Open Access

https://doi.org/10.48130/sif-0025-0006 Studies in Fungi **2025**, 10: e005

First report of *Nigrospora humicola* (Apiosporaceae, Xylariales) on *Phragmites* plant from North Asia

Aleksandra S. Orina*, Olga P. Gavrilova and Tatiana Yu. Gagkaeva

Abstract

In this study, one *Nigrospora* sp. strain was isolated from a stem of *Phragmites australis* collected in North Asia and identified as *N. humicola* based on the results of multilocus phylogeny of the internal transcribed spacer (ITS), β -tubulin (tub), translation elongation factor EF-1a (tef) genes, and a detailed analysis of the cultural and morphological characters of the fungus. This is the first detection of *N. humicola* in Russia and its first occurrence on a plant, so the substrate range of this species may be wider than currently known. Morphological analysis of the strain revealed the additional characteristics that are considered important for the identification of *N. humicola*: sterile cells; formation of stained clusters of conidiophores and conidiogenous cells; equatorial slits in some young conidia. Thus, further analysis of morphology would be useful in refining our understanding of the *Nigrospora* species limits.

Citation: Orina AS, Gavrilova OP, Gagkaeva TYu. 2025. First report of Nigrospora humicola (Apiosporaceae, Xylariales) on Phragmites plant from North Asia. Studies in Fungi 10: e005 https://doi.org/10.48130/sif-0025-0006

Introduction

Nigrospora Zimm. (Ascomycota, Sordariomycetes, Xylariales) are ubiquitous fungi revealed on plants^[1–4], lichens^[5], insects^[6,7], marine organisms^[8], humans^[9], and in the soil^[10]. These fungi are associated with different plants as endophytes, saprobes, parasites, and pathogens^[2,4,11–13].

Nowadays, with the emerging possibilities of accurate species identification of fungi, studying the patterns of their occurrence and abundance, as well as various characteristics is an urgent task. In recent years the revision of *Nigrospora* genus was carried out and new species were described on the basis of the molecular and morphological evidence^[1,4,10,13–17]. The identified genetic diversity of *Nigrospora* indicates that many species of this genus have not yet been discovered. Moreover, the information on the distribution and host plants of known *Nigrospora* species remains often fragmentary. At least 30 *Nigrospora* species were detected in China on various substrates^[10,11,13,14,16,17], among them, 14 *Nigrospora* species were associated with *Poaceae* plants^[11,13,14].

In Russia, the *N. gorlenkoana* Novobr. occurrence on wheat, barley, oats, maize, and rapeseed were previously confirmed by molecular genetic methods^[18], while there is no information on the distribution of other *Nigrospora* species. In our previous study, we suggested that one strain of *Nigrospora* sp. MFG 70052, isolated from *Phragmites australis* stem can be described as a potential new species based on morphology and phylogenetic analysis data, which represented the distinct genetic line, sister to *N. chinensis* Mei Wang & L. Cai^[18].

The aim of study was to identify the *Nigrospora* sp. strain isolated from *Phragmites australis* collected in North Asia.

Materials and methods

Fungal strain

The *Nigrospora* sp. strain was isolated from the *Phragmites* australis collected in Primorsky Krai of Russia in 2010. The fragments

of stems with necrosis were carefully washed with tap water, and were surface sterilized by soaking in 5% NaOCI (3 min), and then rinsing with sterile water. Then, the plant tissues were placed on potato sucrose agar (PSA) containing 1 mL/L mixture of antibiotics (HyClone, Austria), and 0.4 μ L/L Triton X-100 (Panreac, Spain). Following incubation at 25 °C, the pure Nigrospora culture was sub-cultures onto fresh PSA. Suspension 20 μ L consisting of 20–50 conidia and sterilized distilled water was transferred to a Petri dish on PSA containing Triton X-100 and spread with a sterile spatula over the surface of the medium prepared the day before. Incubation continued for 48 h at 25 °C, after one germinated spore was selected and transferred to a new dish with PSA. The fungal growth was recorded after 3 d of incubation. The single-spored Nigrospora strain MFG 70052 was deposited in the culture collection of the All-Russian Institute of Plant Protection (VIZR, St. Petersburg, Russia).

