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Abstract
Soil management approaches have been advocated to modify the soil fertility parameters for higher agricultural production through different

land  systems.  The  present  review  examines  the  influence  of  organic/inorganic  fertilizers  and  tillage  practices  through  transformations  in

regulating the nutrient status, microbial components, and soil organic carbon. Fertilization along with different tillage practices have been found

to affect the available plant nutrient content including macronutrients, secondary nutrients, and micronutrients. The review investigation also

showed that, compared to inorganic fertilizers (INF),  application of compost enhanced plant available macronutrients (N, P, K),  micronutrients

(Zn,  Cu,  Fe,  Mn)  and  soil  organic  carbon  (SOC)  with  different  tillage  practices.  Through  different  land  systems,  transformation  of  the  plant

available  macronutrients,  micronutrients  and  microbial  compositions  showed  their  enhancement.  Microbial  parameters  viz.  microbial

biodiversity,  microbial  biomass  carbon  (MBC),  potentially  mineralizable  nitrogen  (PMN),  microbial  biomass  nitrogen  (MBN)  and  microbial

respiration  reported  increase.  Soil  organic  carbon  and  aggregate  distribution  in  the  soil  and  the  aggregate-associated  organic  carbon  and

physical fractions of SOC have also been reviewed. Among different tillage systems, the reduced tillage with residue incorporation and no-tillage

(zero tillage) with residue mulching, significantly enhanced carbon sequestration in soil aggregates in comparison to conventional tillage with

residue removal treatments. The practice of zero tillage improved dissolved organic carbon and MBC in light and heavy fractions of carbon in the

upper layers of soil.
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 Introduction

Agricultural  management  practices  impact  soil  physico-
chemical properties to a remarkable extent. Degradation of soil
health  has  led  to  a  contraction  in  agricultural  production  and
soil  biodiversity particularly due to conventional  farming prac-
tices, indiscriminate use of inorganic fertilizers (INF) and inade-
quate  input  of  residues[1].  Organic  or  inorganic  fertilizers  have
been regarded as a critical component of agriculture to accom-
plish  global  food  security  goals[2].  The  exogenous  supply  of
fertilizers  could  easily  alter  soil  properties  by  restoring  the
nutrients that have been absorbed by the plants[2]. Thus, imple-
menting  adequate  nutrient  management  strategies  could
boost  plant  yield  and  sustain  plant  health.  Tillage  affects  the
soil,  especially  for  crop  production  and  consequently  affects
the  agro-ecosystem  functions.  This  involves  the  mechanical
manipulation of the soil to modify soil attributes like soil water
retention,  evapotranspiration,  and  infiltration  processes  for
better  crop  production.  Thus,  tillage  practices  coupled  with
fertilizer  inputs  may  prove  a  viable  strategy  to  improve  soil

health  components  such  as  nutrient  status,  biodiversity,  and
organic carbon.

Soil  serves  as  a  major  reservoir  of  nutrients  for  sustainable
crop production.  Intensive  cultivation due to  growing popula-
tion  burden  has  led  to  the  decline  of  soil  nutrient  status  that
has  adversely  affected  agricultural  production.  Various  resear-
chers  have  assessed  the  soil  nutrient  budget  and  the  reasons
behind  decline  of  nutrient  content  in  soil[3].  Soil  management
strategies  have  assisted  in  overcoming  this  problem  to  a
greater  extent.  Tillage  practices  redistribute  soil  fertility  and
improve  plant  available  nutrient  content  due  to  soil
perturbations[4]. Different tillage and fertilization practices alter
soil  nutrient  cycling  over  time[5].  Fertilization  is  an  important
agricultural  practice which is  known to increase nutrient avail-
ability in soil as well as plants[6]. A report has been compiled by
Srivastava et al.[7], which assessed the effectiveness of different
fertilizers on soil nutrient status in Indian soils.

Soil  biota  has  a  vital  role  in  the  self-regulating  functions  of
the soil to maintain soil quality which might reduce the reliance
on  anthropogenic  activities.  Soil  microbial  activities  are
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sensitive to slight modifications in soil properties and could be
used  as  an  index  of  soil  health[8].  Maintenance  of  microbial
activity is essential for soil resilience as they influence a diverse
range  of  parameters  and  activities  including  soil  structure
formation,  soil  SOM  degradation,  bio-geochemical  cycling  of
nutrients  etc.[9].  Various  researchers  have  identified  microbial
parameters  like  microbial  biomass  carbon  (MBC),  potentially
mineralizable  nitrogen  (PMN),  soil  respiration,  microbial
biomass nitrogen (MBN),  and earthworm population as poten-
tial predictors of soil quality. Geisseler & Scow[10] have compiled
a review on the affirmative influence of long-term mineral fertil-
ization on the soil microbial community.

