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Abstract
Blue mold disease is one of the most important postharvest diseases affecting garlic bulbs. In 2023, this disease was found on bulbs of elephant
garlic [Allium ampeloprasum var. ampeloprasum (Borrer) Syme] in Chiang Mai Province, Thailand, during the postharvest storage period. Three
fungal isolates were obtained and identified as Penicillium allii based on morphological characteristics and phylogenetic analysis of combined
sequences of the internal transcribed spacer (ITS) of ribosomal DNA, β-tubulin (BenA), calmodulin (CaM), and RNA polymerase II second largest
subunit  (rpb2)  genes.  In  the pathogenicity  test,  garlic  bulbs  inoculated with the isolated fungi  exhibited symptoms similar  to  those observed
during  the  postharvest  storage  period.  In  the  fungicide  screening  test,  carbendazim,  difenoconazole  +  azoxystrobin,  and  difenoconazole
effectively  completely  inhibited  this  fungus  at  both  half  and  recommended  dosages,  while  the  fungus  showed  insensitivity  to  captan  and
mancozeb. Additionally, double-recommended dosages of carbendazim, copper oxychloride, difenoconazole combined with azoxystrobin, and
difenoconazole alone exhibited complete inhibition of the fungus. To the best of our knowledge, this is the first report of postharvest blue mold
disease  on  elephant  garlic  bulbs  caused  by P.  allii in  Thailand.  Furthermore,  the  results  of  the  fungicide  sensitivity  screening  could  help  in
developing effective management strategies for controlling postharvest blue mold disease on elephant garlic bulbs caused by P. allii.
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Introduction

Garlic  (Allium spp.),  especially  the  bulb,  is  commonly  con-
sumed  and  valued  for  both  culinary  and  medicinal  purposes
due  to  its  nutritional  richness  and  numerous  beneficial  bioac-
tive compounds essential for human health[1−3]. Elephant garlic
[Allium ampeloprasum var. ampeloprasum (Borrer) Syme], hard-
neck garlic [A. sativum var. ophioscorodon (Link) Döll], and soft-
neck garlic (A. sativum var. sativum L.) are popular varieties that
have  been  cultivated  worldwide[4,5].  In  2022,  global  garlic
production  reached  2.91  million  tons,  valued  at  3.43  billion
USD. China was the largest producer, contributing 2.13 million
tons  (73%  of  world  production),  followed  by  India  with  0.3
million tons, Bangladesh with 0.05 million tons, and Egypt with
0.03  million  tons[6].  Myanmar  is  the  top  garlic  producer  in
Southeast Asia followed by Thailand and Indonesia[6].  At every
stage of growth, harvesting,  and post-harvest storage,  garlic is
susceptible  to  various  diseases  caused  by  bacteria,  fungi,  and
viruses[7−9].  Diseases  can  significantly  damage  garlic  bulb
production and quality[9,10]. Blue mold disease, caused by Peni-
cillium species, is a common issue affecting garlic bulbs during
both  the  cultivation  process  and  postharvest  storage[9,11−14].
This disease can lead to significant customer dissatisfaction and
economic losses in garlic production worldwide[9,11,14,15].

In  Thailand,  the  northern  part  is  the  main  region  for  garlic
cultivation[16].  Nowadays,  elephant  garlic  is  a  significant

vegetable  crop  extensively  cultivated  in  Thailand.  Thus,  the
area  of  plantations  used  for  growing  garlic  has  significantly
increased  in  Thailand.  However,  the  incidence  and  severity  of
diseases  have  also  increased  when  plants  are  grown  in  sub-
optimal areas and unsuitable storage conditions.  In 2023, blue
mold disease caused by fungi was observed on elephant garlic
bulbs during the storage period in Chiang Mai Province in Thai-
land,  with  a  degree  of  incidence  within  the  range  of  20%  to
30%. Importantly, there had been no prior reports of blue mold
disease  on  elephant  garlic  bulbs  in  Thailand.  Therefore,  the
objective of this study was to isolate the causal fungal agents of
this  disease.  The  isolated  fungi  were  identified  using  both
morphological  and  molecular  data.  Pathogenicity  tests  were
conducted,  and  Koch's  postulates  were  applied  to  assess  the
effects  of  the  isolated  fungi  on  asymptomatic  elephant  garlic
bulbs.  Moreover,  the sensitivity of the isolated fungi to several
commercial  fungicides  was  investigated  using  solid  culture
techniques. 