Molecular genetic analysis

Genomic DNA was extracted from fungal mycelium grown on PSA (7 d, 25 °C, in the dark) using the CTAB protocol^[19]. The fragments of the internal transcribed spacer (ITS), β -tubulin gene (tub), and translation elongation factor EF-1a (tef) were amplified with ITS1/ITS4^[20], T1/T2^[19], and EF1-728F/EF1-986R^[21] primer pairs and according to the authors' protocols, respectively. The sequencing of the fragments was carried out on an ABI Prism 3500 sequencer (Applied Biosystems, Japan) using the BigDye Terminator v3.1 cycle sequencing kit (Applied Biosystems, USA).

The obtained combined sequences of three loci (ITS, *tub*, and *tef*) as well as the sequences of representative 88 *Nigrospora* spp. strains (Table 1) were aligned using the MEGA X 10.1 program. The best-fitting substitution model was determined using the IQ-TREE 2 v.2.1.3 program. The T92+G model was chosen for the multilocus analysis. The phylogenetic analysis was performed using maximum likelihood (ML) also in IQ-TREE 2 v.2.1.3 program. Bootstrap supports values were calculated with 1,000 replicates. To further infer phylogenetic relationships among taxa, a Bayesian analysis was conducted with MrBayes 3.2.1 using 2,000,000 generations of Markov chain Monte Carlo (MCMC), and trees were sampled at every 1000th generation.

Table 1. The information on the strains used for phylogenetic analysis in this study.