Being the largest terrestrial  carbon (C) reservoir,  soil  organic
carbon (SOC) plays a significant role in agricultural productivity,
soil quality, and climate change mitigation[11]. Manure addition,
either  solely  or  along  with  INF  augments  SOC  content  which
helps  in  the  maintenance  and  restoration  of  SOM  more  effec-
tively  as  compared  to  the  addition  of  INF  alone[12].  Enhance-
ment of recalcitrant and labile pools of SOC could be obtained
through long-term manure application accentuating the neces-
sity  of  continuous organic  amendments  for  building up C and
maintaining  its  stability[13].  Generally,  compared  with  manure
addition, INF application is relatively less capable of raising SOC
and its labile fractions[14]. Alteration in SOC content because of
management  strategies  and/or  degradation  or  restoring
processes  is  more  prominent  in  the  labile  fraction  of  soil  C[15].
Several fractions of soil C play vital roles in food web and nutri-
ent  cycles  in  soils  besides  influencing many biological  proper-
ties  of  soil[16].  Thus,  monitoring  the  response  of  SOC  and  its
fractions  to  various  management  practices  is  of  utmost
importance.

A positive impact on SOC under manure application coupled
with INF in rice-wheat systems has been reported, as compared
to  sole  applications  of  INFs[17].  Although  ploughing  and  other
mechanical  disturbances  in  intensive  farming  cause  rapid  OM
breakdown  and  SOC  loss[18],  additional  carbon  input  into  the
soil through manure addition and rational fertilization increases
carbon content[13]. Wei et al.[19] in light sandy loam soil of China
found that the inclusion of crop straw together with inorganic
N,  P  and  K  fertilizers  showed  better  results  for  improving  soil
fertility  over  sole  use  of  inorganic  fertilizers.  Zhu  et  al.[20]

studied  the  influence  of  soil  C  through  wheat  straw,  farmyard
manure (FYM),  green manure,  and rice  straw on plant  growth,
yield,  and  various  soil  properties  and  found  that  the  recycling
of SOM under intensive cultivation is completely reliant on net
OM input and biomass inclusion. However, most of the studies
on  residue  management  and  organically  managed  systems
could not provide clear views regarding the relations between
the  quality  of  OM  inputs  and  biological  responses  towards  it.
The disintegration of  soil  aggregates due to ploughing,  use of
heavy  machinery,  and  residue  removal  has  been  reported
widely under conventional tillage (CT) practices[21]. On the con-
trary, improvement in SOC stabilization has also been observed
by  some  scientists[22].  Under  CT,  the  disintegration  of  macro-
aggregates  into  micro-aggregates  is  a  prominent  pheno-
menon,  while  conservation  tillage  has  been  identified  as  a
useful  practice  for  increasing  macro-aggregates  as  well  as
carbon  sequestration  in  agricultural  soils[23].  By  and  large,  the
ploughing  depth  (0–20  cm)  is  taken  into  consideration  for
evaluating  the  impact  of  tillage  and  straw  retention  on  soil
aggregation[24],  while  degradation  in  deeper  layers  of  soil  is

becoming a major constraint towards soil quality together with
crop yield[25].

Hence,  the  present  review  would  be  useful  in  determining
how  tillage  practices  and  inorganic  and  organic  fertilization
impact  nutrient  availability  in  the  soil,  microbial  composition
and SOC fractions besides stocks under different land uses.

 Effect of fertilization and tillage practices on
the availability of essential plant nutrients

Agricultural  production  is  greatly  influenced  by  nutrient
availability  and  thus  nutrient  management  is  required  for
sustaining higher yields of crop. The term 'nutrient availability'
refers to the quantity of nutrients in chemical forms accessible
to  plant  roots  or  compounds  likely  to  be  converted  to  such
forms  throughout  the  growing  season in  lieu of  the  total
amount of nutrients in the soil.  For optimum growth, different
crops  require  specifically  designed nutrient  ratios.  Plants  need
macronutrients  [nitrogen (N),  phosphorus (P),  potassium (K)  in
higher  concentrations],  secondary  nutrients  [calcium  (Ca),
magnesium  (Mg),  sulphur  (S)  in  moderate  amounts  as  com-
pared  to  macronutrients]  and  Micronutrients  [Zn  (zinc),  Fe
(iron),  Cu  (copper),  B  (boron),  Mn  (manganese),  Mo  (molybde-
num)  in  smaller  amounts]  for  sustainable  growth  and  produc-
tion[26]. Fertilizers assist the monitoring of soil nutrient levels by
direct addition of required nutrients into the soil through differ-
ent sources and tillage practices may alter the concentration of
available  plant  nutrients  through  soil  perturbations.  Various
studies on the influence of fertilization and tillage practices on
available plant nutrients have been discussed below.

