Instead, they rely on the fungus to provide them with this
essential nutrient. The most common type of endomycorrhizae,
Arbuscular  mycorrhiza,  are  a  group  of  soil-borne,  obligate
symbionts that form mutualistic associations with the majority
of land plants. These fungi colonize plant roots, forming unique
structures  called  arbuscules  within  the  root  cells.  In  exchange
for  sugars  produced by the plant  through photosynthesis,  the
fungi  provide  the  plant  with  phosphorus  and  other  essential
nutrients  that  are  otherwise  difficult  for  the  plant  to  acquire
from  the  soil.  AM  fungi  are  ancient  symbionts  that  have
evolved  alongside  plants  for  over  400  million  years,  and  they
play  important  roles  in  ecosystem  functioning  and  plant
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productivity[7−10].  Various  kinds  of  mycorrhizal  associations  are
described below in Fig. 1.

Soil microorganisms such as AMF reflect a crucial connection
between  plants  and  mineral  soil  nutrients.  They  are  also  gain-
ing  rising  attention  as  natural  fertilisers.  AMF  are  mandatory
symbiotics  of  the  phylum  Glomeromycota[12],  establishing
mutualistic  symbiosis,  with  about  80%  of  the  land  plants,
including many food crops. In return for photosynthetic mate-
rials,  they  provide  the  host  plant  with  mineral  nutrients  and
water[13].  Some benefits provided by AMF in plant growth and
yield are depicted in Fig. 2.

AMF  mycelium  from  the  root  system  is  able  to  extract  nu-
trients from soil volumes that are inaccessible to the roots[14]. In
comparison  to  plant  roots,  fungal  hyphae  are  far  thinner  and
can  reach  narrower  pores[15].  AM  fungal  hyphae  colonise  root
cortex predominantly by forming profusely branchy structures
inside  the  cells,  i.e.  arbuscules,  which  are  known  as  the  func-
tional  nutrient  exchange  sites[16].  AMF  therefore  eliminates
plant  growth  restrictions  imposed  by  an  insufficient  supply  of
nutrients[17,18].  In  recent  times  a  non-mycorrhizal  state  can  be
regarded as rare in natural habitats for most organisms[19], even
though  the  AM  fungal  populations  below  the  ground  are

significantly  different  depending  on  the  species  composition,
soil and seasonal form or variation of these factors[19]. AM asso-
ciation  provide  plants  with  additional  advantages,  in  addition
to  an  increased  food  source,  such  as  enhanced  drought  and
salinity  resistance[20,21].  While  several  studies  have  been
performed on the impact of AM symbiosis on plant reaction to
abiotic  stress  such as  drought,  salinity  and flooding in  the last
few years , the processes that have contributed to an improved
plant  stress  resistance  still  remains  somewhat  elusive[20,22−25].
Metals  such  as  Iron  (Fe),  Copper  (Cu)  and  Zinc  (Zn)  perform
important  functions  in  a  variety  of  sub-cellular  compartments,
but  they  constitute  a  highly  reactive  community  of  elements
that are toxic at large concentrations[26].

AMF  have  been  documented  to  minimise  the  toxicity  of
heavy  metals  in  host  plant  and  to  withstand  high  metal
concentrations in soil[26−30]. Metal transporters play a vital func-
tion in homeostasis of heavy metals. A Zn transporter was iden-
tified  in Glomus  intraradices (GintZnT1)[31] and  multiple  puta-
tive genes coding Cu, Fe and Zn transporters were identified in
a  genome-wide  study  of  the  recently  published Rhizophagus
irregularis (formally, Glomus  intraradices) genome[32].  The  next
steps would be characterisation of these carriers and discerning

ECTOMYCORRHIZAE

ARBUSCULAR
MYCORRHIZAE

ECTENDOMYCORRHIZAE
MYCORRHIZAE

MONOTROPOID
MYCORRHIZAE

ARBUTOID
MYCORRHIZAE ERICOID

MYCORRHIZAE

ORCHIDACEOUS
MYCORRHIZAE

VASCULAR
CYLINDER

 
Fig.  1    Different  types  of  mycorrhizal  symbiosis  in  nature:  Ectomycorrhizae,  Monotropoid  mycorrhizae,  Arbutoid  mycorrhizae,  Ericoid
mycorrhizae, Orchidaceous mycorrhizae, and Arbuscular mycorrhizae. (Modified image from Selosse & Le Tacon[11])
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their  role  in  the  symbiosis.  AMF  may  also  have  a  significant
influence  on  the  environment,  as  they  promote  soil  structure
and  aggregation[33−36] and  control  the  development  and
production of plant populations[37].

