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Abstract
Iron-modified biochar is an environmently-friendly soil amendment, which plays an important role in regulating heavy metal transport in loessial soil. In this

study, the mass ratio of iron-modified biochar to loessial soil was set to 0%, 1%, 2%, 3%, 4%, and 5% as CK, T1, T2, T3, T4, and T5 treatments, respectively.

Based on solute transport  experiments,  the transport  process of  chloridion (Cl−)  and cadmium ion (Cd2+)  in soil  adding iron-modified biochar was fitted

using the convection-dispersion equation (CDE) and two-zone model  (TRM).  The results  showed that the saturated hydraulic  conductivity  (Ks)  gradually

decreased to 93.70%, 84.13%, 83.33%, 79.60%, and 66.67% compared with CK, with increased iron-modified biochar addition amount. The total duration

time of the equilibrium ion concentration was increased from 1.79 to 40.81 h, indicating that the initial and complete transport time of heavy metals was

significantly retarded with the increase of iron-modified biochar addition amount. The mean intervoid water velocity (v) obtained from model fitting was

opposite  to  the  trend  of  the  amount  of  iron-modified  biochar.  The  fitting  data  of  the  CDE  equation  and  TRM  model  were  in  good  agreement  with  the

experimental data, whereas the better simulation accuracy of the TRM model was observed according to the higher correlation coefficient (R2 > 0.99) and

lower root mean square error (RMSE) than the CDE equation. These findings indicate that iron-modified biochar effectively retards the transport of heavy

metal ions in soil, which could provide a theoretical basis and technical ideas for the remediation of heavy metal-contaminated soil.
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Introduction

As one of the important components of the ecosystem, soil is not
only  the  most  basic  carrier  in  agricultural  production  but  also  the
ultimate  destination  of  environmental  pollutants  (Zhang  et  al.,
2020a; Gil  et  al.,  2018).  In  recent  years,  various  heavy  metals  have
entered  soil  through  different  processes  (e.g.,  industry,  agriculture,
transportation,  and other ways)  with the rapid development of  the
social  economy,  which  exhibits  a  significant  impact  on  human
health  and ecological  security  (Muhammad et  al.,  2021).  According
to the National Soil Pollution Survey Bulletin, cadmium (Cd) was the
primary  pollutant  in  cultivated  soil  in  China.  The  continuous  trans-
port and accumulation of Cd in soil not only affects the soil ecologi-
cal environment but also seriously threatens human health through
the  food  chain,  and  other  ways  (Sun  et  al.,  2021; Shen  et  al.,  2016;
Gong et al.,  2021).  Therefore,  soil  remediation and control of heavy
metal  pollution  have  always  been  the  focus  of  soil  environmental
research.  It  is  an  economical,  feasible,  and  effective  method  to
control  heavy  metal  pollution  in  soil  by  using  improvers  to  adsorb
and  fix  heavy  metal  elements  and  reduce  heavy  metal  transport
(Qiao et al., 2017; Yang T et al., 2022).

Iron-modified  biochar,  as  an  efficient  and  environmentally-
friendly  amendment  has  been  widely  used  in  soil  remediation  and
control due to its advantages of low environmental risk, wide range
of  sources,  and  low  price  (Nguyen  et  al.,  2023; Wan  et  al.,  2020;
Zhang et al., 2023; Jiao et al., 2022). Iron-modified biochar produced
by  high-temperature  pyrolysis  had  developed  pore  structure  and
stable  chemical  properties.  In  addition,  due  to  the  complex  reduc-
tion of Fe3+, the surface functional groups of biochar increased, and
the  adsorption  capacity  of  biochar  for  heavy  metals  was  signifi-
cantly improved (Zhou et al., 2018; Yang et al., 2021; Ryu et al., 2011;