 Plant available macronutrients (N, P, K) in soil
Yue  et  al.[27] reported  that  long-term  fertilization  through

manure/INF improved the macronutrient content of Ultisol soil
in China.  Two doses of  NPK (2NPK) considerably improved soil
properties over a single dose (NPK). Combined application (NPK
+  OM)  resulted  in  higher  hydrolysable  N  and  available  P  over
the sole OM application. The total K content was higher under
the  treatments  NPK,  2NPK  and  NPK  +  OM  than  sole  OM  treat-
ment, whereas available K was higher in treatments NPK + OM
and  2NPK  over  the  sole  OM  and  NPK.  Likewise,  OM,  INF,  and
OM + INF were evaluated for their potential to regulate the soil
macronutrient  dynamics.  Organic  manure  significantly
improved the soil N content, whereas INF showed comparable
results  to  that  of  the  control  treatment.  Besides,  all  the  treat-
ments  improved  available  P  and  exchangeable  K
concentration[28].

Hasnain et  al.[29] performed comparative studies of  different
ratios of INF + compost and different application times for the
chemical N fertilizer on silty loamy soils of China. The available
nitrogen  and  phosphorous  content  were  greater  in  conjoint
OM + INF application over the bare INF and control application
irrespective  of  N  application  time.  Soil  quality  substantially
improved  with  increasing  ratio  of  compost  and  70:30  (INF  to
compost  ratio)  was found to be most  suitable  to  maintain soil
fertility  and  nutrient  status.  Another  study  by  Liu  et  al.[30]

reported the  superior  effects  of  NPK +  pig  manure  and NPK +
straw  to  improve  soil  available  P  and  K  over  the  control  and
sole  NPK  treatments.  However,  total  N  concentration  did  not
exhibit any significant variation under any treatment.

Shang  et  al.[31] accounted  the  positive  impact  of  vermicom-
post  and  mushroom  residue  application  on  grassland  soil
fertility  in  China.  The  addition  of  organic  manures  improved
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available P and K content to a considerable extent. Under mois-
ture-deficit  winter  wheat-fallow  rotation,  another  study  quan-
tified  the  influence  of  residue  management  approaches  and
fertilizer  rate  on  nutrient  accrual.  Residue  burning  resulted  in
no  decline  in  soil  macronutrient  content,  whereas  the  per-
petual addition of FYM for 84 years significantly improved total
N and extractable K and P concentration. Thus, residue incorpo-
ration  along  with  FYM  application  may  prove  beneficial  in
reducing the temporal macronutrient decline[32].

Ge et al.[33] examined the effects of NPK and NPK along with
manure (NPKM) addition on the macronutrient status of Hapli-
Udic  Cambisol soil.  The NPKM application resulted in the high-
est  increase  in  total  N,  available-P  and  K  concentration  as
compared  to  NPK  and  control.  Likewise,  mineral  fertilization
reduction  and  partial  substitution  with  organic  amendments
have posed a significant influence on soil macronutrient status.
Soil available P and K decreased after INF reduction[34]. Chen et
al.[35] evinced  that  integrated  application  of  manure  and
mineral  fertilizers  to  red  clay  soil  (typical Ultisols)  improved
hydrolyzed  nitrogen  and  available  P  due  to  an  increase  in  the
decomposition of organic matter (OM) and N bio-fixation than
sole mineral fertilizers and control.

A long-term experiment was carried out out by Shiwakoti et
al.[36] to ascertain the influence of  N fertilization and tillage on
macronutrient dynamics in soil. Nitrogen fertilization produced
higher crop biomass which might have improved total N and P
concentration  in  soil.  Moreover,  the  reduced  interaction
between  soil  colloids  and  residue  or  greater  cation  exchange
sites due to tillage practices could have augmented K concen-
tration in 0−10 cm soil  depth.  Likewise,  among tillage systems
combined  organic  (poultry  manure)  and  inorganic  (lime  and
fertilizers)  fertilization,  no-tillage,  and  reduced  tillage  with
organic fertilization resulted in higher availability of P owing to
minimal  disturbance  of  soil  which  decreases  contact  surface
between phosphate ions and adsorption sites. Greater losses of
K in runoff water under NT resulted in lower K availability under
NT than CT[37].

