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Abstract
The status of soil microbiome has become global concern for earth sustainability. The pool size of microbial biomass carbon (MBC) provides a

basic tool  to generally assess the soil  microbes related to soil  health in global terrestrial  ecosystems.  Albeit,  the variation of topsoil  MBC pool

remains largely uncertain with land use patterns across China. In this study, data of topsoil (0−20 cm) MBC measurements were retrieved from

468 observations published in Chinese journals from 2000−2022. With linking to soil organic carbon, microbial quotient (MQ) was calculated as a

portion  of  MBC  content  as  a  percentage  of  SOC  content.  Meta-analysis  showed  that,  on  average,  topsoil  MBC  pool  was  the  greatest  (470.8

mg·kg−1) for forest land but the lowest (179.9 mg·kg−1) for dry croplands. MQ was higher (2.7%) for rice paddies with waterlogged conditions than

for other land use types (2.0% on average). Integrating the values from all land use patterns, mean MBC pool of China’s topsoil was quantified as

323.2−384.3 mg·kg−1 while MQ as 1.7%−2.3%, at 95% confidence. Upscaling with the area data of the land use types allowed a prediction of an

overall MBC pool of China’s topsoil of 635.8 Tg C (in a range of 614.4−657.1 Tg C). MQ was on average of 2.1% for whole China's topsoil, being

prominently higher than the reported global mean of 1.2%. Furthermore, topsoil MBC contents exerted a wide variation (CV of 40%) while MQ

showed a much narrow variation (CV of 19%) with land use types across mainland China. The MBC pool was affected significantly by edaphic

factors  related  to  organic  matter  status  such  as  SOC,  total  N,  C/N  ratio  and  bulk  density.  For  environmental  drivers,  however,  MBC  was

significantly,  but  less  strongly  impacted  with  mean  annual  precipitation  while  MQ  significantly  but  slightly  influenced  with  mean  annual

temperature. The former could be generally ascribed to soil-resource dependent ecosystem productivity though the latter could be related to

temperature-sensitive of organic carbon decomposition and microbial carbon assimilation through SOC turnover in soil. To predict a topsoil MBC

pool,  a  statistical  linear  model  was  developed  with  three  key  edaphic  attributes  of  bulk  density,  organic  carbon  and  total  nitrogen  plus  one

climate attribute of mean annual precipitation, which had an explanatory of 48% of the total variance for soils with varying land conditions. Our

study  highlights  the  importance  of  integrating  soil  microbial  biomass  carbon  pool  into  global  biogeochemical  models  of  carbon  cycles  with

strong reference to microbial community structure and activity across hierarchical scales.
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 Introduction

Soil  and  life  have  been  a  central  theme  for  soil  system
science for  soil  protection physical  habitats  enabling biodiver-
sity of the underground biota (Shen & Pan, 2022). The capacity
of soil to protect biodiversity has been concerned with the criti-
cal but unique natural contribution of global soil and the driver
for  soil  health  and  more  for  One  Health  (Banerjee  &  van  der
Heijden,  2022; Lehmann  et  al.,  2020).  As  a  vital  part  of  the
earths surface, topsoil plays a critical role in manipulating plant
growth  and  sustaining  biodiversity  to  allow  ecosystem  func-
tion  and  service  (Janzen  et  al.,  2021)  and  in  renewable  utiliza-
tion of  natural  resources for  sustainable land use (Shen & Pan,
2022). The abundant microbial communities in topsoil has been
well  known  to  be  a  pivotal  player  in  biogeochemical  cycling
(Bahram  et  al.,  2018)  through  mediating  storage  and  turnover
of  organic  matter  and the associated nutrients  (Schmidt  et  al.,
2011),  a  key  to  drive  ecosystem  services  and  biodiversity
provided  by  global  soils  (Smith  et  al.,  2015).  Maintaining

richness  and  diversity  of  soil  microbial  communities  has  been
widely  concidered  in  addressing  soil  quality  and  ecosystem
health at a regional or global level (Guerra et al., 2021; Coban et
al., 2022).

Soil  microbial  biomass  was  subject  to  change  with  the
organic  inputs  due  to  crop  production  on  a  farm  scale
(Anderson  &  Domsch,  1989; Powlson,  1994)  or  to  plant  litter
from aboveground biomass with vegetation on a regional scale
(Zak  et  al.,  1994).  In  other  words,  the  size  of  soil  microbial
biomass  could  represent  soil  carbon  substrate  availability  in
soil,  under  interaction  of  carbon  source  incorporated  into  soil
and  the  allocation  and  protection  for  microbial  access  in  soil
(Sollins et al.,  1996). By operation definition, microbial biomass
itself  was  considered  as  an  indispensable  part  of  soil  organic
matter  stabilized  through  biological  decay  under  certain
ecosystem conditions (Zhu et al., 2020). Therefore, the biomass
of soil microbes and their abundance could indicate the contri-
bution  by  soil  microbes  to  SOM  build-up  and  the  ecosystem
function and health.
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The  microbial  biomass  of  soil,  routinely  measured  with  a
fumigation  protocol,  has  been  adopted  as  an  integrative
measure of the overall  size of all  microbial communities in soil
(Anderson & Domsch, 1989; Jenkinson & Ladd, 1981). This was,
of  course,  included  in  the  total  pool  of  soil  organic  matter
measured routinely with wet digestion or combustion (Black et
al., 1965; Matejovic, 1997). Soil organic matter has been increas-
ingly  considered  a  complex  of  a  wide  range  of  organic
compounds  varying  in  microbiological  decay  and  in  mineral
association and aggregate-allocation within a soil  (Lehmann &
Kleber,  2015; Kallenbach  et  al.,  2016; Pan  et  al.,  2019).  In  turn,
the portion of microbial biomass carbon to total organic carbon
of soil  could represent the size of  live soil  microbial  communi-
ties existing in the soil organic matter developed (Miltner et al.,
2012; Cotrufo et al., 2013) and even the potential sequestration
of  soil  organic  carbon  (SOC)  in  the  medium-term  (Lehmann  &
Kleber,  2015; Matejovic,  1997; Six  &  Paustian,  2014).  As  a  soil
health  indicator  widely  accepted  (Anderson  &  Domsch,  1989;
Powlson,  1994; Sparling,  1992),  microbial  quotient  (MQ),  the
fraction  of  microbial  biomass  carbon  to  SOC  or  of  microbial
biomass N to soil  total  N,  could represent the biological  active
fraction  of  SOM  (Bachar,  2010; Zhou  et  al.,  2017).  Thus,  MQ
could  be  further  linked  to  organic  carbon/nitrogen  turnover
mediated  either  by  carbon  inputs  or  the  quality  of  carbon
substrate or both (Coban et al., 2022; Paul, 2016). With the great
variability  with  various  ecosystems  (Bachar  et  al.,  2010; Paul,
2016; Martiny  et  al.,  2006),  quantitative  comparison  among
land use types on a regional scale has not yet widely reported.

Changes  in  topsoil  MBC  pool  and  the  MQ,  could  be  driven
either  by  climate  condition  affecting  plant/crop  biomass
production  on  a  regional  scale  or  by  edaphic  factors  such  as
mineralogy,  soil  texture  and  structure  on  a  site  scale.  There
were  wide  variations  of  microbial  abundance  and  diversity
index with diverse biotic (plant and soil biota, for example) and
abiotic (soil nutrients and texture, for example) as well as other
environmental  attributes  (Martiny  et  al.,  2006).  Abiotic  vari-
ables such as soil temperature and moisture, in particular, have
been increasingly known to drive the spatial variation of carbon
inputs  and  turnover  as  well  as  soil  formation  (Conant  et  al.,
2011; Seneviratne  et  al.,  2010).  For  the  growing  demand  of
climate  change  mitigation  and  of  soil  protection  and  food
health, it  became urgent to quantify the pool size of microbial
biomass  carbon  and  the  microbial  portion  to  SOM  at  regional
and global scale (Wieder et al., 2013). Serna-Chavez et al. (2013)
and Xu et al. (2013) reported the first quantitative estimates of
global topsoil  MBC and MQ, using global scale high resolution
geographical  data.  Addressing  microbial  manipulation  of  soil
organic  matter  stabilization  under  various  ecosystem  condi-
tions  (Leifeld  &  Kögel-Knabner,  2005),  quantification of  topsoil
MBC  pool  and  the  MQ  should  be  developed  further  on  a
regional scale with land use changes.