The impact of AMF symbiosis has also recently been studied
on  greenhouse  gas  (GHG)  emission[38,39].  Evidence  presented
by Bender  et  al.  suggests  that  AMF may have a  role  to  play  in
climate  change  mitigation  due  to  their  ability  to  significantly
reduce emissions of  N2O, a key greenhouse gas.  By enhancing
plant  nitrogen  (N)  absorption  and  assimilation,  AMF  may  be
able  to  reduce  N2O  emissions  by  decreasing  soluble  N  in  soil
and, in turn, denitrification[38]. Correlations between AMF abun-
dance and genes involved in primary N2O production (nirK) and
consumption  (nosZ)  suggest  that  AMF  promote  shifts  in  soil
microbial  biomass  and  community  composition  that  lead  to
reduced  N2O  emissions.  According  to  Lazcano  et  al.,  AM
symbiosis aids in N2O emission management at high soil mois-
ture  levels,  and  it  was  suggested  that  AM  plant  N2O  emission
control  may be mediated by  higher  soil  water  use  rather  than
increased N absorption[39].

Therefore, AMF are primary biotic soil elements, which, when
absent  or  degraded,  for  instance,  by  anthropic  input,  will
contribute to a less effective functioning of the ecosystem. The
process of re-establishing AMF may be a promising solution to
industrial fertilisation methods in order to achieve organic culti-
vation,  a  significant  goal  for  farmers  in  the  midst  of  a  global
recession and an environmentally friendly consumer[40,41] .  The
key  technique  for  achieving  this  aim  is  to  directly  reintroduce
AMF (inoculum)  propagules  in  the  target  soil.  However,  in  the

application  of  these  fungi,  awareness  of  how  AMF  adapts  and
reacts  to  the  objective  of  soil  management  and  ecosystem
management  and  the  events  which  result  in  a  functional
symbiosis, including the mechanisms involved in the transfer of
nutrients is  important[42].  This paper gives a brief discussion of
the  latest  studies  on  the  nutritional  aspects  of  AM  symbiosis
and  a  short  description  of  the  challenges  of  development  of
AMF inoculum, descriptions of the application of AM fungi are
mentioned  and  addressed,  both  under  regulated  and  open
field  conditions,  with  specific  emphasis  on  identifying  factors
contributing to success of the biofertilizer.

 Essential features of AMF symbiosis

The  symbiosis  of  AMF  with  plants  was  originally  discovered
400  million  years  ago[43].  Such  links  are  a  series  of  biological
processes  that  have  beneficial  impacts  on  the  ecosystems  of
both  wild  and  cultivated  biota[44].  An  example  of  a  reciprocal
interaction that may regulate the growth and advancement of
a plant is the symbiotic relationship between AMF and its part-
ners.  The  plant's  roots  may  absorb  nutrients  that  would  not
otherwise  be  available  thanks  to  the  mycelial  fungal  network
that  has  grown  throughout  them[45].  The  fungal  mycelium
colonises  the  roots  of  several  plants,  even  if  they  are  from
different  species,  and  creates  a  shared  mycorrhizal  network.
According  to  Pringle  et  al.[46],  this  mycorrhizal  network  is
regarded  as  the  main  element  of  the  terrestrial  ecosystem  for
many plant populations, including invasive species, and it facili-
tates the transfer of  phosphorus (P)  and nitrogen (N) to plants