The  influence  of  tillage  systems  on  soil  nutrient  dynamics
showed  that  minimal  soil  disturbances  under  zero  tillage
prohibited  redistribution  of  soil  nutrients  and  resulted  in  the
highest available N, P, and K in the surface soil[38]. The influence
of  tillage  timing  on  soil  macronutrient  status  has  also  been
assessed under tillage treatments that are fall tillage (FT), spring
tillage  (ST),  no  tillage  (NT),  and  disk/chisel  tillage  (DT/CT)  on
mixed  mesic  Typic Haploxerolls soil.  All  the  tillage  systems
differed in the quantity of residues generated. Thus, variation in
the  decomposition  of  crop  residue  and  mineralization  of  SOM
resulted in variable rates of nutrient release. The FT and ST had
the  highest  N  content  over  DT/CT  and  NT  systems  at  corres-
ponding  depth.  The  N  content  also  decreased  with  soil  depth
irrespective of tillage treatment. The available P and extractable
K  were  highest  under  NT  at  the  top  10  cm  soil  depth  and
increased  over  time[39].  Residue  management  in  combination
with tillage treatments (ST and CT) has been reported to affect
the soil macronutrient status in Bangladesh. Tillage treatments
enhanced  the  total  N  content  to  a  considerable  extent.  More-
over, 3 years of residue retention led to a higher concentration
of total N, available P and K in the soil.

 Plant available micronutrients (Zn, Cu, Fe, Mn) in
soil

The  combinations  of  N,  P,  and  K  in  different  ratios  together
with  two  rates  of  organic  fertilizer  (OF)  applied  on  the aquic

Inceptisol having  sandy  loam  texture  influenced  the  micronu-
trient status of the soil[40].  Soil Zn content decreased with time
when no fertilizer was applied as compared to organic fertilizer
(OF)  application.  The  mineral  fertilizer  treatments  led  to  a
substantial  increase  in  DTPA-extractable  micronutrients  in  the
soil. The higher micronutrient concentration due to higher OM
highlights  the  importance  of  maintaining  OM  for  soil  fertility
and higher crop production. Further studies revealed that long-
term application of sole N fertilizers led to a significant decline
in  total  Zn  and  Cu,  whereas  Mn  and  Fe  status  improved
through atmospheric  deposition.  Phosphorus and OF addition
along with straw incorporation markedly increased total Zn, Cu,
Fe, and Mn. The DTPA-extractable Mn, Zn, Fe, and Cu were also
higher  in  OF  treatment,  thus  demonstrating  the  beneficial
effects of constant OM application for maintaining the nutrient
status of soil[41].

López-Fando  &  Pardo[42] quantified  the  impact  of  various
tillage  practices  including  NT,  CT,  minimum  tillage  (MT),  and
zone-tillage  (ZT)  on  soil  micronutrient  stocks.  Tillage  systems
did exhibit a significant influence on plant available Fe stocks in
the topsoil;  however, diminished with depth under ZT, NT and
MT.  Manganese  was  higher  in  NT  and  ZT  at  all  depths  and
increased with soil depth. Zinc was highest under NT and other
results  did  not  vary  significantly  as  in  the  case  of  Cu.  The SOC
levels  were  also  found  to  be  responsible  to  affect  micronu-
trients due to tillage practices. Likewise, in Calciortidic Haploxer-
alf soil  the  distribution  of  soil  micronutrients  (Zn,  Mn,  Fe,  Cu)
was  ascertained  under  different  tillage  practices  (CT,  MT,  and
NT).  The  micronutrient  status  was  highest  under  NT  in  the
upper layers due to the higher SOC level[43].

Sharma  &  Dhaliwal[44] determined  that  the  combined  appli-
cation of  nitrogen and rice residues facilitated the transforma-
tion  of  micronutrients  (Zn,  Mn,  Fe,  Cu).  Among  different  frac-
tions,  the  predominant  fractions  were  crystalline  Fe  bound  in
Zn,  Mn,  and  Cu  and  amorphous  Fe  oxide  in  Fe  with  120  kg  N
ha˗1 and 7.5-ton rice residue incorporation. The higher content
of occluded fractions adduced the increment in cationic micro-
nutrient availability  in soil  with residue incorporation together
with  N  fertilization  due  to  increased  biomass.  Rice  straw
compost  along  with  sewage  sludge  (SS)  and  INF  also  affected
the  micronutrient  availability  under  the  RW  cropping  system.
Nitrogen  fertilization  through  inorganic  fertilizers  and  rice
straw compost and sewage sludge (50% + 50%) improved soil
micronutrient  status  due  to  an  increase  in  SOM  over  sole  NPK
fertilizers[45].  Earlier,  Dhaliwal  et  al.[46] in  a  long-term  experi-
ment  determined  that  different  combinations  of  NPK  along
with  biogas  slurry  as  an  organic  source  modified  the  extrac-
table micronutrient status of the soil.