As  a  large  country  with  diverse  soil  cover  and  ecosystems,
China had been threatened with fast shifting land use patterns
and  in  turn,  land  degradation  (Pan  et  al.,  2015; Song  &  Deng,
2017). Total SOC stock of China in 1m depth was estimated at a
small  level  of  90  Gt,  of  which  15  Gt  C  was  allocated  to  topsoil
SOM (Pan, 2009). While SOC storage varied greatly with vegeta-
tion biomass  across  terrestrial  ecosystem in  China (Fang et  al.,
2001), size and variability of MBC pool and the MQ values were
shown impacted profoundly with land use changes (Mao et al.,
1992)  and  with  soil  contamination  (Bian  et  al.,  2015).  Particu-
larly,  long  term  rice  cultivation  promoted  SOC  accumulation

while increased microbial  abundance (elevated MQ) (Liu et  al.,
2016). In contrast, shift of natural grasslands to croplands could
lead to a reduction of MBC and thus to a decrease in MQ in the
semiarid Loess plateau of Northwest China (Wang et al.,  2009).
Ma et al. (2015) reported significant lower topsoil MBC values in
soils  stressed by water-logging or  drought than those without
water  stresses,  from  northeastern  China.  Using  national  forest
inventory data, Zhou & Wang (2015) quantified a mean topsoil
MBC pool of 390.2 mg·kg−1 and a MQ of 1.92% for China's forest
ecosystems.  In  concern  of  land  use  patterns,  data  of  the  size
and  variation  of  soil  microbial  biomass  and  the  MQ  of  China
have not yet been reported.

In this study, we firstly hypothesize that the topsoil microbial
biomass  pool  could  show  greater  variation  than  microbial
quotient, with land use types. We further hypothesize that soil
factors  could  have  strong  impact  on  the  MBC  pool  while
climate  factor  on  MQ.  With  the  variation  quantitatively  with
land  use  types  addressed,  a  topsoil  MBC  pool  could  be  esti-
mated  for  China  as  a  whole  through  spatial  extrapolation.  To
address  these,  we  conducted  a  literature  survey  to  form  a
database  of  topsoil  MBC  pool  with  varying  ecosystem  condi-
tions.  Both  MBC  and  MQ  were  compared  among  land  use
patterns and climatic patterns across mainland China. The vari-
ations  were  explored  to  identify  the  major  drivers  for  the
changes  across  sites.  By  data  synthesis,  the  total  topsoil  MBC
pool was predicted using the established MBC and MQ values.
Finally, a statistical model was tested for predicting topsoil MBC
pool for China's soils under different land uses.

 Materials and methods

 Data sources
We  searched  the  literature  published  from  January  2000  −

December  2022  via  the  bibliographic  databases  available  in
China.  A  basic  literature  archive  of  1700  papers  were  first
created  by  searching  with  the  key  words  'soil  organic  carbon'
and  'microbial  biomass  carbon'.  The  literature  archive  was
further  filtered  for  field  studies  reporting  measurement  data
both  of  SOC  and  MBC  (and  MBN)  measured  with  the  chloro-
form fumigation-extraction (CFE) (Vance et al., 1987), of topsoil
in  untreated  conditions.  Data  of  MBC  (or  MBN)  measured  not
with  the  fumigation  method  and/or  under  any  experimental
treatments (with land management, farming practices, vegeta-
tion  restoration  and  pollution  remediation,  etc.)  were  not
included.  In  order  to  avoid  potentially  abnormal  values,
retrieved dataset of SOC and MBC were filtered using the 95%
confidence  principle.  Resultantly,  the  established  database
consisted of 454 observations covering a wide range of climate
and soil  conditions across  mainland China.  The land use types
analyzed  included  forest  land  (117  sites),  grassland  (67  sites),
wetland  (12  sites)  and  cropland  (164  sites  including  125  sites
for  dry  cropland  and  39  sites  for  rice  paddy).  All  the  soil  and
geographical  information  of  the  observations  are  provided  in
Supplemental Table S1 while the site distribution is graphed in
Fig. 1.

Climatic  conditions  were  categorized  of  plateau/mountain
climate (PMC), temperate continental climate (TCC), temperate
monsoon  climate  (TMC)  and  subtropical  monsoon  climate
(SMC) (http://geodata.pku.edu.cn). Site data of mean annual air
temperature  (MAT)  and  precipitation  (MAP)  were  collected
either  from  the  reported  studies  or,  when  not  provided,
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extracted  from  the  China  Meteorological  Data  Network
(http://data.cma.cn/) for the station nearest to the reported site.
Meanwhile,  topsoil  data  of  SOC,  total  N  contents  (TN)  and
microbial  biomass carbon (MBC) and nitrogen (MBN),  pH,  bulk
density (BD) were also retrieved from the published studies and
archived in the database.

 Calculation and quantification
The microbial quotient (MQ, %), defined as a portion of MBC

content in percentage to SOC content of the topsoil, was calcu-
lated with Eqn (1):

MQ =
CMB

Corg×1000
×100% (1)

where, CMB and Corg represents the topsoil content of MBC in
mg kg−1 and of SOC in g kg−1, respectively.

As a direct approach, the mean values of MBC obtained were
then used in alignment with the data of bulk density and of soil
area  (Xie  et  al.,  2007; Zheng et  al.,  2013)  to  directly  estimate  a
pool size of topsoil microbial biomass carbon (Mp,  Tg C) under
a  certain  land  use.  Subsequently,  the  whole  of  China's  topsoil
MBC pool could be predicted by integrating the individual pool
occupation  by  the  land  use  types,  using  the  equation  as
follows:

Mp =
∑

MBCi×BDi×D×Ai/10000 (2)

where, MBCi and BDi is  the  topsoil  MBC  (mg·kg−1)  and  bulk
density  (g·cm−3)  averaged  for  a  land  use  type i,  and  Ai  is the
total area (M·ha) of land use type i, respectively. D is the topsoil
depth (cm), which was set default as 15 cm for rice paddies and
20  cm  for  other  non-paddy  land  uses  (18−21  cm  reported  by
Xie  et  al  (2007)).  The  soil  area  of  the  different  land  use  types
were  also  retrieved  from  the  report  by  Xie  et  al.  (2007).  The
number of 10,000 is a conversion factor.

Alternatively  for  an  indirect  approach,  the  data  of  MQ
derived in this  study was combined with the total  topsoil  SOC
pool  to  estimate  an  individual  MBC  pool  for  a  given  land  use
type.  Finally,  a  potential  pool  of  microbial  biomass  carbon  of
China's topsoil was predicted by integrating the values for indi-

vidual land use type, using the following equation:

Mp =
∑

MQi×S OCpi (3)

where, MQi is  the  mean  topsoil  microbial  quotient  (%)
obtained herein; SOCpi is the SOC pool (Tg C) of topsoil under a
land use type i, respectively. The values of topsoil SOC pool for
a given land use type were cited from the data reported by Xie
et  al.  (2007).  However,  the  topsoil  SOC  pool  of  wetlands  was
estimated  using  the  data  in  this  study  with  the  number  of
wetlands area of China cited from Zhang et al. (2008).

 Data treatment and statistical analysis
In  this  study,  all  measurement  data  of  soil  organic  carbon,

microbial  biomass  carbon/nitrogen,  soil  nitrogen,  and  the
related  rations  were  all  log-transformed  prior  to  statistics
(Supplemental  Figs  S1−S8).  An  analysis  of  variance  (ANOVA)
was  then  performed  using  a  least  significant  difference  test
(LSD)  to  evaluate  the  differences  among  land  use  types  and
climatic  categories.  Multivariate  correlation  analysis  was
conducted  to  explore  the  environmental  influences  on  MBC
pool.  Stepwise  multivariate  regression  analysis  was  further
performed  to  characterize  the  environmental  drivers  and  to
simulate MBC as a linear function of multiple explanatory vari-
ables.  The  forward  method  was  used  in  this  study,  which
involved  starting  with  no  variables  in  the  model,  testing  the
addition  of  each  variable  according  to  Akaike's  Information
Criteria (AIC), adding the variable that improved the model the
most,  and  repeating  this  process  until  the  best  multivariate
model was selected. The level of significance of a difference or
a  correlation  was  defined  at p <  0.05.  All  statistical  analyses
were  carried  out  using JMP software  (version 11,  SAS Institute
Inc., Cary, NC, USA).