Materials and methods
 

Sample collection
Blue  mold  disease  was  observed  on  elephant  garlic  bulbs

(A. ampeloprasum var. ampeloprasum) throughout the posthar-
vest  storage  at  25  to  30  °C  and  65%  to  75%  relative  humidity

ARTICLE
 

© The Author(s)
www.maxapress.com/sif

www.maxapress.com

mailto:suwan.462@gmail.com
https://doi.org/10.48130/sif-0024-0015
https://doi.org/10.48130/sif-0024-0015
https://doi.org/10.48130/sif-0024-0015
https://doi.org/10.48130/sif-0024-0015
https://doi.org/10.48130/sif-0024-0015
mailto:suwan.462@gmail.com
https://doi.org/10.48130/sif-0024-0015
https://doi.org/10.48130/sif-0024-0015
https://doi.org/10.48130/sif-0024-0015
https://doi.org/10.48130/sif-0024-0015
https://doi.org/10.48130/sif-0024-0015
http://www.maxapress.com/sif
http://www.maxapress.com


over  a  period  of  7  to  14  d  in  Chiang  Mai  Province,  northern
Thailand  in  2023  (March  to  April).  Garlic  bulbs  exhibiting  typi-
cal  symptoms  were  collected  from  postharvest  storage  stores
and  shipped  to  the  laboratory  within  24  h.  After  being  trans-
ferred  to  the  laboratory,  symptomatic  bulbs  were  examined
using  a  stereo  microscope  (Nikon  H55OS,  Tokyo,  Japan)  and
stored in a plastic container with moist filter paper to promote
fungal sporulation. 

Fungal isolation and morphological study
Samples of bulb disease were processed to isolate the fungal

causal  agents.  The  single  conidial  isolation  method  described
by  Choi  et  al.[17] was  used  to  isolate  the  causal  fungi  from  the
lesions.  This  process  was  conducted  on  1.0%  water  agar
containing  0.5  mg/L  streptomycin.  The  individual  germinated
conidia were observed after incubation at 25 °C for 24–48 h and
then  transferred  directly  onto  potato  dextrose  agar  (PDA;
CONDA,  Madrid,  Spain)  supplemented  with  0.5  mg/L  strepto-
mycin under a stereo microscope. Pure cultures were deposited
in the Culture Collection of Sustainable Development of Biolog-
ical  Resources  (SDBR)  Laboratory,  Faculty  of  Science,  Chiang
Mai  University,  Thailand.  The  characteristics  of  the  fungal
colonies,  including  colony  morphology,  pigmentation,  and
odor, were examined on PDA, Czapek yeast extract agar (CYA),
and  malt  extract  agar  (MEA;  Difco,  France)  after  incubation  in
the  dark  for  7  d  at  25  °C.  Micromorphological  characteristics
were  assessed  using  a  light  microscope  (Nikon  Eclipse  Ni-U,
Tokyo,  Japan).  The Tarosoft® Image Frame Work software was
used to measure at least 50 samples for each anatomical struc-
ture (such as conidiophores, phialides, and conidia). 

DNA extraction, PCR amplification, and
sequencing

Genomic DNA was extracted from the fungal cultures of each
isolate that grew on PDA at  25 °C for  5 d,  using a Fungal  DNA
Extraction Kit (FAVORGEN, Ping-Tung, Taiwan) according to the
manufacturer's  protocol.  Amplification  of  the  internal  tran-
scribed  spacer  (ITS)  of  ribosomal  DNA, β-tubulin  (BenA),
calmodulin  (CaM),  and  RNA  polymerase  II  second  largest  sub-
unit  (rpb2)  genes  using  ITS5/ITS4[18],  Bt2a/Bt2b[19],  CF1/CF4[20],
and RPB2-5F/RPB2-7CR[21],  respectively.  The PCR for  these four
genes was conducted in separate PCR reactions and consisted
of  an  initial  denaturation  at  95  °C  for  3  min,  followed  by  35
cycles  of  denaturation at  95  °C  for  30  s,  annealing at  52  °C  for
30 s  (ITS and BenA);  51 °C for  1  min (CaM)  and 52 °C for  1  min
(rpb2), extension at 72 °C for 1 min, and final extension at 72 °C
for 10 min on a peqSTAR thermal cycler (PEQLAB Ltd., Fareham,
UK).  PCR  products  were  checked  on  1%  agarose  gel  elec-
trophoresis  and  purified  using  a  PCR  clean-up  Gel  Extraction
NucleoSpin® Gel  and  a  PCR  Clean-up  Kit  (Macherey-Nagel,
Düren, Germany), according to the manufacturer's instructions.
The  purified  PCR  products  were  directly  sequenced.  Sequenc-
ing  reactions  were  performed,  and  the  above-mentioned  PCR
primers  were  employed  to  automatically  determine  the
sequences  in  the  Genetic  Analyzer  at  the  1st Base  Company
(Kembangan, Malaysia). 