A comparative study was carried out by Dhaliwal et al.[47] to
ascertain the long-term impact of agro-forestry and rice–wheat
systems  on  the  distribution  of  soil  micronutrients.  The  DTPA-
extractable and total Cu, Zn, Fe, and Mn were greater in the RW
system  due  to  the  reduced  conditions  because  of  rice  cultiva-
tion.  Under  the  RW  system  Zn  removal  was  higher  which  was
balanced by continuous Zn application.  The higher availability
of  Fe  under  the  RW  system  was  due  to  reduced  conditions.
Contrarily,  Mn  was  greater  under  the  agro-forestry  system
owing to nutrient recycling from leaf litter.

The long-term impact of integrated application of FYM, GM,
WCS (wheat-cut  straw)  and INF on the soil  micronutrients  (Zn,
Mn,  Cu,  and  Fe)  have  been  studied  by  Dhaliwal  et  al.[48].  The
FYM  application  substantially  improved  DTPA-extractable  Zn
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status followed by GM and WCS, whereas Cu content was maxi-
mum in the plots with OM application. The highest Fe concen-
tration was recorded in treatment in which 50% recommended
N supplied through FYM. This could be ascribed to the release
of micronutrients from OM at low soil pH.

Shiwakoti et al.[49] studied the dual effects of tillage methods
(MP, DP, SW) and variable rates of N (0, 45, 90, 135 and 180 kg
ha−1)  on  the  distribution  of  micronutrients  under  a  moisture-
deficit  winter  wheat-fallow  system.  The  soil  Mn  content  was
highest under the DP regime. Inorganic N application reduced
Cu  content  in  the  soil.  Comparative  studies  with  adjacent
undisturbed grass pasture indicated the loss of Zn and Cu to a
significant extent. Thus, DP along with nitrogen added through
inorganic  fertilizers  could  improve  micronutrient  concentra-
tion  in  the  soil.  Moreover,  the  results  implied  that  long-term
cultivation  with  nitrogen  fertilization  and  tillage  results  in  the
decline  of  essential  plant  nutrients  in  the  soil.  Thus,  organic
amendments  along with INF may prove an effective approach
to  increase  soil  micronutrient  content.  In  another  study  con-
ducted by Lozano-García & Parras-Alcántara[50] tillage practices
such  as  NT  under  apple  orchard,  CT  with  the  wheat-soybean
system and puddling (PD) in the rice-rice cropping system were
found  to  affect  nutrient  status.  Under  CT,  Cu  content  was
lowest and Zn content was highest.  On the contrary,  puddling
caused  an  increase  in  Fe  and  Mn  concentration  owing  to  the
dispersion of soil aggregates which reduced the percolation of
water and created an anaerobic environment thereby enhanc-
ing the availability of Fe and Mn.

 Plant available secondary nutrients (Ca, Mg, S) in
soil

Tillage  practices  along  with  gypsum  fertilization  have  been
known to affect  secondary nutrient  concentrations in soil.  In  a
long-term  experiment,  FYM  application  showed  maximum
response  to  increased  S  concentration  due  to  the  maximum
addition  of  OM  through  FYM  over  other  treatments  as  S  is  an
essential  component  of  OM  and  FYM[32].  Higher  Mg  content
was  recorded  in  FYM  and  pea  vine  treatments  because  the
application  of  organic  matter  through  organic  manure  or  pea
vines outright led to Mg accrual. The lower Mg concentration in
topsoil  than  the  lower  layers  was  due  to  the  competition
between  Mg  and  K  for  adsorbing  sites  and  thus  displacement
of  Mg  by  K.  Han  et  al.[28] while  ascertaining  the  impact  of
organic  manures  and mineral  fertilizers  (NPK)  on  soil  chemical
attributes  determined that  INF  application  reduced exchange-
able calcium, whereas no significant changes were exhibited in
the  magnesium  concentrations.  The  OM  application  signifi-
cantly  increased  both  the  calcium  and  magnesium  concentra-
tions in the soil.