 Results

 Variation of topsoil microbial biomass carbon
The  mean  values  of  topsoil  MBC  across  land  use  types  and

climate regions in our database are plotted in Fig. 2. Following

  
Fig. 1    Geographical distribution of observations in China that were used in this study.

Microbial biomass of China's topsoil
 

Liu et al. Soil Science and Environment 2023, 2:5   Page 3 of 10

http://data.cma.cn/


a  log-normal  distribution,  MBC  content  ranged  from
28.7−1608.2  mg·kg−1 across  the  soils  studied,  with  an  average
of 353.7 mg·kg−1 and a 95% confidence interval of 323.2~384.3
mg·kg−1 (Supplemental  Fig.  S4).  Topsoil  MBC  content  was
highly  variable  across  sites  within  a  land  use  group  but  the
means  of  MBC  content  were  found  different  among  land  use
groups  (Fig.  2a).  Mean  topsoil  MBC  content  was  significantly
higher under forest (470.8 mg·kg−1), rice paddy (454.9 mg·kg−1)
and  wetland  (634.8  mg·kg−1)  than  under  dry  croplands  (179.9
mg·kg−1).  Owing  to  their  high  site  variability,  mean  MBC  con-
tents  under  grasslands  (349.9  mg·kg−1)  was  found  not  signifi-
cantly  different  either  from  forest  and  rice  paddy  or  from  dry
croplands.

The mean topsoil  MBC contents ranged from 280.9 mg·kg−1

to  400.8  mg·kg−1 across  the  climatic  regions  (Fig.  2b),  with  a
much narrower variation than across land use types. As shown
also with ANOVA, the mean topsoil MBC was higher by almost
25%  under  subtropical  monsoon  climate  (SMC)  than  under
temperate  continental  climate  (TCC),  which  was  not  signifi-
cantly  different  from  the  plateau/mountain  climate  (PMC)
region and the temperate monsoon climate (TMC) region.

 Variation of topsoil microbial quotient (MQ)
Like  soil  MBC,  microbial  quotient  estimated  as  MBC  in

percentage  to  SOC,  fitted  well  a  log-normal  distribution  and

ranged from 0.2% to 12.8% (Supplemental  Fig.  S5).  The MQ of

all  observations  across  the  land  use  types  was  averaged  as

2.05% to their  SOC content,  with a  95% confidence interval  of

1.87%−2.22%. As indicated in Fig. 3a, the mean MQ was lowest

in  grassland  (1.63%)  and  highest  in  rice  paddy  (2.69%).  The

mean  MQ  value  was  moderate  in  wetland  (2.16%),  which  was

not significantly different from forest (2.08%) and dry cropland

(1.82%).  Compared  to  MBC,  MQ  showed  a  relatively  stronger

variation among the land use types.

Moreover,  the  variation  of  mean  topsoil  MQ  values  among

the climatic regions was not following that of MBC (Fig. 3b). The

mean  MQ  values  were  more  or  less  similar  among  the  TMC

(2.04%),  SMC  (2.21%)  and  TCC  (2.31%)  regions.  Being  signifi-

cantly  lower,  the  mean  MQ  was  as  low  as  0.73%  in  the  PMC

region.  Evidently,  variation with land uses  and climate regions

seemed relatively smaller than the site variability.

a b

 
Fig. 2    Differences in soil  microbial  biomass carbon concentrations (a)  among land use types and (b) in different climatic regions.  Different
letters indicate significant differences of soil microbial biomass carbon concentrations and microbial quotients between land use types at p <
0.05.

a b

 
Fig.  3    (a)  Soil  microbial  quotient among land use types and (b)  microbial  quotient in different climatic  regions.  TMC,  temperate monsoon
climate;  PMC,  plateau/mountain  climate;  SMC,  subtropical  monsoon  climate  and  TCC,  temperate  continental  climate.  Different  letters  after
mean values indicate significant differences of soil microbial biomass carbon concentrations and microbial quotients between climatic regions
at p < 0.05.
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 Topsoil MBC pool distribution with land use types
Topsoil  MBC  pools  estimated  for  different  land  use  types

using direct (Approach I) and indirect (Approach II) approaches
were graphed in Fig. 4a & b respectively. Herein, under a certain
land  use  type,  the  MBC-based  direct  estimation  of  topsoil
microbial  biomass  carbon  pool  was  very  close  to  MQ-based
indirect  estimation.  Predicted  with  Approach  I  and  II,  the
topsoil  MBC  pool  was  246.5  (213.0−279.9,  95%  CI)  Tg  C  and
284.6  (238.1−331.0,  95%  CI)  Tg  C  for  forest  land,  233.9
(192.3−275.5, 95% CI) Tg C and 250.5 (203.4−297.6, 95% CI) Tg
C  for  grassland,  56.6  (50.3  −  62.9,  95%  CI)  Tg  C  and  55.8
(49.7−61.9, 95% CI) Tg C for dry cropland, 50.3 (25.3−75.4, 95%
CI) Tg C and 44.3 (32.7−55.8, 95% CI) Tg C for wetland, and 27.1
(21.2−32.9,  95% CI)  Tg C and 22.0 (18.3−25.8,  95% CI)  Tg C for
rice paddy, respectively.

Integrating these MBC pools of the individual land use types,
we  reached  an  estimation  of  the  whole  China's  topsoil  being
614.4 Tg C (502.2−726.7 Tg C, 95% CI) using the area-averaged
MBC values and 657.1 Tg C (542.1−772.1 Tg C, 95% CI) using the
mean  MQ  values.  Using  the  area-weighted  mean  MQ  and  the
whole  topsoil  SOC  stock  (Xie  et  al.,  2007),  a  potential  topsoil
microbial  biomass  C  pool  could  be  614.4  Tg  C  for  the  whole
mainland  China.  Confidently,  a  topsoil  MBC  pool  size  could
reach 0.6 Pg C for the whole of China. This pool was allocated to
forest by ca 40%, to grassland by 38%, to dry cropland by ca 9%
and to wetland by 7%−8% while to rice paddy by 3%−4%.

 Correlations of MBC or MQ to soil and climate variables
Results  of  multivariate  correlation  analysis  to  explore  the

environmental  drivers  for  topsoil  MBC  are  presented  in Fig.  5.
Overall,  MBC  was  correlated  positively  and  strongly  to  total  N

a b

 
Fig.  4    Topsoil  microbial  biomass  carbon pool  (Tg C)  of  different  land uses  of  China,  estimated as  per  averaged MBC ((a),  approach I))  and
averaged MQ combined with SOC stock ((b), approach II)). The size of the set is comparable to the total pool size for the whole stock.

 
Fig. 5    Environmental drivers of soil microbial biomass carbon (* p < 0.05; ** p <0.01).
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and MBN (r > 0.60, p < 0.0001) but slightly (r < 0.30, p < 0.05) to
MAP,  soil  C/N  ratio  and  MBC/MBN  ratio.  However,  negative
correlation of MBC was found strong to bulk density (r = −0.57,
p < 0.0001), slight to soil pH (r = 0.30, p < 0.01 when pH > 7.5).
MBC  correlation  to  environmental  attributes  varied  with  land
use  types.  A  negative  correlation  of  MBC  to  bulk  density  was
found very significant and strong for natural soils (forest, grass-
land  and  wetlands).  Whereas,  the  MBC  correlation  to  bulk
density  was  not  significant  for  croplands  (both  dry  cropland
and rice paddy). Differently, MBC was correlated to soil pH posi-
tively  under  grassland  but  negatively  under  rice  paddy  and
forest. Again, MBC was correlated positively and moderately to
strongly  to  MAP  under  wetland  and  grassland/forest  while
negatively  in  rice  paddy.  In  contrast,  MBC  was  observed  very
significantly  and  strongly  to  MAT  in  wetland  though  insignifi-
cant  under  other  land  use  types.  In  addition,  only  for  wetland
and  rice  paddy,  soil  N  level  was  significantly  and  positively
correlated to MBC (r > 0.5, p < 0.05).