AM-colonizationNo colonization

 
Fig. 2    A pictorial representation of a few of the benefits provided by AMF in plant growth and yield. Increased resistance to foliar pathogens,
increased drought tolerance, increased salt tolerance, enhanced defense mechanism, help in uptake of essential nutrients and bioremediation
are a few of the many benefits that AMF provide in the growth and development of a plant.
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via fungi[13,47].  They  may  improve  soil  qualities  and  encourage
plant  development  in  both  natural  and  challenging  environ-
ments[48−50]. Plant resilience to harsh environments is increased
by AMF colonisation, which results in several improvements in
morpho-physiological  traits[49−52].  Researchers  encourage  the
use  of  AMF  as  influential  bio-fertilizers  in  sustainable  agricul-
tural production, having been employed as bioinoculants[53] . In
comparison to untreated soils, AMF-inoculated soil often forms
more  consistent  masses  and  much  more  extraradical  hyphal
mycelium[54] .  Glomalin-related  soil  protein  is  thought  to  keep
soils  with  complex  abiotic  stressors  moist[55],  which  then
controls  water  levels  between  soil  and  plants  and  naturally
promotes  plant  development.  Glomalin  contains  30%–40%
carbon  (C)  and  related  chemicals  to  protect  soil  from  desicca-
tion  by  enhancing  its  ability  to  retain  soil-water[56].  Growth-
related processes that affect AMF inoculation include stomatal
conductance, leaf water capacity, relative water content (RWC),
PSII  quality,  and  CO2 assimilation[57,58].  By  altering  the  bioche-
mistry  of  the  organ  and  tissues  above  ground,  AMF  also  con-
tributes  to  improving  water  stress  tolerance[24].  Additionally,
AMF inoculation promotes the accumulation of dry matter and
improves  moisture  uptake,  boosting  plant  tolerance  to  stres-
sors  like  salt  and  drought.  AMF  extraction  for  plant  growth  in
various  biological  conditions  will  significantly  boost  organic
farming's ability to promote growth and raise production[59].

Here are the key characteristics of AM fungus symbiosis:
a) Establishment: The AM fungus forms a symbiotic relation-

ship  with  plant  roots  through  the  process  of  colonization,  in
which  the  fungus  penetrates  the  root  cells  and  forms  struc-
tures known as arbuscules[60].

b)  Nutrient  exchange:  The  AM  fungus  enhances  the  plant's
nutrient uptake by extending the absorptive surface area of the
root  system and solubilizing soil  nutrients.  In  return,  the  plant
provides the AM fungus with carbon[61,62].

c)  Soil  structure  improvement:  AM  fungi  can  contribute  to
soil  structure  improvement  through  the  production  of  extra-
radical  mycelium,  which  helps  bind  soil  particles  and  improve
soil stability[40].

d)  Enhanced  plant  growth:  The  symbiotic  relationship
between AM fungi and plants results in improved plant growth

and health, with higher root and shoot biomass, enhanced root
system architecture, and increased stress tolerance[45].

e) Wider host range: AM fungi have a wide host range, form-
ing  symbiotic  relationships  with  many  different  plant  species,
including  some  of  the  most  important  crops  such  as  maize,
wheat, and soybean[4,63−66] .

f)  Environmental  importance:  AM fungi  play a  crucial  role  in
the  ecosystem,  by  improving  soil  fertility  and  plant  produc-
tivity.  They  also  help  to  maintain  soil  health  and  reduce  soil
degradation  by  contributing  to  soil  aggregation  and  water
retention.  Overall,  the  AM  fungus  symbiosis  is  a  vital  compo-
nent  of  the  terrestrial  ecosystem,  providing  many  benefits  to
plants and the environment[67,68] .

 General life-cycle of an AMF

The  life-cycle  of  AMF  is  basically  divided  in  two  stages;  pre-
symbiosis and symbiosis (Fig. 3). Pre-symbiosis is characterized
by the following steps:  Plant root exudating certain chemicals,
spore  germination  and  hyphal  growth,  and  attachment  of
appressorium to the root.  This step is followed by the symbio-
sis stage: the hyphae of the AMF colonize the root system of a
host  plant  by  penetrating  the  root  cells  and  form  arbuscules,
and vesicles[69,70] .  The hyphae of the AMF extend into the soil
and  increase  the  absorptive  surface  area  of  the  root  system
(Fig.  4).  The  relationship  between  the  AMF  and  the  host  plant
becomes  established,  and  the  fungus  continues  to  grow  and
spread throughout the root system. Extraradical mycelium also
gives rise to formation of chlamydospores on soils at maturity.
When  the  host  plant  dies,  the  AMF  begins  to  decompose  the
plant's organic matter and return nutrients to the soil. The AMF
spores,  in  time  will  make  association  with  other  plants  and
continue its life cycle.