While  ascertaining  the  effect  of  different  tillage  treatments
such  as  CT,  NT,  and  MT  on  exchangeable  and  water-soluble
cations,  Lozano-García  &  Parras-Alcántara[50] recorded  that  NT
had  greater  content  of  exchangeable  Ca2+ and  Mg2+ than  MT
and  CT.  The  exchangeable  Ca2+ decreased  with  depth,  how-
ever,  opposite results were observed for Mg2+ which might be
due to the higher uptake of Mg2+ by the crop. On another note,
there might be the existence of Mg2+-deficient minerals on the
surface  horizon.  Alam  et  al.[51] studied  the  temporal  effect  of
tillage  systems  on  S  distribution  in  the  soil  and  observed  that
available S was 19%, 31%, and 34% higher in zero tillage than in
minimum  tillage,  conventional  tillage,  and  deep  tillage,
respectively.

Kumar  et  al.[38] appraised  the  impact  of  tillage  systems  on
surface  soil  nutrient  dynamics  under  the  following  conditions:
conventional  tillage,  zero  till  seeding  with  bullock  drawn,
conventional  tillage  with  bullock  drawn  seeding,  utera  crop-
ping and conservation tillage seeding with country plough and
observed that tillage had a significant impact on the available S
content.  Compared  with  conventional  tillage,  zero  and  mini-
mum tillage had higher S content as there was none or limited
tillage  operations  which  led  to  the  accumulation of  root  stub-
ble  in  the  soil  that  decomposed  over  time  and  increased  S
concentration.

 Effect of fertilization and tillage practices on
the composition of the soil microbial biota

Soil  is  considered a hotspot for  microbial  biodiversity  which
plays  an  important  role  in  building  a  complex  link  between
plants  and  soil.  The  microbial  components  exhibit  dynamic
nature  and,  therefore,  are  characterized  as  good  indicators  of
soil quality[52]. These components include MBC, MBN, PMN and
microbial  respiration  which  not  only  assist  in  biological  trans-
formations like OM conversion, and biological nitrogen fixation
but also increase nutrient availability for crop uptake. Manage-
ment  strategies  such  as  fertilizer  inputs  and  tillage  practices
may exert beneficial effects on soil biota as discussed below.

 Microbial community and biodiversity in the soil
Soil is an abode to a considerable portion of global biodiver-

sity. This biodiversity not only plays a pivotal role in regulating
soil  functions  but  also  provides  a  fertile  ground  for  advancing
global  sustainability,  especially  agricultural  ventures.  Thus,  the
maintenance of soil biodiversity is of paramount importance for
sustaining  ecosystem  services.  Soil  biodiversity  is  the  diverse
community of living creatures in the soil  that interact not only
with  one  another  but  also  with  plants  and  small  animals  to
regulate  various  biological  activities[53].  Additionally,  it
increases the fertility of soil by converting organic litter to SOM
thereby  enhancing  SOC  content.  Thus,  the  SOM  measures  the
number and activity of soil biota. Furthermore, the quality and
amount  of  SOC,  as  well  as  plant  diversity  have  a  considerable
impact on the soil microbial community structure[54].

Dangi et al.[55] ascertained the impact of  integrated nutrient
management and biochar on soil  microbial  characteristics and
observed  that  soil  amended  with  biochar  or  the  addition  of
organic  manures  influenced  microbial  community  composi-
tion  and  biomass  and  crop  yield.  After  two  years,  the  higher
rates of biochar significantly enhanced the levels of gram-posi-
tive  and  gram-negative  bacterial  phospholipid  fatty  acid
(PLFA),  total  arbuscular  mycorrhizal  fungal  (AMF)  than  lower
rates,  unfertilized  and  non-amended  soil.  Luan  et  al.[56]

conducted  a  comparison  study  in  a  greenhouse  to  assess  the
effects  of  various  rates  of  N  fertilizer  and  kinds  (inorganic  and
organic) on enzyme activities and soil microbial characteristics.
Microbial  growth  (greater  total  PLFAs  and  microbial  biomass
carbon) and activity were promoted by manure substitution of
mineral  fertilizer,  particularly  at  a  higher  replacement  rate.  On
account  of  lower  response  in  bacterial  over  fungal  growth,
manure  addition  led  to  a  greater  fungi/bacteria  ratio.  Further-
more,  manure  application  significantly  enhanced  microbial
communities,  bacterial  stress  indicators  and  functional  diver-
sity.  Lazcano  et  al.[57] determined  the  influence  of  different
fertilization  strategies  on  microbial  community  structure  and
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function,  soil  biochemical  properties  and  crop  yield  three
months  after  addition  of  fertilizer.  The  integrated  fertilizer
regimes  augmented  microbial  growth  with  improved  enzyme
activity  as  compared  to  sole  inorganic  amendments.  Bacterial
growth  showed  variable  response  with  variation  in  fertilizer
regime used whereas fungal growth varied with the amount of
fertilizer added. Compared to mineral  fertilizers,  manure appli-
cation  led  to  a  rapid  increase  in  PLFA  biomarkers  for  gram-
negative  bacteria.  The  organic  amendments  exhibited  signifi-
cant effects even at small concentration of the total quantity of
nutrients  applied  through  them;  thus,  confirming  the  viability
of integrated fertilizer strategies in the short term.