Unlike  MBC,  a  very  significant  (p <  0.0001)  negative  but
moderate  correlation  was  found  for  topsoil  MQ  to  SOC  (r  =
−0.48), total N (r = −0.32), and soil C/N ratio (r = −0.37) while no
correlations  to  soil  pH  or  to  bulk  density,  for  overall  observa-
tions  (Fig.  5).  However,  the correlation of  MQ to  soil  and envi-
ronmental attributes varied also greatly with land use types. For
example, MQ was correlated positively and moderately to MAP
under  forest  and  rice  paddy  but  negatively  in  dry  croplands.
However,  no  correlation  was  visible  to  MAT  despite  a  weak
positive  correlation  under  forest.  In  addition,  MQ  was  signifi-
cantly  correlated  to  soil  pH  negatively  under  rice  paddy  but
positively under grassland.

Through  an  approach  of  stepwise  multivariate  regression
analysis with forward method, an optimum multivariate model
was  developed  to  predict  a  topsoil  MBC  content.  With  a  total
adjusted explanatory power of  48%, the model  was expressed
as the following equation:

log10MBC =2.41−0.60×BD+0.46× log10S OC−
0.27× log10T N +0.0002×MAP (4)

where,  MBC  is  the  microbial  biomass  carbon  content
(mg·kg−1),  BD  represents  the  bulk  density  (g·cm−3),  SOC  is  the
organic  carbon  content  (g·kg−1),  TN  is  the  total  N  content
(g·kg−1),  of  topsoil.  MAP  is  the  mean  annual  air  temperature
(°Ϲ) over the soil area.

 Discussion

 Topsoil microbial biomass carbon pool vs the microbial
quotient quantified with land use types

In  this  study,  there  were  greater  difference  in  both  mean
topsoil  MBC  and  MQ  among  land  use  types  than  among  the
climate  zones  (Figs  2 & 3)  despite  large  heterogeneity  across
sites  (28.7−1608.2  mg·kg−1).  As  shown  in Figs  2a & 3a,  both
MBC  and  MQ  on  average  were  relatively  high  under  wetland
(635  mg·kg−1 and  2.2%),  rice  paddy  (454  mg·kg−1 and  2.7%  )
and  forest  (471  mg·kg−1 and  2.1%)  while  low  under  cropland
(180 mg·kg−1 and 1.8%) and grassland (350 mg·kg−1 and 1.6%).
Compared  to  the  estimation  on  a  global  scale  by  Xu  et  al.
(2013), the estimated topsoil MBC pool in this study was similar
for  forest  and  croplands  (area  weighted  of  dry  croplands  and
rice  paddy)  but  significantly  lower  for  wetland  and  grassland,
being respectively 1336.8 mg·kg−1 and 520.8 mg·kg−1 reported

(Xu et al., 2013). With soil survey and monitoring data synthesis,
Xie et al. (2007) reported a significant soil carbon accumulation
for  forest  and  cropland  but  decline  for  grass  land  since  the
1980's.  Also,  soil  organic  carbon loss  was seen to be extensive
for wetlands across China (Zhang et al., 2008). For forest soil, in
particular,  the  estimate  of  topsoil  MBC  in  this  study  (470.8
mg·kg−1 on  average)  was  higher  than  that  of  390.2  mg·kg−1

reported in a specific study of MBC of forest soils from China by
Zhou & Wang (2015). In this study, data of forest soil MBC were
largely  from  the  measurements  conducted  after  2015  follow-
ing  the  national  ecological  civilization  strategy  (Supplemental
Table  S1).  Following  ecological  restoration  of  vegetation  in
China, soil microbial necromass increment was observed much
higher than SOC increase reported by Li et al.  (2023).  The rela-
tively higher MBC in forest and cropland could point to poten-
tial  soil  microbial  community enhancement through increased
carbon  substrate  supply  with  improved  managements  and
restoration  (Zhang  et  al.,  2022).  Singh  &  Gupta  (2018)  argued
that  ecological  restoration  could  reduce  the  unpredictability
and  turnover  rates  of  soil  microbial  biomass  through  alleviat-
ing soil stresses on microbial communities.

Our  study  demonstrated  a  larger  variation  of  MBC  than  MQ
among  the  land  use  types.  For  climate  zones  also,  MBC  was
almost  similar  though  lower  in  TCC  zone  while  MQ  exerted  a
larger variation than MBC with PMC (0.81%) greatly lower (Fig.
2b & 3b). Serna-Chavez et al.  (2013) demonstrated a very large
difference  of  both  soil  MBC  and  topsoil  MQ  across  global
biomes, whereby under forest MQ rather than MBC displayed a
wider variation with climate conditions. MQ represented micro-
bial  assimilation  of  soil  organic  carbon  (Serna-Chavez  et  al.,
2013)  and  of  microbial  activity  in  relation  to  environmental
stresses  (Zhou  &  Wang,  2015).  In  this  study,  mean  MQ  values
(1.6%−2.2%)  across  the  land  use  types  were  generally  higher,
except  for  grassland,  than  those  (1.0%−2.1%)  across  global
biomes  quantified  by  Xu  et  al.  (2013).  In  a  quantification  by
Serna-Chavez et al. (2013) using their MBC estimate database in
geo-reference  to  grid  SOC,  MQ  of  grasslands  was  over  3.0%
compared  to  temperate  broadleaf  forest  (2.0%),  temperate
coniferous forest (3.0%) and tropical forest (3.6%). In particular,
our  estimate  of  mean  MQ  in  forest  (2.1%)  was  close  to  that
(1.92%)  reported  by  Zhou  &  Wang  (2015)  with  experimental
data under intended treatments. For cropland, the mean MQ of
2.0%  in  this  study  was  comparable  to  those  in  a  range  of
2.3%−2.9%  under  long-term  experiments  from  Central  Europe
(Coban  et  al.,  2022).  But,  the  mean  MQ  of  2.2%  for  wetland,
though much fewer cases, turned markedly higher than that of
1.20% for global mean of natural wetlands (Serna-Chavez et al.,
2013).  Furthermore,  an  area-weighted  mean  MQ  was  esti-
mated  as  1.89%  (1.7%−2.3%  for  95%  confidence  interval)  in
comparison to 1.20% by both Serna-Chavez et al. (2013) and by
Xu et al. (2013). Although topsoil samples were taken for a 0−20
cm  depth  (except  for  15  cm  for  rice  paddy)  in  Chinese  soil
sampling  protocol  (Song  &  Deng,  2017)  while  the  0−30  cm
depth  was  default  for  sampling  in  the  works  (Serna-Chavez  et
al.,  2013; Xu  et  al.,  2013),  the  above  mentioned  discrepancy
could be explained with difference in soil resource and environ-
mental conditions (Zhou & Wang, 2015) to be explored below.

The  data  obtained  here  could  allow  an  estimation  of  total
MBC  pool  of  China's  topsoil  cover.  Both  in  terms  of  land  use
types,  a  total  topsoil  MBC  pool  was  yielded  of  614.4  Tg  C  and
657.1  Tg C respectively  with  Approach I  using mean measure-
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ment  data  of  MBC  concentration  and  bulk  density  in  the
database  and  Approach  II  using  the  individual  values  both  of
mean  MQ  obtained  and  the  topsoil  SOC  stock  retrieved  from
Xie et  al.  (2007).  Using the area weighted mean MQ value and
the total topsoil SOC stock of 32.94 Pg (Xie et al., 2007) integrat-
ing all the land use types, a total topsoil MBC pool of 622.7 Tg C
was  obtained  for  the  whole  of  mainland  China.  Thus,  a  total
topsoil  microbial  biomass  carbon  pool  could  be  established,
being  very  likely  of  ca  657.1  Tg  C  for  the  whole  of  China.
Evidently,  this  pool  contributed  4.4%  and  3.8%  to  the  global
pool  respectively  of  14.6  Pg  C  (Serna-Chavez  et  al.,  2013)  and
16.7  Pg  C  (Xu  et  al.,  2013).  Comparably,  China's  share  of  the
global SOC stock could be known of 6% and 4.8% respectively
for whole soil  and for topsoil  (Pan et al.,  2015; Xie et al.,  2007).
The relatively lower share of topsoil microbial biomass could be
indicative  of  intensive  impact  by  land  use  activities  and  envi-
ronmental  changes  (Zhou  &  Wang,  2015)  on  soil  microbial
community preservation.