Species	Strain ID	Substrate	Origin –	GenBank accession numbers		
species		Substrate		ITS	tub	tef
ligrospora anhuiensis	QY-2	Rice	China	OP677969	PP103614	PP103590
l. aurantiaca	CGMCC 3.18130 T	Nelumbo sp., leaves	China	KX986064	KY019465	KY019295
l. aurantiaca	LC 7034	Musa paradisiaca	China	KX986093	KY019598	KY019394
I. aurantiaca	LC12063	Saccharum officinarum, leaves	China	MN215769	MN329933	MN26400
N. bambusae	CGMCC 3.18327 T	Bamboo, leaves	China	KY385307	KY385319	KY385313
N. bambusae	LC 7244	Bamboo, leaves	China	KY385306	KY385320	KY385314
I. brasiliensis	CMM1214 T	Nopalea cochenillifera	Brazil	KY569629	MK720816	MK75327
N. brasiliensis	CMM 1217	Nopalea cochenillifera	Brazil	KY569630	MK720817	MK75327
N. camelliae-sinensis	CGMCC 3.18125 T	Camellia sinensis	China	KX985986	KY019460	KY01929
N. camelliae-sinensis	LC12070	Saccharum officinarum, leaves	China	MN215773	MN329937	MN26401
N. chinensis	CGMCC 3.18127 T	Machilus breviflora	China	KX986023	KY019462	KY01942
N. chinensis	LC4433		China	KX986013	KY019402 KY019536	KY01942
		Castanopsis sp.				
I. chinensis	LC 4660	Quercus sp.	China	KX986026	KY019548	KY01944
N. chinensis	QY	Rice	China	OP677966	PP103612	PP103588
I. coryli	W18	Corylus heterophylla	China	PP218065	PP320372	PP46130
I. cooperae	SFC20230324-M03	<i>Ishige</i> sp.	South Korea	OQ726361	OQ735179	OQ73519
I. cooperae	BRIP 72408b	Themeda arguens	Australia	OP035047	OP039537	OP03953
I. covidalis	CGMCC 3.20538 T	Lithocarpus sp.	China	OK335209	OK431479	OK43148
I. covidalis	LC15837	Lithocarpus sp.	China	OK335210	OK431480	OK43148
N. endophytica	URM8462 T	Manihot esculenta	Brazil	OM265233	OP572420	OP57241
l. endophytica	ARM687	Manihot esculenta	Brazil	OM265226	OP572418	OP57241
I. falsivesicularis	CGMCC 3.19678 T	Saccharum officinarum, leaves	China	MN215778	MN329942	MN26401
I. falsivesicularis	LC13553	Saccharum officinarum, roots	China	MN215779	MN329943	MN26401
v. ficuum	ZHKUCC 22-0143	Ficus sp.	China	OR164911	OR166318	na
v. ricuum V. ficuum	ZHKUCC 22-0125	Ficus sp.	China	OR164910	OR166317	na
l. globosa	CGMCC3.19633 T	Soil	China	MK329121	MK336134	MK33605
•		Soil				
l. globosa	LC 12441		China	MK329122	MK336135	MK33605
l. globospora	CGMCC 3.20539 T	Petasites hybridus	China	OK335211	OK431481	OK43148
l. globospora	LC 15839	Petasites hybridus	China	OK335212	OK431482	OK43148
I. gorlenkoana	CBS 480.73	Vitis vinifera	Kazakhstan	KX986048	KY019456	KY01942
I. gorlenkoana	MFG 70030	Wheat, grain	Russia	OK563236	OK626358	OK62637
I. gorlenkoana	MFG 70036	Wheat, grain	Russia	OK563241	OK626363	OK62637
I. gorlenkoana	MFG 70038	Barley, grain	Russia	OK563242	OK626364	OK62638
I. gorlenkoana	MFG 70051	Oats, grain	Russia	OK563250	OK626372	OK62638
l. guangdongensis	CFCC 53917 T	Cunninghamia lanceolata	China	MT017509	MT024495	MT02449
l. guangdongensis	Tly068	Cunninghamia lanceolata	China	MT017510	MT024496	MT02449
I. guilinensis	CGMCC 3.18124 T	Camellia sinensis	China	KX985983	KY019459	KY01929
l. guilinensis	LC 7301	Nelumbo sp., stem	China	KX986063	KY019608	KY01940
I. hainanensis	CGMCC 3.18129 T	Musa paradisiaca, leaves	China	KX986091	KY019464	KY01941
l. hainanensis	LC13514	Saccharum officinarum, leaves	China	MN215780	MN329944	MN26401
l. humicola	CFCC 56884 T	Soil	China	ON555686	ON557392	ON55739
I. humicola	CFCC 56885	Soil	China	ON555687	ON557393	ON55739
l. humicola	MFG 70052	Phragmites australis	Russia	OK563251	OK626373	OK62638
I. lacticolonia	CGMCC 3.18123 T	Camellia sinensis	China	KX985978	KY019458	KY01929
I. lacticolonia	LC 7009	Musa paradisiaca, leaves	China	KX986087	KY019594	KY01945
I. lacticolonia	LC12059	Saccharum officinarum, leaves	China	MN215783	MN329947	MN26402
l. macarangae	MFLUCC 19-0141 T	Macaranga tanarius, dead leaves	Taiwan, China	MW114318	na	na
l. macarangae	NCYUCC 19-0177	Macaranga tanarius, dead leaves	Taiwan, China	MW114319	na	na
l. macarangae	NCYUCC 19-0312	Macaranga tanarius, dead leaves	Taiwan, China	MW114320	na	na
I. magnoliae	MFLUCC 19-0112 T	Magnolia liliifera, leaves	China	MW285092	MW438334	na
I. magnoliae	LC 6704	Camellia sinensis	China	KX986047	KY019571	KY01937
I. manihoticola	URM8461 T	Manihot esculenta	Brazil	OM265224	OM869479	OM91479
l. marylouisemclawsiae	BRIP 74865b T	Spinifex sericeus	Australia	PP125567	PP209362	PP20936
l. mercuriadeae	BRIP 75764a T	Chromolaena odorata	Australia	PP707904	PP712794	PP71279
l. musae	CBS 319.34 T	Musa paradisiaca, fruit	Australia	KX986076	KY019455	KY01941
		Musa paraaisiaca, irait Camellia sinensis				
l. musae	LC 6385		China	KX986042	KY019567	KY01937
l. oryzae	LC 6759	Oryza sativa	China	KX986054	KY019572	KY01937
l. oryzae	LC 2707	Rhododendron simiarum	China	KX985954	KY019481	KY01930
l. osmanthi	CGMCC 3.18126 T	Osmanthus sp.	China	KX986010	KY019461	KY01942
l. osmanthi	LC 4487	Hedera nepalensis	China	KX986017	KY019540	KY01943
N. pernambucoensis	SCUA-Saf-N16	Arthrocnemum macrostachyum	Iran	PP256498	PP263820	PP26380
l. pernambucoensis	URM8463 T	Manihot esculenta	Brazil	OM265234	OM869481	OM91479
I. philosophiae-doctoris	CGMCC 3.20540 T	Disporum sessile	China	OK335213	OK431483	OK43148

(to be continued)

Table 1. (continued)