Kamaa et al.[58] assessed the long-term effect of crop manure
and  INF  on  the  composition  of  microbial  communities.  The
organic treatments comprised of maize (Zea mays)  stover (MS)
at 10 t ha−1 and FYM @ 10 t ha−1, INF treatments (120 kg N, 52.8
kg  P-N2P2),  integrated  treatments  (N2P2 +  MS,  N2P2 +  FYM),
fallow  plot  and  control.  The  treatment  N2P2 exhibited
unfavourable  effects  on  bacterial  community  structure  and
diversity  that  were  more  closely  connected  to  the  bacterial
structure in control soils than integrated treatments or sole INF.
In  N2P2,  fungal  diversity  varied differently  than bacterial  diver-
sity but fungal diversity was similar in the N2P2 + FYM and N2P2

+ MS-treated plots. Thus, the total diversity of fungal and bacte-
rial  communities  was  linked  to  agroecosystem  management
approaches  which  could  explain  some  of  the  yield  variations
observed  between  the  treatments.  Furthermore,  a  long-term
experiment  was  performed  by  Liu  et  al.[59] to  study  the  effi-
ciency  of  pig  manure  and  compost  as  a  source  for  N  fertiliza-
tion  and  found  unique  prokaryotic  communities  with  variable
abundance  of Proteobacteria under  compost  and  pig  manure
treatments.

Recently, Li et al.[60] assessed the influence of different tillage
practices (no-tillage, shallow tillage, deep tillage, no-tillage with
straw  retention,  shallow  tillage  with  straw  retention  and  deep
tillage  with  straw  retention)  on  microbial  communities  and
observed that tillage practices improved the bacterial Shannon
index to a greater extent over the no-tillage plots in which the
least value was recorded. Another research study by He et al.[61]

reported  the  effect  of  tillage  practices  on  enzyme  activities  at
various  growth  stages.  Across  all  the  growth  stages,  enzyme
activities  of  cellobiohydrolase  (CBH), β-xylosidase  (BXYL),  alka-
line  phosphatase  (AP), β-glucosidase  (BG), β-N-acetylglucosa-
mines (NAG) were 17%−169%, 7%−97%, 0.12%−29%, 3%−66%,
23%−137% greater after NT/ST, NT, ST, ST/PT, and PT/NT treat-
ments  as  compared  to  plow  tillage.  The  NT/ST  treatment
resulted  in  highest  soil  enzyme  activities  and  yield,  and  thus
was an effective and sustainable method to enhance soil qual-
ity and crop production.

 Soil microbial biomass carbon
Microbes play a crucial role in controlling different soil func-

tions  and  soil  ecology  and  microbial  community  show  signifi-
cant  variation across  as  well  as  within the landscape.  On aver-
age,  the  total  biomass  of  microbes  exceeds  500  mg  C  kg
soil−1[62].  Microbial  biomass  carbon  is  an  active  constituent  of
SOM  which  constitutes  a  fundamental  soil  quality  parameter
because  SOM  serves  as  a  source  of  energy  for  microbial
processes and is a measure of potential  microbial activity[48,63].
Soil  systems  that  have  higher  amounts  of  OM  indicate  higher
levels of MBC. Microbial biomass carbon is influenced by many
parameters  like  OM  content  in  the  soil,  land  use,  and

management strategies[64].  The MBC and soil  aggregate stabil-
ity  are  strongly  related  because  MBC  integrates  soil  physical
and chemical properties responds to anthropogenic activities.