Sequence alignment and phylogenetic analyses
The analysis  of  the  ITS, BenA, CaM,  and rpb2 sequences  was

conducted  with  the  use  of  similarity  searches  employing  the
BLAST  program  available  at  NCBI  (http://blast.ddbj.nig.ac.jp/
top-e.html, accessed on 10 July 2024). The sequences from this
study and those obtained from previous studies, together with

sequences downloaded from the nucleotide GenBank database
are  listed  in Table  1.  Multiple  sequence  alignment  was
performed  with  MUSCLE[22] and  improved  where  necessary
using  BioEdit  v.  6.0.7[23].  Finally,  the  combination  datasets  of
ITS, BenA, CaM, and rpb2 sequences were performed.

For  phylogenetic  analyses, Penicillium  italicum (CBS  339.48)
and P. ulaiense (CBS 210.92) were selected as the outgroup. The
maximum  likelihood  (ML)  analysis  was  carried  out  using
RAxML-HPC2 version 8.2.12 on the GTRCAT model with 25 cate-
gories and 1000 bootstrap (BS) replications[24,25] via the CIPRES
web portal. Bayesian inference (BI) analysis was performed with
MrBayes v. 3.2.6 software for Windows[26]. The best substitution
model  for  BI  analysis  was  estimated  using  the  jModelTest
2.1.10[27] by  employing  the  Akaike  information  criterion  (AIC).
Bayesian posterior  probability  (PP)  was determined by Markov
Chain  Monte  Carlo  Sampling  (MCMC).  Four  simultaneous
Markov chains were run for a million generations with random
initial trees, wherein every 100 generations were sampled. The
first  25% of generated trees representing the burn-in phase of
the  analysis  were  eliminated,  while  the  remaining  trees  were
used for calculating PP in the majority-rule consensus tree. The
phylogenetic trees were visualized using FigTree v1.4.0[28]. 

Pathogenicity tests
Conidia from fungal isolates cultivated for two weeks on PDA

were  used  in  this  experiment.  Healthy  commercial  elephant
garlic  bulbs  were  washed  thoroughly,  and  then  their  surfaces
were  sterilized  by  soaking  them  for  5  min  in  a  sterile  sodium
hypochlorite  solution  with  a  concentration  of  1.5%  (v/v).
Following  that,  sterile  distilled  water  was  used  to  wash  them
three times. The bulbs were allowed to air-dry at room temper-
ature (25 ± 2 °C) for 10 min after surface disinfection. Following
the air-drying process, a quantity of 10 μL of a conidial suspen-
sion  (1  ×  106 conidia/mL)  in  sterile  water  from  each  fungal
isolate  was  dropped  onto  each  bulb.  Consequently,  sterile
distilled  water  was  used  as  an  inoculant  for  the  control.  The
inoculated  bulbs  were  placed  in  individual  4  L  sterile  plastic
boxes  maintained  at  80%  relative  humidity.  These  containers
were kept in a growth chamber at a temperature of 25 °C under
a  12-h  light  cycle  for  one  week.  A  total  of  ten  replicates  were
used for  each treatment,  which  was  repeated twice  under  the
same  conditions.  The  disease  symptoms  were  observed.  Con-
firmation of Koch's postulates was achieved by re-isolating the
fungi  through  the  isolation  method  from  any  lesions  that
occurred on the inoculated bulbs. 

Screening of commercial fungicides against the
causal agent

Seven  commercially  available  fungicides,  including
benalaxyl-M (4%) + mancozeb (65%) (Fantic M WG®, Thailand),
captan  (Captan  50®,  Thailand),  carbendazim  (Dazine®,  Thai-
land),  copper  oxychloride  (Copina  85  WP®,  Thailand),  difeno-
conazole  (12.5%)  +  azoxystrobin  (20%)  (Ortiva®,  Thailand),
difenoconazole  (Score®,  Thailand),  and  mancozeb  (Newthane
M-80®, Thailand), were examined in this study according to the
approach  indicated  through  previous  studies[29,30].  The  fungi-
cides  used  in  this  study  were  available  commercially  in  Thai-
land and were approved for  usage.  The in  vitro applications of
benalaxyl-M  +  mancozeb,  captan,  carbendazim,  copper
oxychloride,  difenoconazole  +  azoxystrobin,  difenoconazole,
and  mancozeb  were  recommended  at  dosages  of  1,380,  750,
750,  1,700,  243.75,  187.5,  and 1,200 ppm, respectively,  accord-
ing to the labels for each fungicide. The final concentration was
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obtained by preparing each fungicide and adding it to an auto-
claved PDA. Each fungicide was used in three different dosages:
half-recommended,  recommended,  and  double-recom-
mended.  The  test  media  were  inoculated  with  mycelial  plugs
(5 mm in diameter) that had been cultivated on PDA in the dark
at  25  °C  for  one  week.  The  control  did  not  add  any  fungicide.
The  plates  were  maintained  in  darkness  at  a  temperature  of
25  °C.  Following  one  week  of  incubation,  the  mycelial  growth
of  each  isolate  was  evaluated  on  individual  plates  and  a
comparison  was  made  between  the  growth  in  PDA  supple-
mented  with  fungicides  and  the  growth  observed  in  the
control. The calculation of the percentage growth inhibition for
each  isolate  was  performed  using  the  formula  provided  by
Pandey et al.[31].  Each isolate was classified as sensitive (> 50%
inhibition),  insensitive  (<  50%  inhibition),  or  totally  inhibited
(100%  inhibition)  based  on  their  growth  inhibition  rates[30,31].
Five  replicates  were  conducted  for  each  fungicide  and  fungal
isolate,  and  the  experiments  were  independently  repeated
twice under the same biological conditions. 