Species	Strain ID	Substrate	Origin	GenBank accession numbers		
				ITS	tub	tef
N. philosophiae-doctoris	LC 15838	Disporum sessile	China	OK335214	OK431484	OK431490
N. pyriformis	CGMCC 3.18122 T	Citrus sinensis	China	KX985940	KY019457	KY019290
N. pyriformis	LC 2694	Rubus reflexus	China	KX985945	KY019472	KY019300
N. rubi	CGMCC 3.18326 T	Rubus sp.	China	KX985948	KY019475	KY019302
N. saccharicola	CGMCC3.19362 T	Saccharum officinarum, leaves	China	MN215788	MN329951	MN264027
N. saccharicola	LC 12057	Saccharum officinarum, leaves	China	MN215789	MN329952	MN264028
N. sacchari-officinarum	CGMCC3.19335 T	Saccharum officinarum, roots	China	MN215791	MN329954	MN264030
N. sacchari-officinarum	LC 13531	Saccharum officinarum, roots	China	MN215792	MN329955	MN264031
N. singularis	CGMCC3.19334 T	Saccharum officinarum, roots	China	MN215793	MN329956	MN264032
N. singularis	LC 12068	Saccharum officinarum, roots	China	MN215794	MN329957	MN264033
N. shadeganensis	IRAN 4958C T	Halocnemum strobilaceum	Iran	PP256499	PP263821	PP263812
N. shadeganensis	SCUA-Saf-N28	Aeluropus lagopoides	Iran	PP256500	PP263822	PP263813
N. sphaerica	LC 7298	Nelumbo sp., leaves	China	KX985937	KY019606	KY019401
N. sphaerica	LC13530	Saccharum officinarum, roots	China	MN215795	MN329958	MN264034
N. stoneae	BRIP 75022a	Cyperus aromaticus	Australia	OR608744	OR604067	OR604065
N. stoneae	BRIP 75019a T	Cyperus aromaticus	Australia	OR608743	OR604066	OR604064
N. vesicularifera	CGMCC3.19333 T	Saccharum officinarum, leaves	China	MN215812	MN329975	MN264051
N. vesicularifera	LC 12055	Saccharum officinarum, leaves	China	MN215814	MN329977	MN264053
N. vesicularis	CGMCC 3.18128 T	Musa paradisiaca, leaves	China	KX986088	KY019463	KY019294
N. vesicularis	LC 0322	unknown host plant	Thailand	KX985939	KY019467	KY019296
N. yunnanensis	GUCC24-0008 T	Juglans regia	China	PP915796	PP947937	PP947933
N. yunnanensis	GUCC24-0009	Juglans regia	China	PP915797	PP947938	PP947934
N. zimmermanii	CBS 290.62	Saccharum officinarum	Ecuador	KY385309	KY385317	KY385311
N. zimmermanii	LC 13534	Saccharum officinarum	Pakistan	MN215824	MN329987	MN264063
Nigrospora sp.	LC 2725	Symplocos zizyphoides	China	KX985960	KY019487	KY019313
Nigrospora sp.	LC 4566	Lithocarpus sp.	China	KX986022	KY019545	KY019354
Apiospora arundinis	CBS 114316	Hordeum vulgare, leaves	Iran	KF144884	KF144974	KF145016

The analyzed Nigrospora strain is indicated in bold. T - the ex-type strain; na - the sequence is unavailable.

Morphological study

The morphological characteristics of *Nigrospora* sp. strain MFG 70052 were observed during its growth on PSA in the dark at 25 °C for 7–30 d, while the diameter of the colony was measured on the third day of cultivation in two perpendicular directions and the average diameter of strain colony was calculated. The micromorphological structures were investigated and documented using Olympus BX53 microscope (Olympus America, USA) connected to a SUBRA camera (Jenoptik, Germany).