He  et  al.,  2018).  At  present,  there  is  increasing  research  on  the
adsorption  capacity  and  mechanism  of  soil-heavy  metals  by  modi-
fied  biochar.  For  example,  Zhou  et  al.  (2022)  studied  the  high
removal of Cr6+ in iron-modified biochar/double-layer osmotic reac-
tion barriers. Da et al. (2023) reported a decrease of Cd2+ availability
in  soil  using  K2FeO4-modified  vinasse  biochar  due  to  the  enrich-
ment of surface functional groups. Li et al. (2022) demonstrated that
the simultaneous immobilization mechanism of As3+, Pb2+, and Cd2+

with Mg-Al modified biochar/mining soil composites.
The  solute  transport  model  is  an  important  means  by  which  to

study the transport process of heavy metals in soil and estimate the
transport parameters accurately (Pei  et al.,  2021).  With the deepen-
ing of the research on the transport process of heavy metals in soil,
the  research  on  the  solute  transport  models  have  gradually
attracted  the  attention  of  experts  and  scholars  (Wang  et  al.,  2020;
Yuan  et  al.,  2017; Yang  et  al.,  2019; Jiang  et  al.,  2019).  Some
researchers  used  chloridion  (Cl−)  as  a  tracer  ion  and  numerical
models  were  used  to  predict  the  transport  behavior  of  ions  in  the
soil,  such as copper,  lead, zinc,  and Cd (Pietrzak,  2021; Zhang et al.,
2020b; Nguyen  Ngoc  et  al.,  2009).  Anaman  et  al.  (2022)  used  GIS
and  PMF  methods  found  that  the  transport  paths  of  As3+,  Cd2+,
Pb2+,  Cu2+,  and  Zn2+ were  mainly  through  surface  runoff.  Liu  et  al.
(2022) found that the breakthrough curve (BTC) of Cd2+ was roughly
of  a  slow  'S'  type  through  simulation,  and  the  simulated  value  of
Cd2+ by  the  convection  ediffusion  equation  (CDE)  was  close  to  the
measured  value.  Zhou  et  al.  (2009)  found  that  BTC  was  accurately
described by both the CDE equation and the two-zone model (TRM).
However, the TRM model fitted the experimental data a little better
than the CDE equation, which was possibly more convenient to use.
In  summary,  there  are  increasingly  more studies  on the adsorption
and  transport  of  heavy  metals  in  soil,  but  there  are  few  studies  on
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the effect of iron-modified biochar on the transport of heavy metals
in  soil,  and  its  transport  model  and  parameters  were  especially
unclear.

The  objectives  of  this  study  were:  (1)  to  investigate  the  effect  of
iron-modified biochar on the transport of Cl− and Cd2+ in loessial soil
by  column  experiments;  and  (2)  to  simulate  the  transport  process
and obtain relevant parameters of Cl− and Cd2+ in loessial soil added
iron-modified  biochar  using  CDE  equation  and  TRM  model.  The
results  could  clarify  the  effects  of  different  amounts  of  iron-modi-
fied  biochar  on  heavy  metals  transport  in  loessial  soil,  and  provide
data  reference  for  the  prevention  and  treatment  of  heavy  metal
pollution in soil. 

Materials and methods
 

Soil sample collection
The geographical location of the sampling point is Wangwa Town

of Ningxia Province in China (106°37'20" ~ 106°39'25" E, 36°04'40" ~
36°08'10" N), with an area of about 9.74 km2. The terrain is complex,
with  crisscrossed  terraces,  beams,  ridges,  valleys,  and  gullies,  and
the elevation ranges from 1,698 to 1,903 m. It  belongs to the semi-
humid  and  semi-arid  climate,  with  an  average  annual  temperature
of  7.1  °C,  a  daily  temperature  difference  of  27  °C,  and  an  average
annual  precipitation  of  about  400  mm.  The  spatial  and  temporal
distribution of  evaporation is  uneven,  mainly  from July  to  Septem-
ber,  and  the  average  annual  evaporation  is  about  1,000  mm.  The
main  soil  type  is  loessial  soil,  with  clay  contents  of  8.78%,  sand
content  of  17.88%,  and  silt  content  of  71.63%.  The  physical  and
chemical  properties  of  loessial  soil  are  shown  in Table  1.  The  soil
layer is deep and the soil is loose. The sampling depth was 0~10 cm,
and five soil samples were obtained by the quince-shaped distribu-
tion  method  during  sampling,  which  were  fully  mixed  and  then
sampled by the quartering method. The collected soil samples were
naturally air-dried and debris removed, and then ground and passed
through a 2 mm soil sieve for use. 

Preparation of iron-modified biochar
The woody biochar was purchased from Yixin Biotechnology Co.