 Drivers of topsoil MBC and microbial abundance
variation: edaphic versus climatic

The key player in regulating their level could differ between
MBC  and  MQ  for  China's  soils  though  both  were  subject  to
changes  in  edaphic  and  biogeographic  factors  (Paul,  2016).
Clearly,  there  was  a  high  site  variability  both  of  MBC  (CV  of
95%) and MQ (CV of 98%). Xu et al. (2013) reported a wide vari-
ation by three orders of topsoil MBC but by only one order for
topsoil  MQ  using  global  data.  Moreover,  the  variation  of  MBC
was stronger (CV of 40%) than MQ (CV of 19%) across the land
use types while that of MQ was stronger (CV of over 40%) than
MBC (CV of 14%) when assessed with climate regimes (Figs 2 &
3). This pattern of stronger driver by vegetation zone on SMBC
but  less  by  climate  on  MQ  was  also  reported  at  global  scale
(Serna-Chavez  et  al.,  2013).  Seemingly,  land  use  change
impacted  more  on  topsoil  MBC  while  climate  (mainly  MAP)
more  on  the  MQ  (Fig.  5).  As  shown  in  recent  studies  (Serna-
Chavez et al.,  2013; Xu et al.,  2013),  MQ could be linked to soil
stress  such  as  moisture,  organic  carbon  loss  and  N  limitation.
The  variation  of  MQ  with  land  use  could  represent  the  extent
by  which  the  ecosystems  altered  with  human  disturbance
(Zhou & Wang, 2015).  As such, the estimated mean MQ values
were  generally  almost  2-fold  the  global  mean of  1.2%,  reflect-
ing  soil  stresses  of  Chinese  soils  under  long  human  utilization
and climate change (Pan, 2009; Song et al., 2005).

It  was  recommended  that  soil  microbial  biomass  was  not
driven  by  temperature  but  by  factors  affecting  soil  moisture
availability and soil nutrients such as N status (Serna-Chavez et
al.,  2013).  Specifically  for  forest  biomes  across  China,  Zou  &
Wang (2015) noted that both MBC and MQ were controlled by
soil condition rather than by climate condition, with up to 40%
of  the  total  variation  explained  by  soil  factors  of  SOC,  total  N
and  their  interaction  but  less  than  10%  by  climate  conditions.
At  the  regional  scale,  therefore,  land  use  as  a  major  driver
impacted  soil  microbial  biomass  pool  plus  modification  by
climate  condition  through  changes  in  soil  resource  conditions
such as soil moisture availability, carbon input through vegeta-
tion shift, N level through human activities.

For the edaphic factors, SOC, total N, bulk density and pH are
the  important  factors  for  soil  MBC  across  the  land  use  types
(Fig. 5; Supplemental Fig. S9). SOC had been well known to be
controlled  by  ecosystem  productivity,  spatial  variability  with

soil  attributes,  on  a  regional  scale  (Fierer  et  al.,  2009).  This
further  affected  the  size  and  community  structure  of  soil
microbes  with  variations  in  SOC  quality,  plant  C  inputs  and
rates  of  C  turnover  (Wardle,  1992).  Serna-Chavez  et  al.  (2013)
addressed a strong impact by SOC and total N on MBC pool of a
wide range of soils across the globe. To note, there was a signif-
icant,  but  very  slight  (r2 <0.1),  negative  correlation  of  MBC  to
soil  pH  across  China  (Supplemental  Fig.  S10)  despite  a  strong
negative  correlation both  under  forest  and rice  paddy (Fig.  5).
Differently,  soil  pH  was  either  significantly  but  slightly  (Serna-
Chavez  et  al.,  2013)  or  not  significantly  (Xu  et  al.,  2013)  corre-
lated  to  microbial  biomass  carbon  on  a  global  scale.  Interest-
ingly,  we found a significant and very strong negative correla-
tion  (r  =  −0.57, p <  0.0001)  of  MBC  to  soil  bulk  density  for  all
soils  other  than  croplands  across  China.  Though  bulk  density
data was not included (Xu et al.,  2013) or not correlated in the
existing  global  synthesis,  our  finding  highlighted  the  promi-
nent  effect  of  soil  structure  on  preservation  of  microbial
communities  and  their  ecosystem  services  (Gupta  &  Germida,
2015).

The  narrower  range  of  MQ  variation  suggested  weaker
impact  by  soil  factors  on  the  microbial  carbon  assimilation
intensity  in  topsoil.  Linking  to  N  limitation  effects  (Xu  et  al.,
2013),  microbial  assimilation  could  be  stimulated  in  N-limited
conditions  while  microbial  growth,  and  thus  microbial  abun-
dance, could be stressed in high C:N ratio soil (Paul, 2016; Wang
et al.,  2009; Dequiedt et al.,  2011).  As such, MQ was negatively
correlated  strongly  to  total  N  and  less  strongly  to  C/N  ratio
across global biomes (Xu et al., 2013). Unlike the finding for the
forest  lands  across  China  (Zhou  &  Wang,  2015)  and  for  the
global biomes (Xu et al., 2013), MQ was negatively correlated to
soil C/N ratio and, to lesser extent, to total N for overall observa-
tions  in  this  study  (Fig.  5).  Again,  MQ  was  found  very  signifi-
cantly  and  strongly  positively  correlated  with  microbial  nitro-
gen (MBN) across all  the land use types.  This showed variation
of  MQ could be partly  attributed to variation of  N assimilation
by microbes, in responding to soil nutrient status (Dequiedt et
al.,  2011).  It  was  already  shown  that  low  N  availability  could
spike  microbial  N  assimilation  and  thus  increase  MQ  through
enhanced  organic  matter  decomposition  in  disturbed  topsoil
(Lejon et al., 2007).

For all the observations across China, MBC was positively and
strongly  correlated  to  MAP  but  not  to  MAT,  supporting  the
major factor of moisture rather than temperature on soil micro-
bial  biomass  (Xu  et  al.,  2013).  Whereas,  MQ  was  correlated
neither to MAP nor to MAT for the whole observations (Fig. 5).
In terms of climate zones, MBC was higher in SMC region than
in the TCC regions in this study (Fig. 3), depicting a critical role
of  soil  moisture  on  soil  microbial  growth  (Wieder  et  al.,  2013;
Ma et al., 2015). Although microbial growth was well known to
be strongly temperature- dependent (Grisi et al., 1998), MQ but
not MBC was lower in the PMC than in the TCC, SMC and TMC
regions  (Fig.  3).  This  is  inconsistent  with  the  finding  that  MQ
values  were  higher  in  tropical  and  subtropical  climate  zones
than in boreal and tundra regions (Xu et al., 2013). This could be
attributed to the difference in microbial carbon decomposition
and  nutrient  assimilation  between  these  climate  zones.  Like-
wise,  Franzluebbers  et  al.  (2001)  argued  that  topsoil  MBC,  but
not  SOC,  was  controlled  by  macro-climate  condition  across
continental  USA  overall  in  this  study,  soil  MBC  was  strongly
controlled by soil  factors but less strongly by climate variables
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though the variation of MQ was rather narrow and less respon-
dent to soil and climate changes.