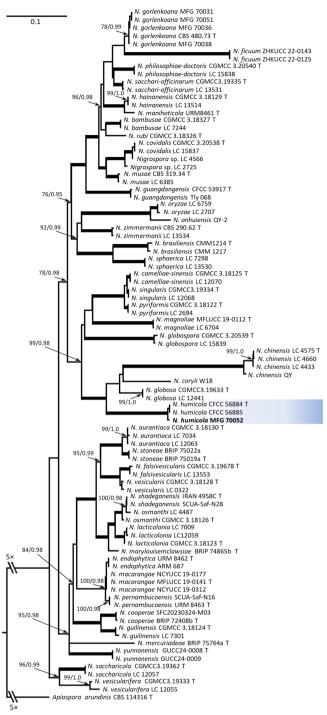
Results

Molecular identification

Phylogenetic analysis of the adjusted and aligned sequences of *Nigrospora* sp. MFG 70052, as well as reference strains, included the following lengths: ITS – 459 bp, *tub* – 588 bp, *tef* – 566 bp. The number of parsimony-informative sites per genome locus was 58 (12.6%), 184 (31.3%), and 305 (53.9%), respectively. The topology of the phylogenetic tree was concordant with that reconstructed previously^[1,2,10]. The analyzed strain MFG 70052 formed a clade with the reference strains *N. humicola* Qin Yang & Ning Jiang CFCC 56884 and CFCC 56885 with high bootstrap support ML/BP 100/1.0, which confirms the belonging of the strain MFG 70052 to the *N. humicola* species (Fig. 1).

Description morphology

The colony of *Nigrospora humicola* MFG 70052 reaching 80 mm on the third day of cultivation on PSA at 25 °C. Mycelium is flat, floccose, edge entire, initially white, later becoming gray when sporulation is abundant, and the edge is smooth/filamentous (Fig. 2). The reverse is smoke-gray, with age a noticeable pattern of dark hyphae and sporulation is noted.


Hyphae 2.5–6 μ m, smooth, branched, septate, hyaline, some becoming brownish with age. Setae not observed. Conidiophores are mostly reduced to conidiogenous cells, macronematous, aggregated in clusters on hyphae. Conidiogenous cells 4–10 \times 4–8 μ m, hyaline to pale brown, their coloration is especially noticeable when they are aggregated, ampulliform, spherical, or subspherical.

Conidia 10.8–16.7 \times 11.2–18.7 μm (13.7 \times 15.6 μm), solitary, acrogenous, spherical or broadly ellipsoidal, egg-shaped, aseptate, pale brown at the beginning of formation, later black, shiny, smooth, aseptate. In some light-colored young conidia of *N. humicola* the presence of equatorial slits is noticeable. Sterile cells 27.0–40.8 \times 11.2–21.4 μm (33.6 \times 16.7 μm), terminally formed on hyphae, dark brown to black, elongated-ellipsoid or club-shaped, sometimes curved or angular.

Discussion

At present, investigations of fungal diversity rely almost invariably on sequencing several informative genome loci and the development of multilocus phylogeny, for this approach provides greater resolution than the sum of morphological features. In this study, using the phylogenetic analysis of the ITS, *tub*, and *tef* loci *Nigrospora* strain MFG 70052 isolated from reed in 2019 from the Primorsky region of Russia bordered with China, was accurately identified as *N. humicola*. This is the first finding of this species on the plant (*Poaceae*) and the first detection in Russia. *Nigrospora humicola* was described recently when two strains isolated from soil in 2021 in the Hebei Province of China were studied in detail^[10].

Some *Nigrospora* species are associated with different plants, e.g. *N. oryzae* (Berk. & Broome) Petch is the most ubiquitous species of this genus and has been reported from 40 different plant host genera including *Poaceae* family plants^[11], and largely distributed

Fig. 1 Maximum likelihood (ML) phylogenetic tree based on DNA sequence data from three loci (ITS, *tub*, and *tef*) of *Nigrospora* fungi. ML bootstrap support values > 70 %, followed by Bayesian posterior probability (BP) scores > 0.95 are shown at the nodes. Thickened lines indicate ML/BP of 100/1.0. The tree was rooted on sequences of *Apiospora arundinis* CBS 114316. The analyzed strain is indicated in bold. T, ex-type strain.

in the territory of Russia, *N. gorlenkoana* was found in mycobiota of cereal crops and rapeseed plants^[18]. Overall, *Nigrospora* species lacks host specificity^[14], so the host range of *N. humicola* may also be wide.

Morphologically, MFG 70052 strain similar to *N. humicola* strains described by Zhang et al.^[10] in the cultural features, sizes and shapes of conidiogenous, and conidial cells. However, there are some

morphological differences that we consider important for identification of this species. One of them was a formation of sterile cells that looks like conidia due to dense dark pigmentation, but they are much larger and have an irregular shape. The sterile cells are formed directly on hyphae, not on conidiogenous cells and frequently observed in some *Nigrospora* species^[11]. These morphological structures were described in the phylogenetically closest to *N. humicola* species *N. chinensis*, representing the sister clade^[11]. In our opinion, they are an additional diagnostic feature. Moreover, in the culture of *N. humicola*, stained clusters of conidiophores and conidiogenous cells are formed, the same as described in *N. oryzae* and *N. lacticolonia* Mei Wang & L. Cai^[11]. Equatorial slits are present in some young conidia of *N. humicola*, as in *N. gorlenkoana*^[11], but not mentioned in the description of the species^[10].