Ltd. (Table 1). Firstly, the woody biochar was pre-treated with mixed
solution  of  FeSO4·7H2O  and  Fe2(SO4)3 under  vigorous  stirring  (800
mL  deionized  water  was  added  to  a  1  L  beamer,  then  5.0  g
FeSO4·7H2O and 4.5 g Fe2(SO4)3 were dissolved to obtain the mixed
solution).  After  that,  an  even  mixture  was  obtained  by  ultrasonic
treatment  for  1  h  at  25  °C  and  was  dried  at  60  °C  in  a  constant
temperature  oven.  Finally,  iron-modified  biochar  was  obtained  by
pyrolysis in a Muffle furnace at 600 °C for 1 h. The as-prepared iron-
modified biochar was ground and sieved for use (Gong et al., 2021).
The physical and chemical properties of iron-modified biochar were
shown in Table 2. 

Solute transport test
The  soil  samples  with  different  mass  ratios  of  iron-modified

biochar  (0,  1%,  2%,  3%,  4%,  and  5%  as  CK,  T1,  T2,  T3,  T4,  and  T5,
respectively) were obtained by evenly mixing iron-modified biochar

and  soil  (Liu  et  al.,  2015).  The  solute  transport  experiments  were
conducted under  plexiglass-columns (diameter  of  5  cm and height
of 20 cm, Fig. 1). The layer of filter paper was placed at the bottom of
the plexiglass column to prevent the loading of uneven soil caused
by  soil  particle  leakage  and  blockage  of  the  outflow  hole.  Each
sample was filled in a plexiglass column with a thickness of 5 cm per
layer  and  a  total  height  of  15  cm.  The  roughening  was  trimmed
between  layers  to  make  the  soil  of  each  layer  fully  contact  and  fill
more  evenly  (the  bulk  weight  of  the  soil  sample:  1.43  g·cm−3).  The
upper and lower end of the soil column were a water supply outlet
and  a  solution  outlet  composed  of  porous  glass,  respectively.  The
filter paper on the top soil surface of the soil column prevented the
water supply from damaging the upper soil  structure.  In the test,  a
constant water head was maintained at 3 cm using a Markov bottle
containing  0.1  mg·L−1 NaCl  solution.  When  the  soil  column  was
completely saturated by NaCl  solution,  the water  supply of  the soil
column was removed, and the surface water of the soil column was
immediately  sucked  up.  Then  the  NaCl  solution  was  replaced  with
15 mg·L−1 Cd(NO3)2 to remain water head at 3 cm (Liu et al.,  2022).
At the same time, a measuring cylinder of 25 mL was used to catch
the leaching solution from the bottom end of  the soil  column, and
the leaching solution was dumped once the cylinder was filled, and
the  time  spent  was  recorded  to  calculate  soil  saturated  hydraulic
conductivity. The concentration of Cd2+ in the leaching solution was
determined  by  ultraviolet  spectrophotometry  with  Xylenol  Orange
disodium  salt  as  a  chromogenic  agent  and  hexamethylenete-
tramine as buffer solution at 578 nm wavelength.  The solute trans-
port  test  was  considered  to  be  over  when  the  differences  of  three
consecutive  Cd2+ concentrations  were  less  than  1%.  The  solute
transport  parameters  were  calculated  based  on  the  experimental
data.  Finally,  Cl− content  was  determined  by  titration  and  Cd2+

content was determined by ultraviolet spectrophotometry. 

Calculation of Ks
As one of the important soil hydraulics parameters, soil-saturated

hydraulic conductivity (Ks, cm·min−1) refers to the water flux passing
through saturated soil under a unit water potential gradient, which
is  a  comprehensive  reflection  of  soil  texture,  bulk  density,  pore
distribution  characteristics,  and  solute  transport  (Zhu  et  al.,  2022).
Ks can be calculated as Eqn (1):

Ks = Q×L/A×H× t (1)
where, Q (mL)  and L (cm)  are  the  flow  rate  and  the  height  of  soil
column,  respectively; A (cm2), H (cm)  and t (min)  represent  the  cross-
sectional  area  of  the  water  flow,  the  total  head  difference  of  the
seepage path and the transport time, respectively. 