Statistical analysis
The  Shapiro-Wilk  test  in  SPSS  software  version  26  was  used

to  examine  data  from  the  two  repeated  fungicide  sensitivity
experiments  at  a  significant  level  of p <  0.05  to  perform  the

normality test. The results indicated non-significant findings, so
the  data  from  these  repeated  experiments  were  assessed  for
the  assumptions  of  one-way  analysis  of  variance  (ANOVA).
Duncan's  Multiple  Range  Test  (DMRT)  was  then  used  to  iden-
tify significant differences at p ≤ 0.05. 

Results
 

Disease symptoms
Initial symptoms, water-soaked areas on the outer surface of

scales were observed. Later, white mycelium and blue powdery
mold  develop  on  the  surface  of  the  lesions  (Fig.  1a).  These
lesions  appear  as  brown,  tan,  or  grey  colored  areas  when  the
bulbs are cut. In advanced stages, infected bulbs disintegrated
into a watery rot. 

Fungal isolation and morphological
characteristics

Three fungal  isolates  (CMU499,  CMU500,  and CMU501)  with
similar morphology were obtained and deposited at the SDBR-
CMU under  accession numbers  SDBR-CMU499,  SDBR-CMU500,
and  SDBR-CMU501,  respectively.  Colonies  PDA,  CYA,  and  MEA
were  29–32,  32–37,  and  33–37  mm  in  diameter,  respectively
after incubation for one week at 25 °C (Fig. 1b–d).  Colonies on

 

Table 1.    Details of sequences in Penicillium section Fasciculata used in molecular phylogenetic analysis.

Penicillium species Strain/isolate
GenBank accession number

ITS BenA CaM rpb2

P. albocoremium CBS 472.84T AJ004819 AY674326 KUJ896819 KU904344
P. allii CBS 131.89T ‒ AY674331 KU896820 KU904345
P. allii SDBR-CMU499 PP998350 PQ032853 PQ032856 PQ032859
P. allii SDBR-CMU500 PP998351 PQ032854 PQ032857 PQ032860
P. allii SDBR-CMU501 PP998352 PQ032855 PQ032858 PQ032861
P. aurantiogriseum CBS 324.89 AF033476 AY674296 KU896822 JN406573
P. camemberti MUCL 29790T AB479314 FJ930956 KU896825 JN121484
P. cavernicola CBS 100540T MH862709 KJ834439 KU896827 KU904348
P. caseifulvum CBS 101134T MH862722 AY674372 KU896826 KU904347
P. commune CBS 311.48T AY213672 AY674366 KU896829 KU904350
P. concentricum CBS 477.75T KC411763 AY674413 DQ911131 KT900575
P. coprobium CBS 561.90T DQ339559 AY674425 KU896830 KT900576
P. discolor CBS 474.84T OW986149 AY674348 KU896834 KU904351
P. echinulatum CBS 317.48T MH856364 AY674341 DQ911133 KU904352
P. freii CBS 476.84T MH861769 KU896813 KU896836 KU904353
P. gladioli CBS 332.48T AF033480 AY674287 KU896837 JN406567
P. glandicola CBS 498.75T AB479308 AY674415 KU896838 KU904354
P. griseofulvum CBS 185.27T AF033468 AY674432 JX996966 JN121449
P. hirsutum CBS 135.41T AY373918 AF003243 KU896840 JN406629
P. hordei CBS 701.68T MN431391 AY674347 KU896841 KU904355
P. italicum CBS 339.48T KJ834509 AY674398 DQ911135 ‒
P. melanoconidium CV1331 JX091410 JX091545 JX141587 KU904358
P. neoechinulatum CBS 101135T JN942722 AF003237 KU896844 JN985406
P. nordicum DTO 098-F7 KJ834513 KJ834476 KU896845 KU904359
P. palitans CBS 107.11T KJ834514 KJ834480 KU896847 KU904360
P. polonicum CBS 222.28T AF033475 AY674305 KU896848 JN406609
P. solitum CBS 424.89T AY373932 AY674354 KU896851 KU904363
P. thymicola CBS 111225T KJ834518 AY674321 FJ530990 KU904364
P. tricolor CBS 635.93T MH862450 AY674313 KU896852 JN985422
P. ulaiense CBS 210.92T KC411695 AY674408 KUB96854 KU904365
P. verrucosum CBS 603.74T AY373938 AY674323 DQ911138 JN121539
P. vulpinum CBS 126.23T AF506012 KJ834501 KU896857 KU904367