The results obtained in this study indicate that analysis of morphology is likely to be useful in refining our understanding of the *Nigrospora* species limits. The accurate identification of *Nigrospora* species is possible only by combined analysis of genetic, morphological, ecological, and physiological data^[2,11,22]. The diversity of *Nigrospora* species in nature as well as their characteristics require further investigation.

Author contributions

The authors confirm contribution to the paper as follows: study conception and design, data collection: Orina AS, Gagkaeva TYu, Gavrilova OP; analysis and interpretation of results: Orina AS, Gagkaeva TYu; draft manuscript preparation: Orina AS, Gagkaeva TYu. manuscript review and editing: Gavrilova OP. All authors reviewed the results and approved the final version of the manuscript.

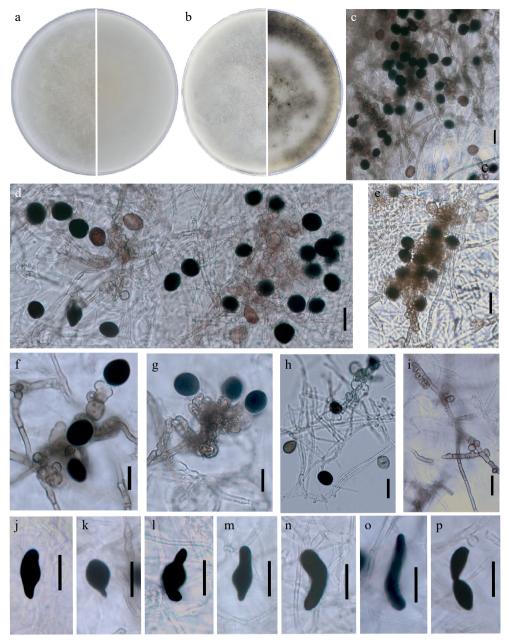
Data availability

The data generated and analyzed during this study are available in this article. DNA sequence data are available in the GenBank database, and the accession numbers are provided in Table 1. The *Nigrospora humicola* MFG 70052 strain has been deposited in the fungal culture collection of the Laboratory of Mycology and Phytopathology (VIZR, St. Petersburg, Russia).

Acknowledgments

This work was supported by the Russian Science Foundation (Project No. 19-76-30005).

Conflict of interest

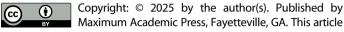

The authors declare that they have no conflict of interest.

Dates

Received 22 January 2025; Revised 3 March 2025; Accepted 7 March 2025; Published online 28 April 2025

References

- Crous PW, Carnegie AJ, Wingfield MJ, Sharma R, Mughini G, et al. 2019.
 Fungal planet description sheets: 868–950. Persoonia 42:291–473
- Hao Y, Aluthmuhandiram JVS, Thilini Chethana KW, Manawasinghe IS, Li X, et al. 2020. Nigrospora species associated with various hosts from Shandong Peninsula, China. Mycobiology 48:169–83
- Petrović E, Vrandečić K, Ćosić J, Đermić E, Godena S. 2023. First report of Nigrospora species causing leaf spot on olive (Olea europaea L.). Horticulturae 9(10):1067


Fig. 2 Nigrospora humicola MFG 70052 (PSA, 25 °C in the dark). Upper surface and reverse overview after growth for (a) 7 d, and (b) 30 days. (c)–(h) Conidiophores and conidiogenous cells giving rise to brown-black conidia. (i) Septate hyphae and spherical vesicles aggregating in conidiophores. (j)–(p) Sterile cells. Scale bars = 20 μm.