For predicting MBC of a given soil, a linear regression model
(Eqn 4)  was established following a stepwise regression analy-
sis.  This  model  was  contributed  by  three  edaphic  attributes
including  bulk  density,  SOC  and  total  N  and  one  climate
attribute of MAP. Xu et al. (2013) proposed a logarithmic model
for predicting MBC mainly with climate variables (mean annual
precipitation and temperature) plus SOC, with the fitted param-
eters  inconsistent  with  climate  zones  of  the  globe.  Differently,
Serna-Chavez  et  al.  (2013)  developed  a  MBC  model  with  six
attributes  both  of  climatic  parameters  and  edaphic  factors  of
pH and total nitrogen, and a MQ model with eight attributes of
climate  parameters  and  soil  total  nitrogen,  pH,  C:N  ratio  and
CEC.  Our  MBC  model  had  an  adjusted  explanatory  of  48%  of
the  total  variance,  in  comparison  to  that  of  39%  of  the  MBC
model  by  Serna-Chavez  et  al.  (2013)  with  more  attributes
accounted.  In  previous  work  (Frey  et  al.,  2013),  macroclimate
attributes  had  been  considered  for  the  predominant  environ-
mental  driver  for  MBC  pool  of  soils  across  major  biomes  on  a
global scale. In this study, however, edaphic parameters such as
soil  carbon,  total  N  and  climate  parameter  of  mean  annual
precipitation  were  shown  playing  determinant  roles  on  MBC
pool  of  topsoil  across  land  use  types  in  China.  The  proposed
model,  with both key attributes of  soil  and climate and with a
good  explanatory  power,  could  provide  a  simple  tool  to
perform  a  essential  estimation  of  MBC  for  robust  soils  at  a
random site from mainland China. The model could be used to
guide  the  practices  for  enhancing  soil  microbial  biomass  and
thus enhance soil microbial biodiversity of China' soils through
manipulation  of  soil  organic  carbon  and  nitrogen.  Indeed,
nature-based  solutions  such  as  biochar  for  soil  management
could  safeguard  soil  microbial  biomass  pool,  and  in  turn,  soil
health for One Health of the Earth system (UNEP, 2022).

 Uncertainty and perspectives
Uncertainty  remains  in  the  basic  estimation via multivariate

statistics of microbial biomass in soils of China. Firstly, the MBC
data  used  in  this  study  were  measured  using  the  chloroform
fumigation-extraction  method  (Vance  et  al.,  1987).  The
sampling at different seasons in individual studies could impact
the  MBC  level  determined.  Secondly,  the  bias  of  number  of
observations  among  land  use  type  could  cause  a  main  source
of  uncertainty.  This  was  the  case  particularly  for  wetlands,
which  had  only  11  observations  in  the  dataset  and  showed
high, but variable, MQ measurements, compared to the values
reported by Serna-Chavez et al. (2013). Thirdly, lack of available
soil data could impact the model efficiency as only 77 data sets
were  used  to  develop  the  multivariate  model,  compared  to  a
total of 648 MBC measurements. We reached a consistent esti-
mate of topsoil MBC pool of China's soils with different predict-
ing  approaches.  However,  the  depth  of  topsoil  was  set  to  a
default  of  20  cm for  soils  other  than rice  paddy with a  default
value of 15 cm. This could, of course, lead to a lower pool size of
topsoil MBC in China' soils compared to a default topsoil depth
of  30  cm  in  the  works  for  global  estimations  (Serna-Chavez  et
al.,  2013; Xu  et  al.,  2013).  In  addition,  for  non  cropland  soils,
edaphic  parameters  such  as  bulk  density,  soil  N  and  microbial
biomass  N  as  well  as  soil  texture  were  not  reported  or  often
absent.  Further  work  should  be  deserved  to  obtain  a  more
robust  and  high  resolution  estimation  of  microbial  biomass  in
topsoil  in  terms  of  soil  types  and  soil  regions  (Gong,  1999)  as

well  as  for  whole  soil.  For  better  understanding  of  the  MQ
status,  the linkage of  microbiome structure and activity  to soil
organic  matter  status  should  be  explored  with  special  refer-
ence to soil structure at an aggregate level in the future.

 Conclusions

The  effects  of  environmental  variables  on  topsoil  microbial
biomass  and  the  relation  to  SOC  were  quantified  based  on
published  database  literature  of  field  studies  across  mainland
China.  Wide  MBC  variation  was  mostly  showed  with  land  use
changes  while  MQ  was  changed  with  climate  conditions.  For
individual soils,  SOC (and TN) exerted a strong positive impact
on  MBC  and  moderate  negative  impact  on  MQ.  In  contrast,
precipitation  had  positive  but  moderate  impact  on  MBC  and
temperature had positive but moderate impact on MQ. Among
the land use types, rice paddy had the higher MQ despite lower
SOC and soil C/N ratio, compared to forest and grassland soils,
indicating a  higher  active  biological  carbon pool.  A  multi-vari-
able  model  was  developed  to  allow  a  general  prediction  of
topsoil  microbial  biomass  carbon  for  China  soils.  As  a  result,  a
topsoil  MBC  pool  was  estimated  of  614.4~657.1  Tg  for  overall
China  soils.  Topsoil  MBC  pool  showed  greater  variation  than
microbial  quotient  with  land  use  types;  soil  factors  strongly
impacted MBC pool while climate factors showed a great influ-
ence on microbial quotient.

Acknowledgments

This work was financially supported by China Natural Science
Foundation  under  a  grant  number  41501569,  41371298  and
U1612441.  The  international  cooperation  was  funded  by  the
Priority  Academic  Program  Development  of  Jiangsu  Higher
Education  Institutions  (PAPD),  and  the  double  first  rank  disci-
pline  construction  plan,  the  Ministry  of  Education,  China.  This
work  contributes  to  the  N-Circle  project,  a  China-UK  Virtual
Joint  Centre  on  Nitrogen  funded  by  the  Newton  Fund  via  the
UK BBSRC (BB/N013484/1).

Conflict of interest

The  authors  declare  that  they  have  no  conflict  of  interest.
Pan Genxing is  the Editorial  Board member of Soil  Science  and
Environment.  He  was  blinded  from  reviewing  or  making  deci-
sions on the manuscript. The article was subject to the journal's
standard procedures, with peer-review handled independently
of this Editorial Board member and his research groups.

Supplementary  Information accompanies  this  paper  at
(https://www.maxapress.com/article/doi/10.48130/SSE-2023-
0005)

Dates

Received 6  January  2023;  Accepted 25  May 2023;  Published
online 21 June 2023

References

Anderson TH, Domsch KH. 1989. Ratios of microbial biomass carbon to
total  organic  carbon  in  arable  soils. Soil  Biology  and  Biochemistry
21(4):471−79

 
Microbial biomass of China's topsoil

Page 8 of 10   Liu et al. Soil Science and Environment 2023, 2:5

https://www.maxapress.com/article/doi/10.48130/SSE-2023-0005
https://www.maxapress.com/article/doi/10.48130/SSE-2023-0005
https://doi.org/10.1016/0038-0717(89)90117-X


Bachar A, Al-Ashhab A, Soares MIM, Sklarz MY, Angel R, et al. 2010. Soil
microbial abundance and diversity along a low precipitation gradi-
ent. Microbial Ecology 60:453−61

Bahram M, Hildebrand F, Forslund SK, Anderson JL, Soudzilovskaia NA,
et al. 2018. Bork Structure and function of the global topsoil micro-
biome. Nature 560:233−37

Banerjee  S,  van  der  Heijden  MGA. 2023.  Soil  microbiomes  and  one
health. Nature Reviews Microbiology 21:6−20

Bian R, Cheng K, Zheng J, Liu X, Liu Y, et al. 2015. Does metal pollution
matter with C retention by rice soil? Scientific Reports 5:13233

Black CA,  Evans DD,  Dinauer  RC.  1965.  Methods of  soil  analysis.  Vol.  9.
 Madison, WI: American Society of Agronomy. pp. 653−708

Coban O, De Deyn GB, van der Ploeg M. 2022. Soil microbiota as game-
changers in restoration of degraded lands. Science 375:abe0725

Conant  RT,  Ryan  MG,  Ågren  GI,  Birge  HE,  Davidson  EA,  et  al. 2011.
Temperature  and  soil  organic  matter  decomposition  rates–synthe-
sis of current knowledge and a way forward. Global Change Biology
17(11):3392−404

Cotrufo MF, Wallenstein MD, Boot CM, Denef K, Paul E. 2013. The Micro-
bial  Efficiency-Matrix  Stabilization  (MEMS)  framework  integrates
plant litter decomposition with soil organic matter stabilization: do
labile  plant  inputs  form  stable  soil  organic  matter? Global  Change
Biology 19:988−95

Dequiedt  S,  Saby  NPA,  Lelievre  M,  Jolivet  C,  Thioulouse  J,  et  al. 2011.
Biogeographical  patterns  of  soil  molecular  microbial  biomass  as
influenced  by  soil  characteristics  and  management. Global  Ecology
and Biogeography 20(4):641−52

Fang J,  Chen A,  Peng C,  Zhao S,  Ci  L. 2001.  Changes in  forest  biomass
carbon  storage  in  China  between  1949  and  1998. Science
292:2320−22

Fierer  N,  Strickland  MS,  Liptzin  D,  Bradford  MA,  Cleveland  CC. 2009.
Global  patterns  in  belowground  communities. Ecology  letters
12(11):1238−49

Franzluebbers  AJ,  Haney  RL,  Honeycutt  CW,  Arshad  MA,  Schomberg
HH, et al. 2001. Climatic influences on active fractions of soil organic
matter. Soil Biology and Biochemistry 33(7):1103−11

Frey SD, Lee J, Melillo JM, Six J. 2013. The temperature response of soil
microbial  efficiency  and  its  feedback  to  climate. Nature  Climate
Change 3(4):395−98

Gong  Z.  1999.  Chinese  soil  taxonomy:  theory,  method  and  practice.
Beijing: Science Press.