Ex-type  species  are  indicated  by  the  superscript  letters  as  'T'.  '−'  indicates  the  absence  of  sequencing  information  in  GenBank.  The  fungal  isolates  and
sequences obtained in this study are in bold.
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PDA  and  MEA  were  white,  flat  with  entire  edges,  conidium
turquoise,  white  in  the  center,  dull  green  at  the  margins;
reverse  pale  yellow  for  PDA  and  yellow-brown  for  MEA.
Colonies  on  CYA  were  white,  flat  with  entire  edges,  conidium
dull  green;  reverse  white.  All  fungal  isolates  could  produce
conidiophores,  and  phialides,  and  sporulate  in  all  of  the  agar
media. Conidiophores terverticillate  (Fig.  1e–g). Stipes rough-
walled,  13.2–181.2  ×  2.3–3.9 μm. Rami one  or  two,  rough-
walled  and  appressed  or  divergent,  8.4–24.7  ×  2.5–4.6 μm.
Metulae divergent,  in  verticils  of  2–4,  8–19.1  ×  2.3–4.6 μm.
Phialides ampulliform, in verticils of 3 to 9, 6–17.9 × 1.7–6.9 μm.
Conidia globose,  2.6–4.3 μm  in  diameter,  smooth-walled,  dull
green  (Fig.  1h).  Based  on  these  morphological  characteristics,

all fungal isolates were initially identified as belonging to Peni-
cillium[32−35].  Fungal  identification  was  then  further  confirmed
using multi-gene phylogenetic analyses. 

Phylogenetic analysis
The ITS, BenA, CaM, and rpb2 sequences obtained from three

fungal  isolates  in  this  study  have  been  deposited  in  GenBank
(Table  1).  According  to  the  BLAST  results,  all  fungal  isolates
were  identified  as  members  of  the Penicillium section Fascicu-
lata. The combined ITS, BenA, CaM, and rpb2 sequences dataset
consists of 32 taxa, and the aligned dataset includes 2,399 char-
acters  comprising  gaps  (ITS:  1–553, BenA:  554–927, CaM:
928–1,442, and rpb2: 1,443–2,399). The best-scoring RAxML tree
was established with a final ML optimization likelihood value of

 

a

b c d

e f g

h

Fig. 1    (a) Natural symptoms of blue mold disease on bulbs of elephant garlic by Penicillium allii .  Colonies of Penicillium allii SDBR-CMU499
after incubation at 25 °C for one week. (b) PDA. (c) CYA. (d) MEA. (e)–(g) Conidiophores. (h) Conidia. Scale bars: (a)–(d) = 10 mm, (e)–(h) = 10 μm.
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–9,279.455311.  Accordingly,  the  matrix  contained  612  distinct
alignment  patterns  with  5.04%  undetermined  characters  or
gaps.  The  estimated  base  frequencies  were  found  to  be:  A  =
0.235164, C = 0.269054, G = 0.262373, and T = 0.233408; substi-
tution rates AC = 1.298254, AG = 4.466196, AT = 1.340638, CG =
0.787838,  CT  =  9.362594,  and  GT  =  1.00000.  The  values  of  the
gamma  distribution  shape  parameter  alpha  and  the  Tree-
Length were 0.580385 and 0.524602, respectively. Additionally,
BI  analysis  yielded  a  final  average  standard  deviation  of
0.002257 for the split frequencies at the end of all MCMC gener-
ations.  Regarding  topology,  the  phylogenetic  trees  generated
from  both  ML  and  BI  analyses  were  similar.  Consequently,  the
phylogenetic  tree  obtained from the ML analysis  was  selected
and is displayed in Fig. 2. The results indicated that three fungal
isolates  SDBR-CMU499,  SDBR-CMU500,  and  SDBR-CMU501
clustered  with P.  allii CBS  131.89  (ex-type  strain)  with  strong
statistical  (100%  BS  and  1.0  PP)  supports.  Therefore,  all  fungal
isolates  obtained  in  this  were  identified  as P.  allii based  on
morphological and molecular data. 