Solute transport model
BTC  characterizes  the  relationship  between  the  relative  concen-

tration of liquid flow and the change of pore volume (Mahapatra et
al.,  2023),  which  can  reflect  the  characteristics  of  solute  mixed
displacement  transport  in  soil  (Pei  et  al.,  2021).  BTC  is  one  of  the
important ways to investigate the mechanism of solute transport in
soil.  In  this  study,  Cl− and  Cd2+ were  used  as  the  tracer  ions  to

 

Table 1.    The physical and chemical properties of loessial soil.

Category Organic matter
(g·kg−1)

Total nitrogen
(g·kg−1) pH Electrical conductivity

(uS·cm−1)
Total potassium

(g·kg−1)
Total phosphorus

(g·kg−1)
Bulk density

(g·cm−3)

Loessial soil 11.11 1.02 8.33 112.36 7.51 0.04 1.43

 

Table 2.    The physical and chemical properties of iron-modified biochar.

Category Total carbon (%) Carbonization time (h) Carbonization temperature (°C) pH Ash content Pore size (> 2 mm) Fe

Iron-modified biochar 55.63 1 600 7 22.86% 98.55% 23.02%
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investigate solute transport in saturated soil under one-dimensional
steady water flow. The solute transport parameters were input into
STANMOD software with the CXTFIT program nested.

The  one-dimensional  saturation  CDE  equation  can  be  expressed
as Eqn (2):

R
∂c
∂t
= D
∂2c
∂x2 −V

∂c
∂x

(2)

where, c (mg·L−1)  and t (h)  are  solute  concentration  and  time,  res-
pectively; D (cm2·h−1)  represents  the  dispersion  coefficient,  including
diffusion and hydrodynamic dispersion; v (cm·h−1), R and x (cm, x ≥ 0)
stand for soil pore velocity, retardation coefficient and the distance of
solute transport, respectively.

TRM model under the condition of steady flow can be described
as Eqns (3)−(6):

θm
∂Cm

∂t
+ θim

∂Cim

∂t
= θmD

∂2Cm

∂x2 −Vmθm
∂Cm

∂x
(3)

θm
∂Cm

∂t
= ω(Cm−Cim) (4)

θ = θm+ θim (5)

β = θm/θ (6)
where, θ represents  soil  volumetric  water  content,  cm3·cm−3; θm and
θim represent  the  volumetric  water  content  in  the  movable  and
immovable regions, respectively. Cm and Cim (μg·ml−1) represent solute
concentrations  in  mobile  and  immobile  regions,  respectively. Vm
(cm·h−1), ω (1  h−1)  and β represent  the  average  pore  velocity  in  the
mobile  zone;  the  mass  exchange  coefficient  between  the  two  zones
and  the  ratio  of  water  content  in  the  mobile  area,  respectively.  The
dispersion capacity of the solute in the pore medium can be described
by  dispersion  (λ),  which  is  related  to  the  average  particle  size  and
uniformity of the pore medium. Thus, λ can be calculated as Eqn. (7):

λ =
D
V

(7)

where, D (cm2·h−1)  and v (cm·h−1)  represent  the  hydrodynamic  dis-
persion coefficient and average interstitial water velocity, respectively. 

Data processing and analysis
The transport of Cl− and Cd2+ in loessial soil by adding iron-modi-

fied biochar was simulated using CDE and TRM models with the aid
of  the  CXTFIT  program.  Then  the  parameters  (i.e., v, D,  determina-
tion coefficient R2 and root mean square error RMSE) were obtained.
SPSS  22.0  software  was  used  for  difference  analysis  and  statistical
test. 

Results and analysis
 

Characterization
The  as-prepared  iron-modified  biochar  was  characterized  by

Fourier  transform  infrared  spectroscopy  (FT-IR)  analysis.  FT-IR

spectra  of  biochar  (BC),  iron-modified  biochar  (FeBC)  before  and
after  reaction are  shown in Fig.  2.  The characteristic  peaks  of  BC at
3,396  cm−1 corresponded  to  the  stretching  vibration  of  the  OH
group  (Zhao  et  al.,  2013).  The  presence  of  the  Fe-O/OH  group  at
500~1,640  cm−1 indicated  the  successful  loading  of  Fe  on  the
surface  of  FeBC  (Zhu  et  al.,  2020; Gotić et  al.,  2007 ; Zhang  et  al.,
2020c).  The  characteristic  peak  of  FeBC  at  1,533  cm−1 (C=O/C=C
group) was weaker than that of  BC (Zhang et al.,  2009),  suggesting
that  the loading of  Fe  was  realized by reacting with the C=O func-
tional groups on the BC surface (Xu et al., 2012). 