 Methods and source of AMF inoculum
propagation

Reviewing  the  work  from  the  past  few  decades,  the  most
successful  form  of  AMF  propagation  was  the  use  of  trap
cultures using certain plants as a host species, and it accounted
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Fig. 3    Life cycle of AMF showing pre-symbiosis and symbiosis stages.
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for  almost  75%  of  AMF  propagation  and  interestingly,  only
marginalised  usage  of  other  approaches  was  observed.
Approaches  such  as  aeroponics  and  hydroponics,  are  also
contributing to the development of pure clean spores and the
maximisation  of  the  host  plant  growth  conditions[71].  The
monoxenic root organ culture is another approach that permits
the  effective  large-scale  propagation  of  AMF  that  can  be
directly  used  as  inoculum.  The  system  consists  of  culture  of
inoculated excised roots (the so-called hairy roots), which have
acquired  the  capacity  to  proliferate  without  developing  any
epigeous portion, after processing with the soil-borne plasmid
Ri  (root-inducing) Agrobacterium  rhizogenes[72].  Within  a  few
months,  a  significant  number  of  spores,  mycelium  and
colonised  roots  were  produced[73].  Since,  AMF  may  use  a  vari-
ety  of  propagules  in  order  to  expand  and  colonise  new  roots
with different levels of efficiency[74], the selection of the source
of the inoculum is a factor of primary importance for a success-
ful colonisation. Spores, mycelium fragments fragmented from
the  lower  hyphal  network  and  other  complexes  inside  both
living  and  dead  root  fragments  are  all  components  of  the
extraradical and intraradical systems of AMF. The main cause of
regrowth  for  some  AM  fungal  organisms  was  in  specific
intraradical  vesicles[75].  Different  AM  fungal  taxonomic  ranks
vary  in  their  capacity  to  disperse  from  a  given  propagule.  The
propagation of mycelial fragmentation appears to be of greater
importance for  organisms of  the Glomeraceae family,  whereas
for  representatives  of  other  groups  such  as  Gigasporaceae,
Acaulosporaceae  and  Scutellosporaceae  spore  germination
would  be  preferential  methods  of  propagation[76].  The  most
effective  and  user-friendly  method  to  apply  a  multi  species
inoculum,  as  propagation  through  trap  culture  is  the  most
widely utilised strategy,  is  to sieve the substrate and finely cut
the root of the trap culture plant so that all the various kinds of
fungal propagules (crude inoculum) can be retrieved.

 Inoculum structure

In most of the reviews studied, the latest general tendency is
to pursue one or more types of AM fungi for individual inocula-
tion  (monospecies  inoculum).  Gosling  et  al.[77] have  examined
the impact on plant growth after inoculating diverse AM fungal
populations  with  functionally  distinct  characteristics,  fewer
fungal species that are able to mitigate stress are likely to be of
utmost  benefit  to  the  hosts  when  a  host  plant  is  subjected  to
one  cause,  such  as  greenhouse  experiments.  In  the  case  of

shoot  biomass,  single  species  inoculation  experiments  are
more  effective  than  inoculation  experiments  with  more  than
one  species  concurrently  used.  Another  greenhouse  research
has shown that species composition instead of variety may be
more critical in deciding how the species works[78].

According  to  Opik  et  al.[79],  for  single  species  inoculation,
three  AMF  species  viz. Rhizophagus  intraradices,  Rhizophagus
irregularis and Funneliformis  mossae are  subjected  to  most
scientific  studies  because  these  are  extremely  versatile
symbionts that can colonise a wide range of host plants, main-
tain  long-term  storage,  disperse  widely  across  the  world  and
quickly  and  massively  reproduce.  These  species  have  been
ideal  for  premium  inoculum  components  due  to  the  above
described  characteristics.  Several  studies  have  shown  that
different  isolates  from  the  same  species  can  have  a  greater
impact  on  plant  response  compared  to  the  variations  among
different  species[80−82].  This  suggests  that  the  exclusive  use  of
individual  AMF  organisms  such  as R.  intraradices,  R.  irregularis
and F. mossae should not be considered a drawback in inocula-
tion  experiments  as  these  species  may  have  significant  func-
tional  diversity.  In  this  context,  in  the presence of R.  irregularis
reference  genome[32,83] the  partial  genome  re-sequencing  of
several  isolates  from  various  geographical  backgrounds  can
open  the  door  to  exploring  the  roles  of  genetic  variation  in
AMF communities so that it  is  possible to develop and choose
more  successful  and  productive  AMF  for  crop  plants.  Another
factor that needs to be addressed is that the receptivity of plant
organisms,  including  seeds,  to  AMF  inoculation  differs
greatly[84−86]. The plants' reaction to AM fungi can be used as a
selection  function  in  modern  farming,  resulting  in  varieties  or
cultivars with different genetic differences.