Pathogenicity tests
The  initial  symptoms  appeared  on  bulbs  of  elephant  garlic

3  d  after  being  inoculated.  After  7  d,  all  inoculated  bulbs
displayed  powdery  mold  at  their  centers,  surrounded  by
orange-brown  water-soaked  lesions  (Fig.  3b‒d).  Whereas,
control  bulbs were asymptomatic  (Fig.  3a). Penicillium  allii was
consistently  reisolated  from  the  inoculated  bulbs  on  PDA  to
complete Koch's postulates. 

Reactions of commercial fungicides against
Penicillium allii

Seven  commercially  available  fungicides  in  Thailand  were
tested  in  this  study.  After  one  week,  the  mycelial  growths  in
response  to  the  fungicides  at  three  different  dosages,  includ-
ing  half-recommended  (1/2RD),  recommended  (RD),  and

double-recommended (2RD) were calculated and presented in
Table 2.  The results  revealed that  the growth inhibition values
varied across different fungicides, dosages, and fungal isolates.
Data  on  the  percentage  of  mycelial  inhibition  for  each  fungal
isolate,  related  to  the  fungicides,  passed  the  normality  test
(Shapiro-Wilk  test, p <  0.001),  thereby  assuming  normal  distri-
butions.  Therefore,  ANOVA  followed  by  DMRT  (p ≤ 0.05)  was
used  to  identify  significant  differences.  The  findings  indicated
that  all  fungal  isolates  were  completely  inhibited  by  carben-
dazim,  difenoconazole  +  azoxystrobin,  and  difenoconazole  at
all  tested  dosages  (Table  2).  In  the  tests  for  captan  and
mancozeb,  all  isolates  demonstrated  sensitivity  to  2RD.  There-
fore,  based  on  the  recommended  dosages,  carbendazim,
difenoconazole  +  azoxystrobin,  and  difenoconazole  could  be
effectively applied to control this pathogen. 

Discussion

Penicillium species are widely recognized as one of the most
significant genera, known to cause major diseases in numerous
economically  valuable  crops  cultivated  worldwide,  including
garlic[9,10,12,13,36].  Traditionally, Penicillium species  have  been
identified  using  both  macromorphological  and  micromorpho-
logical  characteristics.  However,  morphological  traits alone are
insufficient  to  differentiate  closely  related Penicillium species
due to the extensive range of morphological variations. There-
fore, molecular techniques are crucial for accurately identifying
Penicillium at  the  species  level.  Several  previous  studies  have
utilized  a  combination  of  ribosomal  DNA  (ITS)  and  protein-
coding genes (BenA, CaM, rpb1,  and rpb2)  as  powerful  tools  to
identify Penicillium species  since  species-level  identification
remained unresolved when used solely  on the ribosomal  DNA
gene[32,34,35,37].  In  this  study,  three  isolates  of P.  allii were
obtained from the rot lesions of blue mold disease on elephant

 

Table 2.    Percentage of mycelial inhibition and reactions of three isolates of Penicillium allii against fungicides.

Fungicides Dosages
Inhibition of mycelial growth (%)*

Reaction
SDBR-CMU499 SDBR-CMU500 SDBR-CMU501

Benalaxyl-M + mancozeb 1/2RD 30.08 ± 1.41 c 29.27 ± 2.25 c 30.08 ± 2.53 c Insensitive
RD 55.28 ± 1.41 b 56.10 ± 3.62 b 60.16 ± 1.67 b Sensitive

2RD 82.11 ± 2.82 a 83.74 ± 1.41 a 83.74 ± 3.45 a Sensitive
Captan 1/2RD 2.44 ± 3.50 c 1.63 ± 2.41 c 2.44 ± 1.25 c Insensitive

RD 4.88 ± 2.25 b 4.88 ± 2.23 b 5.69 ± 2.30 b Insensitive
2RD 72.36 ± 1.60 a 73.93 ± 3.45 a 73.98 ± 2.82 a Sensitive

Carbendazim 1/2RD 100 ± 0 a 100 ± 0 a 100 ± 0 a Inhibition
RD 100 ± 0 a 100 ± 0 a 100 ± 0 a Inhibition

2RD 100 ± 0 a 100 ± 0 a 100 ± 0 a Inhibition
Copper oxychloride 1/2RD 61.79 ± 1.60 c 58.54 ± 1.05 c 56.91 ± 1.41 f Sensitive

RD 68.29 ± 1.20 b 68.29 ± 2.05 b 68.29 ± 2.54 d Sensitive
2RD 100 ± 0 a 100 ± 0 a 100 ± 0 a Inhibition

Difenoconazole + azoxystrobin 1/2RD 100 ± 0 a 100 ± 0 a 100 ± 0 a Inhibition
RD 100 ± 0 a 100 ± 0 a 100 ± 0 a Inhibition

2RD 100 ± 0 a 100 ± 0 a 100 ± 0 a Inhibition
Difenoconazole 1/2RD 100 ± 0 a 100 ± 0 a 100 ± 0 a Inhibition