Effect of iron-modified biochar on Ks
The Ks is  essential  for  managing  soil  and  groundwater  recharge,

promoting  soil  health,  and  evaluating  soil  improvement  strategies
(Hervé-Fernández  et  al.,  2023).  The  changes  of Ks under  different
addition  amounts  of  iron-modified  biochar  are  shown  in Fig.  3.
Compared  to  CK, Ks of  T1,  T2,  T3,  T4,  and  T5  decreased  to  93.70%,
84.13%,  83.33%,  79.60%,  and  66.67%,  respectively,  indicating  that
Ks significantly  decreased  with  the  increase  of  iron-modified  bio-
char  amounts  from  0  to  50  g·kg−1 (p <  0.05).  The  results  indicated
iron-modified  biochar  was  conducive  to  slowing  down  the  trans-
port of Cd2+ in soil, which significantly enhanced the water holding
capacity of soil. 

Transport process of Cl−

Figure  4 shows  the  transport  of  Cl− in  loessial  soil  with  different
iron-modified biochar  addition amount.  All  BTC curves showed the

 

Fig. 1    Solute transport device.
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Fig.  2    FT-IR  spectra  of  BC,  FeBC,  and  FeBC  after  adsorption.  BC
represents biochar, FeBC represents iron-modified biochar without test,
FeBC  after  adsorption  represents  iron-modified  biochar  adsorbed  with
heavy metals after test.
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S-like characteristics,  which was consistent with the results of Zhou
et  al.  (2009)  studied  on  the  BTC  curve  of  Cl−,  but  the  shape  and
change  trend  under  different  iron-modified  biochar  contents  were
slightly different. BTC curves of Cl− in loessial soil with iron-modified
biochar showed that relative concentration gradually increased with
the  increasing  time.  Compared  to  CK,  BTC  curves  of  other  treat-
ments shifted to the right with increasing amounts of iron-modified
biochar,  and  showed  obvious  trailing  characteristics  due  to  differ-
ent amounts of iron-modified biochar added in loessial soil.

Initial  penetration time (Te),  complete penetration time (Ts),  and
total  penetration  time  (Tt)  are  important  characteristic  parameters
of  solute  penetration,  which  are  jointly  determined  by  pore  water
velocity  and  hydrodynamic  dispersion  coefficient  of  soil. Table  3
shows the the transport time of Cl− in loessial soil  with added iron-
modified  biochar.  Te,  Ts,  and  Tt  were  all  positively  correlated  with
the  addition  amounts  of  iron-modified  biochar,  indicating  the
longer  transport  process  under  the  greater  amount  of  iron-modi-
fied  biochar.  As  listed  in Table  3,  Te  of  Cl− increased  from  8.57  to
12.76  h  with  the  increasing  application  amounts  of  iron-modified
biochar  from  0  to  50  mg·kg−1.  Ts  of  Cl− (exudate  concentration
equal  to  initial  solution  concentration)  was  also  increased  from
84.95  to  122.20  h,  revealing  that  the  time  of  complete  migration
equilibrium  gradually  extended  with  the  increasing  amounts  of
iron-modified biochar.

To  further  investigate  the  effect  of  iron-modified  biochar  on  Cl−

transport in loessial soil, the transport curve of Cl− in loessial soil by
adding  different  iron-modified  biochar  was  fitted  using  the  CDE
equation  and  TRM  model.  The  main  parameters  of  the  CDE  equa-
tion and TRM model are summarized in Table 4. The fitting effect of
the TRM model was better than the CDE equation due to the higher
R2 more than 0.985 and lower (RMSE)  less than 0.306. The values of
the  average  pore  water  velocity  (v)  decreased  with  the  increasing
amounts  of  iron-modified  biochar,  indicating  that  adding  of  iron-
modified  biochar  decreased  the  pore  size  of  loessial  soil  and
reduced the soil pore water velocity.
λ refers  to  the  dispersion  capacity  of  the  solute  in  the  pore

medium (Dong et al., 2023), its size is related to the average particle

size and uniformity of the pore medium, which is numerically equal
to  the  ratio  of  hydrodynamic  dispersion  coefficient  (D)  and  v,  the
greater the value, the stronger the diffusion capacity of the solute in
the pore medium.