 AMF as a bio-fertilizer

Bio-fertilizers  are  a  combination  of  naturally  occuring
microbes used to increase soil fertility. These fertilisers are very
useful  for  soil  health  and  plant  growth[87].  Various  scientific
experiments  on  AMF  in  the  last  two  decades  have  demon-
strated  their  innumerable  benefits  in  terms  of  soil  quality  and
crop productivity. Therefore, it is commonly assumed that AMF
may, in the foreseeable future, be seen as a substitute for inor-
ganic  fertilisers,  since  mycorrhizal  applications  will  effectively
reduce  the  quantitative  use  of  the  chemical  fertiliser  input,
especially  phosphorus[88].  Owing  to  the  adverse  influence  on
food  safety,  crop  health,  and  air  and  water  systems  by  inor-
ganic fertilisers, herbicides and fungicides, the continued usage
of  these  have  triggered  numerous  land,  plant  and  human
health  concerns[89].  AMF  may  be  able  to  minimise  chemical
fertiliser  usage  up  to  50%  for  optimal  agricultural  output,
although  this  calculation  depends  on  the  variety  of  plant
species  and  the  prevalence  of  stressful  environments.In  order
for sustainable agriculture to be accomplished, AMF as a biofer-
tilizer becomes more significant because the proper treatment
of these symbiotic fungi might significantly minimise the usage
of  agrochemicals.  Inoculation  of  AMF  propagules  (inoculum)
into  a  target  soil  is  the  key  technique  embraced  for  this  aim.
Sadly,  AMF  are  obligate  symbionts  and  cannot  be  produced
without the host plants in pure cultures.  The large-scale deve-
lopment  of  AMF  inocula  is  very  difficult  and  complex  because
of this constraining feature.

There  are  three  major  forms  of  AMF  inocula.  First,  AMF  soil
may be used as an inoculum from the root zone of a plant since

 
Fig.  4    Fig.  4-  Graphical  representation  of  AMF  infection  in  the
root.  AMF  colonisation  is  characterised  by  the  formation  of
arbuscules, vesicles, hyphae and spores.
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it  usually  includes  colonised  root  parts,  AMF  spores,  and
hyphae.  However,  without  adequate  knowledge  regarding
propagule  quantity,  variety  and  infectivity,  soil  inocula  cannot
be effective and may be at risk of transmitting weed seeds and
pathogenic  agents.  Spores  removed  from  soil  can  be  used
instead  as  starters  for  the  development  of  crude  inoculum.
Crude  inoculum  can  be  collected  from  the  inert  medium
adapted for AMF propagation after the known AMF isolate and
the host trap plant (i.e. plant which can be colonised with a lot
of AMF species) have been cultivated together[90−92]. This is the
most  common  form  of  inoculum  used  for  large-scale  inocula-
tion, since it normally includes a more condensed collection of
propagules  of  the  same  sort  present  in  the  soil  inoculum.
Finally,  colonised  root  fragments  alone  from  an  established
AMF host that are isolated from a trap crop may even be used
as an inoculum source. AMF's large-scale development of crude
inoculum  remains  very  demanding  even  while  new  mass
processing  methods[71],  and  the  technology  of  seed  coating
have been developed in recent years[44]. The biggest challenge
to  an  AMF  inoculum  is  the  unavoidable  symbiotic  conduct  of
the  AMF,  i.e.,  its  requirement  for  a  host  facility  to  expand  and
complete  its  life  cycles.  Which  implies  that  the  propagation
stage  must  involve  a  time  and  space-demanding  process  of
cultivation with the host plant. As a result, the establishment of
AMF  reference  collections  involves  methodologies  which  are
very different and more binding than those for other microbial
collections[93−96]. In addition, the lack of a prompt way to deter-
mine when and how often the host  plant is  colonised by AMF
often  contributes  to  threatening  AMF  's  agricultural  usability.
The management of the high inoculum needed for large-scale
usage  is  also  a  challenging  operation.  However,  AMF  inocula-
tion for plant manufacturing systems with a transplant stage is
simpler since smaller quantities of inoculum are required.