Grisi B, Grace C, Brookes PC, Benedetti A, Dell'abate MT. 1998. Tempera-
ture  effects  on  organic  matter  and  microbial  biomass  dynamics  in
temperate  and  tropical  soils. Soil  Biology  &  Biochemistry
30(10−11):1309−15

Guerra CA, Bardgett RD, Caon L, Crowther TW, Delgado-Baquerizo M, et
al. 2021.  Tracking,  targeting,  and  conserving  soil  biodiversity.
Science 371:239−41

Gupta VVSR, Germida JJ. 2015. Soil aggregation: Influence on microbial
biomass  and  implications  for  biological  processes. Soil  Biology
Biochemistry 80:A3−A9

Janzen HH, Janzen DW, Gregorich EG. 2021. The 'soil health' metaphor:
illuminating or illusory? Soil Biology and Biochemistry 159:108167

Jenkinson  DS,  Ladd  JN.  1981.  Microbial  biomass  in  soil:  measurement
and turnover. In Soil  biochemistry,  eds. Paul EA, Ladd JN. New York:
Marcel Dekker. pp. 415−71

Kallenbach CM, Frey SD, Grandy AS. 2016. Direct evidence for microbial-
derived  soil  organic  matter  formation  and  its  ecophysiological
controls. Nature Communications 7:13630

Lehmann  J,  Bossio  DA,  Kögel-Knabner  I,  Rillig  MC. 2020.  The  concept
and future prospects of soil  health. Nature Reviews Earth & Environ-
ment 1:544−53

Lehmann  J,  Kleber  M. 2015.  The  contentious  nature  of  soil  organic
matter. Nature 528:60−68

Leifeld  J,  Kögel-Knabner  I. 2005.  Soil  organic  matter  fractions  as  early
indicators  for  carbon  stock  changes  under  different  land-use?
Geoderma 124(1):143−55

Martiny  JBH,  Bohannan  BJ,  Brown  JH,  Colwell  RK,  Fuhrman  JA,  et  al.
2006. Microbial biogeography: putting microorganisms on the map.
Nature Reviews Microbiology 4(2):102−12

Lejon  DPH,  Sebastia  J,  Lamy  I,  Chaussod  R,  Ranjard  L. 2007.  Relation-
ships between soil organic status and microbial community density
and genetic structure in two agricultural soils submitted to various
types of organic management. Microbial Ecology 53(4):650−63

Li T, Yuan Y, Mou Z, Li Y, Kuang L, et al. 2023. Faster accumulation and
greater  contribution  of  glomalin  to  the  soil  organic  carbon  pool
than  amino  sugars  do  under  tropical  coastal  forest  restoration.
Global Change Biology 29:533−46

Liu Y, Wang P, Ding Y, Lu H, Li L, et al. 2016. Microbial activity promoted
with  organic  carbon  accumulation  in  macroaggregates  of  paddy
soils  under  long-term  rice  cultivation. Biogeosciences
13(24):6565−86

Ma L, Guo C, Lü X, Yuan S, Wang R. 2015. Soil moisture and land use are
major  determinants  of  soil  microbial  community  composition  and
biomass  at  a  regional  scale  in  northeastern  China. Biogeosciences
12(8):2585−96

Mao DM, Min YW, Yu LL,  Martens R,  Insam H. 1992.  Effect  of  afforesta-
tion on microbial biomass and activity in soils of tropical China. Soil
Biology and Biochemistry 24(9):865−72

Matejovic I. 1997. Determination of carbon and nitrogen in samples of
various soils by the dry combustion. Communications in Soil Science
& Plant Analysis, 28(17−18):1499−511

Miltner A, Bombach P, Schmidt-Brücken B, Kästner M. 2012. SOM gene-
sis:  microbial  biomass  as  a  significant  source. Biogeochemistry
111:41−55

Pan  G. 2009.  Soil  organic  carbon  stock,  dynamics  and  climate  change
mitigation  of  China. Advances  in  Climate  Change  Research
4(5):282−89

Pan G,  Cheng K,  Lu H,  Li  L,  Liu X,  et  al. 2015.  Sustainable soil  manage-
ment:  an  emerging  soil  science  challenge  for  global  development.
Scientia Agricultura Sinica 48(23):4607−20

Pan G, Ding Y, Chen S, Sun J, Feng X, et al. 2019. Exploring the nature of
soil  organic  matter  from  humic  substances  isolation  to  SOMics  of
molecular assemblage. Advances in Earth Science 34(5):451−70

Paul  EA. 2016.  The  nature  and  dynamics  of  soil  organic  matter:  Plant
inputs,  microbial  transformations,  and organic  matter  stabilization.
Soil Biology and Biochemistry 98:109−26

Powlson DS. 1994. The soil microbial biomass: before, beyond and back.
Schmidt MW, Torn MS, Abiven S, Dittmar T, Guggenberger G, Janssens

IA,  et  al. 2011.  Persistence  of  soil  organic  matter  as  an  ecosystem
property. Nature 478:49−56

Seneviratne SI, Corti T, Davin EL, Hirschi M, Jaeger EB, et al. 2010. Inves-
tigating soil moisture–climate interactions in a changing climate: A
review. Earth-Science Reviews 99(3):125−61

Serna-Chavez HM, Fierer N, van Bodegom PM. 2013. Global drivers and
patterns of microbial abundance in soil. Global Ecology and Biogeog-
raphy 22(10):1162−72

Shen  Q,  Pan  G. 2022.  Inaugural  editorial. Soil  Science  and  Environment
1:1

Singh  JS,  Gupta  VK. 2018.  Soil  microbial  biomass:  A  key  soil  driver  in
management of ecosystem functioning. Science of the Total Environ-
ment 634:497−500

Six J,  Paustian K. 2014.  Aggregate-associated soil  organic matter  as  an
ecosystem  property  and  a  measurement  tool. Soil  Biology  and
Biochemistry 68:A4−A9

Smith  P,  Cotrufo  MF,  Rumpel  C,  Paustian  K,  Kuikman  PJ,  et  al. 2015.
Biogeochemical cycles and biodiversity as key drivers of ecosystem
services provided by soils. Soil Discussions 2(1):537−86

Sollins  P,  Homann  P,  Caldwell  BA. 1996.  Stabilization  and  destabiliza-
tion  of  soil  organic  matter:  mechanisms  and  controls. Geoderma
74(1-2):65−105

Song G,  Li  L,  Pan G,  Zhang Q. 2005.  Topsoil  organic  carbon storage of
China and its loss by cultivation. Biogeochemistry 74(1):47−62