The  values  of λ for  the  CDE  equation  and  the  TRM  model  also
increased  with  the  increasing  amounts  of  iron-modified  biochar,
which indicated the diffusion capacity of Cl− was enhanced. 

Transport process of Cd2+

Figure 5 shows the change of the BTC curve of Cd2+ in loessial soil
under  different  addition  amounts  of  iron-modified  biochar.  Unlike
the  BTC  curves  of  Cl−,  BTC  curves  of  Cd2+ showed  smooth  L-like
characteristics except for T4 and T5 treatments,  and the concentra-
tion  of  Cd2+ in  the  effluent  changed  with  time.  The  BTC  curves  of
Cd2+ with different contents of iron-modified biochar in loessial soil
showed that the concentration of Cd2+ increased gradually from low
to high with  time.  Compared with  CK,  the  BTC curves  of  Cd2+ with
different  addition  amounts  of  iron-modified  biochar  all  shifted  to
the  right,  and  with  the  increase  of  iron-modified  biochar,  the  BTC
curve  shifted  to  the  right  to  a  greater  extent.  The  results  showed
that the addition of iron-modified biochar had a retarding effect on
Cd2+ transport in loessial soil.

Table  5 showed  the  transport  time  of  Cd2+ under  different  addi-
tion amounts of iron-modified biochar.  It  could be seen that Te, Ts,
and  Tt  were  all  positively  correlated  with  the  addition  amounts  of
iron-modified biochar, that was, the greater the application amount
of-iron  modified  biochar,  the  longer  the  solute  Te  and  Ts,  and  the
longer the penetration process. The Te of Cd2+ under different addi-
tion  amounts  of  iron  modified  biochar  were  6.54,  6.70,  8.03,  9.86,
9.92, and 10.00 h, respectively.

It  could  be  concluded  that  Te  lengthened  with  the  increase  of
iron  modified  biochar  addition  amounts.  The  Ts  of  Cd2+ reaching
transport  equilibrium  (exudate  concentration  equal  to  initial  solu-
tion  concentration)  in  loessial  soil  with  different  amounts  of  iron-
modified  biochar  were  80.67,  82.62,  95.16,  118.97,  119.39,  and
124.94 h, respectively. It could be seen that with the increase of iron-
modified  biochar  addition  amounts,  the  time  of  Cd2+ transport
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Fig. 4    The breakthrough curves of Cl− in loessal soil with different iron-modified biochar contents.
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equilibrium  was  gradually  extended,  and  the  extent  of  the  exten-
sion was increasing.

The applicability of different mathematical  models to Cd2+ trans-
port  was  compared  and  analyzed,  and  the  main  parameters  of  the

CDE  equation  and  TRM  model  were  fitted  in  this  paper  (Table  6).
From  the  results  of  parameter  fitting,  the R2 was  close  to  1.  The
values  of  all v decreased with  the  increasing iron-modified  biochar
amounts,  indicating  that  iron-modified  biochar  could  reduce  the
velocity of soil pore water and effectively slow down the transport of
Cd2+ in  loessial  soil. λ values  of  the  CDE  equation  and  TRM  model
were  larger  than  CK. RMSE refers  to  the  square  root  of  the  mean
variance  between  the  simulated  value  of  the  model  and  the
measured  value.  The  smaller  the  value  of RMSE is,  the  closer  the
simulated value is  to the measured value.  The simulation results  of
both the CDE equation and the TRM model  showed that  the RMSE
value of TRM was smaller than that of CDE, indicating that the simu-
lated value of the TRM model was closer to the measured value and
the fitting result was better.

To  more  intuitively  analyze  the  difference  and  connection
between  measured  values  and  simulated  values,  the  breakthrough
curves of Cd2+ under CK,  1%, 2%, 3%, 4%, and 5% treatments were
simulated by the CDE equation and TRM model (Fig. 6). The simula-
tion  results  from  CK  to  T4  were  shown,  the  fitting  results  from  the
CDE  equation  had  different  degrees  of  alienation  from  experimen-
tal  data,  whereas  the  fitting  results  from  the  TRM  model  were  in
good  agreement  with  experimental  data  without  the  obvious
estrangement,  indicating  that  the  solute  transport  process  of  Cd2+

could be better simulated by the TRM model compared to the CDE
equation.  The  simulation  results  of  the  T5  treatment  showed  that
both the CDE equation and the TRM model could fit well. 