RD 100 ± 0 a 100 ± 0 a 100 ± 0 a Inhibition
2RD 100 ± 0 a 100 ± 0 a 100 ± 0 a Inhibition

Mancozeb 1/2RD 19.51 ± 2.44 c 22.76 ± 3.73 c 21.14 ± 1.41 c Insensitive
RD 47.15 ± 1.45 b 47.15 ± 2.82 b 43.90 ± 2.44 b Insensitive

2RD 58.54 ± 2.44 a 54.47 ± 1.42 a 55.28 ± 1.45 a Sensitive

* Results are means of five replicates ± standard deviation with the independently repeated twice. Data with different letters within the same column for each
fungal isolate and fungicide indicate a significant difference at p ≤ 0.05 according to Duncan's multiple range test.  1/2RD, RD, and 2RD indicate half  of the
recommended dosage, recommended dosage, and double the recommended dosage, respectively.
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garlic  bulbs  in  northern  Thailand.  The  identification  of  this
fungal species followed methods similar to those used for iden-
tifying Penicillium, which involve combining phylogenetic anal-
ysis of multiple genes with their morphological characteristics.

In  this  study,  Koch's  postulates  were  fulfilled  by  conducting
pathogenicity  tests  on  all  isolates  of P.  allii.  The  findings
demonstrate  that  postharvest  blue  mold  disease  on  elephant
garlic bulbs in northern Thailand, caused by P. allii identified in

 

Penicillium allii SDBR-CMU499
Penicillium allii SDBR-CMU500
Penicillium allii SDBR-CMU501

Penicillium aurantiogriseum CBS 324.89

Penicillium melanoconidium CV1331

77/-

71/-

93/1.0

93/1.0

98/1.0

100/1.0

100/1.0

100/1.0

100/1.0

95/0.99

98/1.0
70/0.92

0.01

100/1.0

93/1.0

86/-

53/-

85/0.99

83/0.99

83/0.99
100/1.0

91/0.98

99/1.0
100/1.0 100/0.99

100/1.0

100/1.0

100/1.0

Penicilliun caseifulvum CBS 101134
Penicillium commune CBS 311.48

Penicillium palitans CBS 107.11
Penicillium camemberti MUCL 29790

Penicillium cavernicola CBS 100540
Penicillium solitum CBS 424.89

Penicillium discolor CBS 474.84
Penicillium echinulatum CBS 317.48

Penicillium allii CBS 131.89
Penicillium albocoremium BCS 472.84

Penicillium hirsutum CBS 135.41
Penicillium hordei CBS 701.68

Penicillium freii CBS 476.84
Penicillium neoechinulatum CBS 101135

Penicillium polonicum CBS 222.28
Penicillium tricolor CBS 635.93

Penicillium verrucosum CBS 603.74
Penicillium nordicum DTO 098-F7

Penicillium thymicola CBS 111225
Penicillium gladioli CBS 332.48

Penicillium concentricum CBS 477.75
Penicillium coprobium CBS 561.90

Penicillium griseofulvum CBS 185.27
Penicillium glandicola CBS 498.75

Penicillium vulpinum CBS 126.23
Penicillium ulaiense CBS 210.92

Penicillium italicum CBS 339.48

Fig. 2    Phylogram derived from maximum likelihood analysis of the combined ITS, BenA, CaM, and rpb2 sequences of 30 taxa in the Penicillium
section Fasciculata and two taxa in the Penicillium section Penicillium. Penicillium italicum CBS 339.48 and P. ulaiense CBS 210.92 were used as
outgroups. Bootstrap values ≥ 50% (left) and Bayesian posterior probabilities ≥ 0.90 (right) are displayed above nodes. The scale bar represents
the expected number of nucleotide substitutions per site. The sequences of fungal species obtained in this study are in red. The ex-type strain
are in bold.

 