Microbial biomass of China's topsoil
 

Liu et al. Soil Science and Environment 2023, 2:5   Page 9 of 10

https://doi.org/10.1007/s00248-010-9727-1
https://doi.org/10.1038/s41586-018-0386-6
https://doi.org/10.1038/s41579-022-00779-w
https://doi.org/10.1038/srep13233
https://doi.org/10.1126/science.abe0725
https://doi.org/10.1111/j.1365-2486.2011.02496.x
https://doi.org/10.1111/gcb.12113
https://doi.org/10.1111/gcb.12113
https://doi.org/10.1111/j.1466-8238.2010.00628.x
https://doi.org/10.1111/j.1466-8238.2010.00628.x
https://doi.org/10.1126/science.1058629
https://doi.org/10.1111/j.1461-0248.2009.01360.x
https://doi.org/10.1016/s0038-0717(01)00016-5
https://doi.org/10.1038/nclimate1796
https://doi.org/10.1038/nclimate1796
https://doi.org/10.1016/s0038-0717(98)00016-9
https://doi.org/10.1126/science.abd7926
https://doi.org/10.1016/j.soilbio.2014.09.002
https://doi.org/10.1016/j.soilbio.2014.09.002
https://doi.org/10.1016/j.soilbio.2021.108167
https://doi.org/10.1038/ncomms13630
https://doi.org/10.1038/s43017-020-0080-8
https://doi.org/10.1038/s43017-020-0080-8
https://doi.org/10.1038/s43017-020-0080-8
https://doi.org/10.1038/nature16069
https://doi.org/10.1016/j.geoderma.2004.04.009
https://doi.org/10.1038/nrmicro1341
https://doi.org/10.1007/s00248-006-9145-6
https://doi.org/10.1111/gcb.16467
https://doi.org/10.5194/bg-13-6565-2016
https://doi.org/10.5194/bg-12-2585-2015
https://doi.org/10.1016/0038-0717(92)90007-K
https://doi.org/10.1016/0038-0717(92)90007-K
https://doi.org/10.1080/00103629709369892
https://doi.org/10.1080/00103629709369892
https://doi.org/10.1007/s10533-011-9658-z
https://doi.org/10.3864/j.issn.0578-1752.2015.23.002
https://doi.org/10.11867/j.issn.1001-8166.2019.05.0451
https://doi.org/10.1016/j.soilbio.2016.04.001
https://doi.org/10.1038/nature10386
https://doi.org/10.1016/j.earscirev.2010.02.004
https://doi.org/10.1111/geb.12070
https://doi.org/10.1111/geb.12070
https://doi.org/10.1111/geb.12070
https://doi.org/10.48130/sse-2022-0001
https://doi.org/10.1016/j.scitotenv.2018.03.373
https://doi.org/10.1016/j.scitotenv.2018.03.373
https://doi.org/10.1016/j.scitotenv.2018.03.373
https://doi.org/10.1016/j.soilbio.2013.06.014
https://doi.org/10.1016/j.soilbio.2013.06.014
https://doi.org/10.5194/soil-1-665-2015
https://doi.org/10.1016/S0016-7061(96)00036-5
https://doi.org/10.1007/s10533-004-2222-3


Song  W,  Deng  X. 2017.  Land-use/land-cover  change  and  ecosystem
service  provision  in  China. Science  of  the  Total  Environment
576:705−19

Sparling  GP. 1992.  Ratio  of  microbial  biomass  carbon  to  soil  organic
carbon as a sensitive indicator of changes in soil organic matter. Soil
Research 30(2):195−207

United  Nations  Environment  Programme.  2022.  Nature-based  Solu-
tions:  Opportunities and Challenges for Scaling Up. Nairobi,  Kenya.
www.britannica.com/topic/United-Nations-Environment-
Programme

Vance  ED,  Brookes  PC,  Jenkinson  DS. 1987.  An  extraction  method  for
measuring  soil  microbial  biomass  C. Soil  biology  and  Biochemistry
19(6):703−7

Wang XL, Jia Y, Li XG, Long RJ, Ma Q, et al. 2009. Effects of land use on
soil total and light fraction organic, and microbial biomass C and N
in  a  semi-arid  ecosystem  of  northwest  China. Geoderma
153(1):285−90

Wardle DA. 1992. A comparative assessment of factors which influence
microbial  biomass  carbon  and  nitrogen  levels  in  soil. Biological
Reviews 67:321−58

Wieder WR, Bonan GB, Allison SD. 2013. Global soil  carbon projections
are  improved  by  modelling  microbial  processes. Nature  Climate
Change 3(10):909−912

Xie  Z,  Zhu  J,  Liu  G,  Cadisch  G,  Hasegawa  T,  et  al. 2007.  Soil  organic
carbon  stocks  in  China  and  changes  from  1980s  to  2000s. Global
Change Biology 13:1989−2007

Xu  X,  Thornton  PE,  Post  WM. 2013.  A  global  analysis  of  soil  microbial
biomass carbon, nitrogen and phosphorus in terrestrial ecosystems.
Global Ecology and Biogeography 22(6):737−49

Zak DR,  Tilman D,  Parmenter  RR,  Rice CW, Fisher  FM,  et  al. 1994.  Plant
production  and  soil  microorganisms  in  late-successional  ecosys-
tems: A continental-scale study. Ecology 75(8):2333−47

Zhang  H,  Fang  Y,  Zhang  B,  Luo  Y,  Yi  X,  et  al. 2022.  Land-use-driven
change in soil  labile  carbon affects  microbial  community composi-
tion and function. Geoderma 426:116056

Zhang X, Li D, Pan G, Li L, Lin F, et al. 2008. Conservation of wetland soil
C  stock  and  climate  change  of  China. Advances  in  Climate  Change
Research 44(4):202−8

Zheng X, Xia T, Yang X, Yuan T, Hu Y. 2013. The land Gini coefficient and
its  application  for  land  use  structure  analysis  in  China. PLoS  One
8:e76165

Zhou H, Zhang D, Wang P, Liu X, Cheng K, et al. 2017. Changes in micro-
bial  biomass  and  the  metabolic  quotient  with  biochar  addition  to
agricultural soils:  a meta-analysis. Agriculture,  Ecosystems & Environ-
ment 239:80−89

Zhou  ZH,  Wang  CK. 2015.  Reviews  and  syntheses:  Soil  resources  and
climate  jointly  drive  variations  in  microbial  biomass  carbon  and
nitrogen  in  China's  forest  ecosystems. Biogeosciences
12(22):6751−60

Zhu X, Jackson R, DeLucia EH, Tiedje JM, Liang C. 2020. The soil micro-
bial  carbon  pump:  from  conceptual  insights  to  empirical  assess-
ments. Global Change Biology 26:6032−6039

Microbial biomass of China's topsoil

Page 10 of 10 Liu et al. Soil Science and Environment 2023, 2:5

Copyright:  © 2023 by the author(s).  Published by
Maximum  Academic  Press,  Fayetteville,  GA.  This

article  is  an  open  access  article  distributed  under  Creative
Commons  Attribution  License  (CC  BY  4.0),  visit https://creative-
commons.org/licenses/by/4.0/.

https://doi.org/10.1016/j.scitotenv.2016.07.078
https://doi.org/10.1071/SR9920195
https://doi.org/10.1071/SR9920195
https://www.britannica.com/topic/United-Nations-Environment-Programme
https://www.britannica.com/topic/United-Nations-Environment-Programme
https://doi.org/10.1016/0038-0717(87)90052-6
https://doi.org/10.1016/j.geoderma.2009.08.020
https://doi.org/10.1111/j.1469-185X.1992.tb00728.x
https://doi.org/10.1111/j.1469-185X.1992.tb00728.x
https://doi.org/10.1038/nclimate1951
https://doi.org/10.1038/nclimate1951
https://doi.org/10.1111/j.1365-2486.2007.01409.x
https://doi.org/10.1111/j.1365-2486.2007.01409.x
https://doi.org/10.1111/geb.12029
https://doi.org/10.2307/1940888
https://doi.org/10.1016/j.geoderma.2022.116056
https://doi.org/10.1371/journal.pone.0076165
https://doi.org/10.1016/j.agee.2017.01.006
https://doi.org/10.1016/j.agee.2017.01.006
https://doi.org/10.1016/j.agee.2017.01.006
https://doi.org/10.5194/bg-12-6751-2015
https://doi.org/10.1111/gcb.15319

	Introduction
	Materials and methods
	Data sources
	Calculation and quantification
	Data treatment and statistical analysis

	Results
	Variation of topsoil microbial biomass carbon
	Variation of topsoil microbial quotient (MQ)
	Topsoil MBC pool distribution with land use types
	Correlations of MBC or MQ to soil and climate variables

	Discussion
	Topsoil microbial biomass carbon pool vs the microbial quotient quantified with land use types
	Drivers of topsoil MBC and microbial abundance variation: edaphic versus climatic
	Uncertainty and perspectives

	Conclusions
	References