Discussion

Ks represents the ease with which water flows through soil when
pore  spaces  are  filled  with  water,  which  is  an  important  hydraulic
parameter  used  to  investigate  the  transport  characteristics  of  soil
solute  (Shwetha  et  al.,  2015). Ks is  closely  related  to  soil  physical
properties  such  as  soil  bulk  density  and  pore  distribution  (Jačka  et
al.,  2018).  Similar  to  the  results  of  this  study,  Nakhli  et  al.  (2021)
observed biochar  amendments  decreased Ks of  soil.  Another  study
by  Lim  et  al.  (2018)  observed Ks decreased  when  either  larger  or

 

Table  3.    The  transport  time  of  Cl− under  different  iron-modified  biochar
addition amounts.

Treatment Te (h) Ts (h) Tt (h)

CK 8.57 84.95 76.38
T1 8.99 87.20 78.21
T2 10.35 98.82 88.47
T3 11.38 110.25 98.87
T4 12.16 115.59 77.75
T5 12.76 122.20 109.44

Te  represents  initial  penetration  time,  Ts  represents  complete  penetration  time
and Tt represents total penetration time.

 

Table  4.    The  relevant  model  parameters  obtained  by  Cl− transport  curve
fitting.

Parameters Model name CK T1 T2 T3 T4 T5

v (cm·h−1) CDE 0.376 0.329 0.264 0.227 0.201 0.135
TRM 0.308 0.307 0.266 0.241 0.217 0.203

D (cm2·h−1) CDE 0.100 0.100 0.100 0.100 0.100 0.224
TRM 0.575 0.100 0.100 0.100 0.100 0.174

λ CDE 0.266 0.304 0.379 0.441 0.498 0.741
TRM 0.286 0.326 0.375 0.415 0.406 0.857

β TRM 0.100 0.100 0.114 0.249 0.974 0.999
ω TRM 0.100 0.100 0.557 0.596 0.786 0.851

R2 CDE 0.887 0.944 0.906 0.929 0.938 0.927
TRM 0.980 0.990 0.985 0.994 0.994 0.999

RMSE CDE 0.326 0.364 0.272 0.249 0.235 0.201
TRM 0.306 0.287 0.241 0.230 0.222 0.134

v represents  average pore water  velocity, D represents  hydrodynamic dispersion
coefficient, λ represents the dispersion capacity of the solute in the pore medium,
β represents  the  percentage  of  solute  in  the  total  soil  concentration  and  in  the
mobile  region  under  equilibrium  conditions, ω represents  parameter  of  the
degree  of  solute  exchange  between  movable  and  immovable  regions, R2 repre-
sents coefficient of  determination, RMSE represents the square root of  the mean
variance between the simulated value of the model and the measured value.
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Fig. 5    Cd2+ breakthrough curves of iron-modified biochar in loessial soil.
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smaller-size  macadamia  nutshell  and  pine  chip  biochar  particles
were added to the soil.

The transport equilibrium time of Cd2+ in loessial soil  was signifi-
cant  delayed  with  the  increasing  iron-modified  biochar  amounts.
The  addition  of  iron-modified  biochar  increased  the  number  of
small  pores  in  loessial  soil,  whereas  the  flow  of  water  and  the

interconnected  pores  were  decreased,  which  would  lead  to  the
complexity  and  uniformity  of  the  pore  structure  of  saturated  soil.
The soil pores with uneven size and distribution would cause differ-
ent  flow velocity,  so  an unbalanced solute front  was formed in  the
soil profile, resulting in the extension of the transport time (Dong et
al., 2023).

The BTC curve of Cd2+ in loessial soil was analyzed under different
addition amounts of iron-modified biochar. As the BTC curve shifted
to the right with the increase of the addition amounts of iron modi-
fied biochar, the penetration of Cd2+ in loessial soil was significantly
delayed. The penetration time was significantly extended when the
relative concentration reached the highest. This was consistent with
the  penetration  results  of  Cd2+ transport  in  complex  heavy  metal
contaminated sites by Liu et al. (2022). The results of the CDE equa-
tion and TRM model  showed that v decreased with the increase of
the  amount  of  iron-modified  biochar,  indicating  that  the  applica-
tion of iron-modified biochar reduced the velocity of soil pore water
and slowed down the transport of Cd2+ in loessial soil. The increase

 

Table  5.    Transport  time  of  Cd2+ under  different  iron-modified  biochar
amounts.