a

b

c

d

Fig. 3    Pathogenicity test using Penicillium allii SDBR-CMU499, SDBR-CMU500, and SDBR-CMU501 on bulbs of elephant garlic after one week
inoculation at  25 °C.  (a)  Control  bulbs treated with sterile  distilled water  instead of  inoculum. Blue mold disease on bulbs of  elephant garlic
after inoculation of isolate (b) SDBR-CMU499, (c) SDBR-CMU500, and (d) SDBR-CMU501. Scale bar: 10 mm.
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this  study  resembles  the  disease  caused  by  previously  identi-
fied Penicillium pathogens,  particularly P.  hirsutum,  which
affects  garlic  bulbs  worldwide[11−13,36]. Penicillium polonicum
has  been  reported  as  a  causal  agent  of  blue  mold  on  stored
garlic  bulbs in Pakistan[38]. Penicillium allii was known to cause
postharvest  blue  mold  disease  on  garlic  bulbs  in
Argentina[15,39,40].  In  the  USA, P.  albocoremium, P.  expansum, P.
glabrum, P.  paraherquei,  and P.  radicicola can  cause  blue  mold
on  garlic  bulbs[13].  In  Korea,  blue  mold  disease  on  garlic  bulbs
caused  by P.  hirsutum has  been  reported[41].  Five Penicillium
species, namely P. allii, P. glabrum, P. italicum, P. polonicum, and
P.  psychrotrophicum were identified and confirmed as posthar-
vest  pathogens  causing  blue  mold  rot  of  garlic  in  Serbia[42].
Recently, P.  allii was  the  most  virulent  pathogen  causing  blue
mold  disease  of  elephant  garlic  bulbs  in  Italy,  accounting  for
95%  of  cases,  followed  by P.  citrinum (4%)  and P.  brevicom-
pactum (1%)[43]. Before this study, there were no reports of blue
mold  disease  on  elephant  garlic  bulbs  in  Thailand.  Thus,  this
represents the first report of postharvest blue mold disease on
elephant garlic bulbs caused by P. allii in Thailand.

To manage and control fungal-caused plant diseases,  a vari-
ety  of  fungicides  have  been  used.  Several  studies  have  docu-
mented  the  effectiveness  of  fungicides  in  affecting  sensitive,
resistant strains of plant pathogenic fungi, particularly those in
the Penicillium species, on their in vitro mycelial growth[44−46]. In
this  study,  the sensitivity  and inhibition of P.  allii to fungicides
varied among different fungicides and dosages. These findings
are  consistent  with  previous  studies,  which  reported  that  the
sensitivity  and  inhibition  of Penicillium species  to  fungicides
varies based on the type and dosage of the fungicide, as well as
fungal  species[46−48].  Before  this  study,  prochloraz  had  been
used  against P.  allii to  control  diseases  related  to  sprouting
germination  in  Europe[49].  In  this  study,  carbendazim,  difeno-
conazole  +  azoxystrobin,  and difenoconazole  at  both  half  and
recommended dosages exhibited complete inhibition of P. allii.
The information on the in vitro inhibition, sensitivity, and resis-
tance  of  fungicides  against P.  allii,  which  causes  postharvest
blue  mold  disease  on  elephant  garlic  bulbs,  would  be  benefi-
cial  for in  vivo applications  and  for  managing  this  disease  in
Thailand and globally. However, environmental factors and the
fungicide's  metabolism in the plant can cause the results  of in
vitro fungicide  testing  to  differ  from in  vivo responses.  There-
fore,  further  studies  are  required  to  conduct in  vivo fungicide
sensitivity  and  disease  inhibition  assays  based  on  the in  vitro
findings.  Additionally,  several  previous  studies  have  estab-
lished that fungicide-resistant strains are a result of both exces-
sive and prolonged fungicide treatment[50−52]. Utilizing biologi-
cal  control  agents,  rotating crops,  adhering to  fungicide  treat-
ment  guidelines,  and  maintaining  cleanliness  in  fields,  equip-
ment,  and  storage  spaces  are  all  essential  components  of  a
comprehensive  strategy  to  reduce  fungicide  resistance  in
fungi[9,50,53,54]. 

Conclusions

Garlic blue mold disease, caused by Penicillium species, leads
to  significant  economic  losses  during  postharvest  storage
worldwide.  In  the  present  study, P.  allii was  isolated  from
infected  bulbs  of  elephant  garlic  in  northern  Thailand.  The
identification  of  this  fungi  involved  the  analysis  of  their

morphological  characteristics  and  conducting  multi-gene
phylogenetic  analyses.  The  assessment  of  pathogenicity  for P.
allii showed similar symptoms throughout the artificial inocula-
tion  process,  as  observed  during  the  postharvest  storage
period.  Therefore,  this  study  represents  the  first  report  of
elephant garlic blue mold disease caused by P. allii in Thailand.
In the fungicide screening test, carbendazim, difenoconazole +
azoxystrobin,  and  difenoconazole  were  found  to  effectively
control  this  pathogen  at  both  half  and  full  recommended
dosages. Thus, half  of the recommended dosages can be used
in managing this disease, serving as a guideline for prevention
and  helping  to  reduce  pathogen  resistance  to  fungicides.  The
findings  of  this  study  will  enhance  our  understanding  of
postharvest  blue  mold  disease  in  elephant  garlic  bulbs  and
provide  insights  for  developing  effective  management  strate-
gies and prevention methods to minimize significant economic
losses.  Further  research  on  the  epidemiology  of  this  disease
would  be  required  for  effective  monitoring,  prevention,  and
control. 
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