- Safi A, Mehrabi-Koushki M, Arzanlou M. 2024. Endophytic species of Nigrospora from grasses and shrubs of Shadegan International Wetland, with new species and records from Iran. Antonie Van Leeuwenhoek 117(1):77
- Oh SY, Yang JH, Woo JJ, Oh SO, Hur JS. 2020. Diversity and distribution patterns of endolichenic fungi in Jeju Island, South Korea. Sustainability 12:3769
- Wu Z, Xie Z, Wu M, Li X, Li W, et al. 2018. New antimicrobial cyclopentenones from *Nigrospora sphaerica* ZMT05, a fungus derived from *Oxya chinensis* Thunber. *Journal of Agricultural and Food Chemistry* 66:5368–72
- Aghyl H, Mehrabi-Koushki M, Esfandiari M. 2022. New records of the fungal species associated with insects in Iran. *Journal of Applied Research* in Plant Protection 11:61–79
- Sun XP, Xu Y, Cao F, Xu RF, Zhang XL, et al. 2014. Isoechinulin-type alkaloids from a soft coral-derived fungus Nigrospora oryzae. Chemistry of Natural Compounds 50:1153–55

- Ananya TS, Kindo AJ, Subramanian A, Suresh K. 2014. Nigrospora sphaerica causing corneal ulcer in an immunocompetent woman: a case report. International Journal of Case Reports and Images 5:675–9
- Zhang YY, Zhang T, Li HY, Zheng R, Ren J, et al. 2024. Nigrospora humicola (Apiosporaceae, Amphisphaeriales), a new fungus from soil in China. Diversity 16:118
- Wang M, Liu F, Crous PW, Cai L. 2017. Phylogenetic reassessment of Nigrospora: ubiquitous endophytes, plant and human pathogens. Persoonia 39:118–42
- Bozoğlu T, Derviş S, Imren M, Amer M, Özdemir F, et al. 2022. Fungal pathogens associated with crown and root rot of wheat in Central, Eastern, and Southeastern Kazakhstan. *Journal of Fungi* 8:417
- 13. Liu Y, An J, Safdar A, Shen Y, Sun Y, et al. 2024. Identification and characterization of *Nigrospora* species and a novel species, *Nigrospora* anhuiensis, causing black leaf spot on rice and wild rice in the Anhui Province of China. *Journal of Fungi* 10:156

- Chen Q, Bakhshi M, Balci Y, Broders KD, Cheewangkoon R, et al. 2022.
 Genera of phytopathogenic fungi: GOPHY 4. Studies in Mycology 101:417–564
- 15. de Queiroz Brito AC, de Mello JF, de Almeida Souza AE, dos Santos Nascimento S, de Souza-Motta CM, et al. 2023. Richness of Nigrospora spp. (Apiosporaceae) in Manihot esculenta in Brazil and the description of three new species. Mycological Progress 22:37
- Wang J, Liu ZX, Yu W, Kang C, Yang YH. 2024. A new species of Nigrospora (Apiosporaceae) in Corylus heterophylla in China. Turkish Journal of Botany 48(5):274–82
- Zou M, Al-Otibi F, Hyde KD, Wang Y, Pan XJ. 2024. New Helminthosporium (Massarinaceae, Dothideomycetes) and Nigrospora (Incertae sedis, Sordariomycetes) species associated with walnut (Juglans regia L.) in China. MycoKeys 109:265–84
- Orina AS, Gavrilova OP, Gagkaeva TY. 2023. Physiological and biochemical characters of Nigrospora gorlenkoana Novobr. occurring on cereals. *Biology Bulletin* 50(5):749–61
- 19. O'Donnell K, Laraba I, Geiser DM. 2022. Pure culture and DNA sequencebased identification of *Fusarium* from symptomatic plants and diverse

- substrates. In: Fusarium Wilt. Methods In Molecular Biology, ed. Coleman J. New York: Humana. pp. 1–20. doi: 10.1007/978-1-0716-1795-3 1
- White TJ, Bruns T, Lee S, Taylor JW. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications, eds Innis MA, Gelfand DH, Sninsky JJ, White TJ. New York: Academic Press. pp. 315–22. doi: 10.1016/b978-0-12-372180-8.50042-1
- 21. Carbone I, Kohn LM. 1999. A method for designing primer sets for speciation studies in filamentous ascomycetes. *Mycologia* 91:553–56
- Raza M, Zhang ZF, Hyde KD, Diao YZ, Cai L. 2019. Culturable plant pathogenic fungi associated with sugarcane in southern China. *Fungal Diversity* 99:1–104

is an open access article distributed under Creative Commons Attribution License (CC BY 4.0), visit https://creativecommons.org/licenses/by/4.0/.