Treatment Te (h) Ts (h) Tt (h)

CK 6.54 80.67 74.13
T1 6.70 82.62 75.92
T2 8.03 95.16 87.13
T3 9.86 118.97 109.11
T4 9.92 119.39 109.47
T5 10.00 124.94 114.94

Te  represents  initial  penetration  time,  Ts  represents  complete  penetration  time,
and Tt represents total penetration time.
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Fig. 6    Comparison of breakthrough curves of Cd2+ fitted by CDE and the TRM model.
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of λ from  the  CDE  equation  and  TRM  model  with  the  increasing
amounts of  iron-modified biochar could be caused by the addition
of  iron-modified  biochar,  which  increased  the  pore  complexity  of
loessial  soil.  The  iron-modified  biochar  caused  blockage  of  some
pores,  the  curvature  of  the  water  channel  and  unconnected  pore
area increased, and the pore water flow rate decreased (Berkowitz et
al.,  2000).  Therefore,  iron-modified  biochar  slowed  down  and
prevented  the  transport  of  Cd2+ in  loessial  soil.  The  adsorption
capacity of iron-modified biochar to heavy metals increased signifi-
cantly due to the increase of surface functional groups (Zhou et al.,
2018). The β was the percentage of solute in the total soil concentra-
tion and the mobile region under equilibrium conditions (Satyawali
et  al.,  2011; Schulin  et  al.,  1987).  the  adsorption  capacity  of  iron
modified biochar to heavy metals increased significantly due to the
increase  of  surface  functional  groups.  According  to  fitting  of  TRM,
the  increase  of β (from  0.100  to  0.845)  indicated  that  the  physical
process  of  solute  transport  was  more balanced with  the increasing
amounts of iron-modified biochar.

Although the Cd2+ transport process of loessial soil after the appli-
cation  of  iron-modified  biochar  was  studied  and  simulated  in  this
paper,  and the  characteristics  and rules  of  soil  Cd2+ transport  were
analyzed, this paper mainly focused on the study and analysis of the
influence  mechanism  of  iron-modified  biochar,  which  may  have
certain differences and limitations from the actual application in the
field. In the future, this research group will conduct a more in-depth
and  systematic  study  on  the  transport  process  of  heavy  metals  in
soil  through  field  experiments  and  long-term  follow-up  studies,  so
as  to  provide  more  reliable  data  support  for  the  utilization  of  iron-
modified  biochar  and  the  prevention  and  control  of  soil  contami-
nated by heavy metals in loessial soil. 

Conclusions

In  the  present  study,  the  effect  of  iron-modified  biochar  on  the
transport  of  Cl- and  Cd2+ in  loessial  soil  was  investigated  and  then
fitted using the CDE equation and TRM model.

(1)  Compared  to  CK, Ks gradually  decreased  to  93.70%,  84.13%,
83.33%,  79.60%,  and  66.67%  with  the  increase  of  iron-modified
biochar  addition  amounts  from  1%,  2%,  3%,  4%,  and  5%,  respec-
tively.  The  results  indicated  iron-modified  biochar  in  soil  could
enhance the water holding capacity of soil.

(2)  The  total  transport  time  of  Cd2+ increased  (from  1.79  to
40.81  h)  with  the  increase  of  iron-modified  biochar  addition

amounts,  because the addition of  iron-modified biochar  decreased
the flow of  water  and the interconnected pores,  and extended the
transport time of Cd2+.

(3)  Compared  to  CDE,  the  transport  of  Cd2+ in  loessial  soil  with
adding  iron-modified  biochar  could  be  better  simulated  by  TRM
model due to the higher R2 (> 0.97). According to the fitting of TRM
model,  the  increasing  amounts  of  iron-modified  biochar  slowed
down  and  prevented  the  transport  of  Cd2+ in  loessial  soil.  These
findings were crucial for the application of iron-modified biochar in
remediation of heavy metal-contaminated soil. 
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