Once  AMF  biodiversity  has  been  preserved  and  well  deve-
loped,  and  an  AMF-friendly  management  such  as  fall  cover[97]

and  conservation  tillage[98] is  introduced,  the  AMF  population
will prosper and if no damage is done before and after cultiva-
tion, it  is  understood that in the future,  the network of mycor-
rhizal  hyperbiotics  of  biodiversity  will  remain  unaltered  and
contagious.  Few  of  the  experiments  carried  out  to  study  the
effectiveness of AMF as a biofertilizer either alone or in combi-
nation  of  other  soil  microorganisms  are  as  follows:  The  maxi-
mum  grain  production  of Triticum  aestivum at  phosphorus
levels was recorded on being inoculated with Pseudomonas stri-
ata,  followed  by Glomus  fasciculatum[99].  Rajendran  &
Jayasree[100] have examined the impact of biofertilizers such as
Rhizobium, AMF etc. for Acacia nilotica and also demonstrated a
substantial  improvement  in  the  length  of  seedlings  and
biomass  compared  with  control.  Microbial  bioagents  have
been  explored  in  chickpea  for  the  prevention  of  collar  rot
disease[101].  When  they  co-inoculated Rhizobium with  AMF,
optimum  decrease  in  mortality  was  observed  as  compared  to
control  (100%  seedling  mortality).  Different  yield  parameters
have been effectively  improved in each of  the adjustments by
disease control and seedling mortality reduction. The impact of
single and dual inoculum of AMF species such as that of Gigas-
pora  rosea, Glomus  intraradices  + Gigaspora  rosea,  and Glomus
etunicatum + Glomus intraradices on dry shoot and root weight
of Medicago  sativa plants  was  studied  by  Khan  et  al.[102] and
they  reported  a  significant  growth  in  both  the  parameters

compared to  control.  Increase in  nutrient  absorption in  inocu-
lated  plants  was  also  reported.  The  inoculation  of  AMF  is
promising  because  it  is  inexpensive,  simple  to  manage  and
promotes  the  growth  of  plants  and  the  seed  quality.  Growth
and return reaction to inoculation of Cicer arietinum with Rhizo-
bium sp.  and AMF has been studied by Giri[103].  These findings
showed an increase of 10.83% of the total  weight and 9.0% of
the germination over control in pot experiments.

 Conclusions

According  to  some  estimates,  the  global  population  will
reach  9  billion  by  the  year  2050[104].  In  order  to  preserve  both
human  and  environmental  health,  the  world's  agricultural
sector  is  now  faced  with  the  problem  of  almost  tripling  the
amount  of  food  that  is  produced  while  simultaneously  lower-
ing  farmers'  dependency  on  agricultural  chemicals.  The
increase  in  yield  that  is  anticipated  is  more  than  the  current
capacity  for  the  production  of  food  throughout  the  world[104],
which  highlights  the  need  for  the  development  or  revitaliza-
tion  of  environmentally  friendly  technologies  such  as  AMF-
based  biofertilization.  Despite  the  enormous  potential  it  has,
agriculturalists  have not  yet  entirely  accepted the use of  AMF.
According to the findings of this study, overall AMF inoculation
has  beneficial  effects  on  plant  growth  in  both  controlled  and
open-field  conditions.  This  is  mostly  due  to  the  many  nutri-
tional  advantages  that  this  class  of  soil  fungus  symbionts
provides  to  the  host  plant.  In  point  of  fact,  it  has  been  shown
that AMF inoculation in the field is  just  as effective as inocula-
tion in the greenhouse, where, in contrast to open field condi-
tions, non-inoculated controls are often free of AMF. Because of
this,  the  next  significant  step  for  the  consistent  use  of  AMF  in
agriculture  is  to  conduct  large-scale  field  experiments  and  a
cost-benefit  study,  such  as  the  one  suggested  by  Ceballos  et
al.[105],  to  enable  future  end-users  to  be  better  aware  of  the
benefits  of  AMF  inoculant.  Farmers  are  urged  to  create  their
own  AMF  inoculant  from  their  local  soils  since  research  has
shown that the indigenous AMF is as potent as or stronger than
commercial  or  cultural  isolates.  Even  farmers  in  developing
nations like India, who are in desperate need of a technique of
crop production that is sustainable, would have an easier time
gaining access to biofertilization technology as a result of this.
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