Microbial biomass is regarded as a determinative criterion to
assess  the  functional  state  of  soil.  Soils  having  high  functional
diversity of microbes which, by and large, occurs under organic
agricultural  practices,  acquire  disease  and  insect-suppressive
characteristics  that  could  assist  in  inducing  resistance  in
plants[65]. Dou et al.[66] determined that soil microbial biomass C
(SMBC)  was  5%  to  8%  under  wheat-based  cropping  systems
and  zero  tillage  significantly  enhanced  SMBC  in  the  0−30  cm
depth, particularly in the upper 0 to 5 cm. According to Liang et
al.[67],  SMBC  and  soil  microbial  biomass  N  (SMBN)  in  the  0−10
cm surface layer were greater in the fertilized plots in compari-
son  to  the  unfertilized  plots  on  all  sampling  dates  whereas
microbial  biomass  C  and  N  were  highest  at  the  grain  filling
stage.  Mandal  et  al.[68] demonstrated  that  MBC  also  varied
significantly with soil depth. Surface soil possessed a maximum
MBC  value  than  lower  soil  layers  due  to  addition  of  crop
residues and root biomass on the surface soil. The MBC content
was highest with combined application of INF along with farm-
yard  manure  and  GM,  whereas  untreated  plots  showed  mini-
mum MBC values. The incorporation of CR slows down the rate
of  mineralization  processes;  therefore,  microbes  require  more
time  to  decompose  the  residues  and  utilize  the  nutrients
released[69].  On  the  other  hand,  incorporation  of  GR  having  a
narrow C:N ratio enhances microbial activity and consequently
accelerates  mineralization  in  the  soil.  Malviya[70] also  recorded
that  the  SMBC  contents  were  significantly  greater  under  RT
than  CT,  regardless  of  soil  depth  which  was  also  assigned  to
residue  incorporation  which  increases  microbial  biomass  on
account of higher carbon substrate in RT.

Naresh et al.[71] studied the vertical distribution of MBC under
no-tillage (NT),  shallow (reduced) tillage and normal cultivated
fields.  A  shallow  tillage  system  significantly  altered  the  tillage
induced  distribution  of  MBC.  In  a  field  experiment,  Nakhro  &
Dkhar[72] examined  the  microbial  populations  and  MBC  in
paddy fields under organic and inorganic farming approaches.
The organic source used was a combination of rock phosphate,
FYM  and  neem  cake,  whereas  a  mixture  of  urea,  muriate  of
potash  and  single  super  phosphate  was  used  as  an  inorganic
source. The organically treated plots exhibited the highest MBC
compared  to  inorganically  treated  plots  and  control.  Organic
carbon exhibited a direct and significant correlation with bacte-
rial  and  fungal  populations.  The  addition  of  organic  fertilizers
enhanced  the  content  of  SOC  and  consequently  resulted  in
higher microbial count and MBC. Ramdas et al.[73] investigated
the influence of  inorganic and organic sources of  nutrients (as
minerals  or  INF)  applied  over  a  five-year  period  on  SOC,  MBC
and  other  variables.  It  was  observed  that  the  addition  of  FYM
and  conjoint  application  of  paddy  straw  (dry)  and  water
hyacinth (PsWh) (fresh) significantly increased the SOC content
than  vermicompost, Chromolaena  adenophorum (fresh)  and
Glyricidia aculeate (fresh), and Sesbania rostrata (fresh).

Xu et al.[74] evaluated the influence of long-term fertilization
strategies  on  the  SOC  content,  soil  MBN,  soil  MBC,  and  soil
microbial  quotient  (SMQ)  in  a  continuous  rice  system  and
observed that MBC at the main growth stages of early and late
rice  under  30%  organic  matter  and  70%  mineral  fertilizer  and
60% organic  matter  and 40% mineral  fertilizer  treatments  was
greater as compared to mineral  fertilizer alone (MF),  rice straw
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residues  and  mineral  fertilizer  (RF),  and  no  fertilizer  (CK)  treat-
ments.  However,  SMBC  levels  at  late  growth  stages  were
greater in comparison to early growth stages. A recent study by
Xiao  et  al.[75] demonstrated  that  increasing  tillage  frequency
(no-tillage,  semi-annual  tillage,  and  tillage  after  every  four
months,  two  months,  and  one  month)  decreased  soil  MBC.
Microbial  biomass  carbon  content  was  significantly  greater  in
no-till  treatment (597 g kg−1) than in tillage every four months
(421  g  kg−1),  two  months  (342  g  kg−1)  and  one  month  (222  g
kg−1).  The  decrease  in  the  content  of  MBC  in  association  with
tillage  practices  is  due  to  soil  perturbations  which  enhanced
soil  temperature,  diminished  soil  moisture  content,  and
resulted  in  the  destruction  of  microbial  habitat  and  fungal
hyphae.  Therefore,  the MBC content  eventually  affected the N
cycle.

Li  et  al.[76] reported  that  in  comparison  to  CT,  NT  and  RT
resulted  in  increased  MBC  content  and  NT  significantly
increased MBC by 33.1% over CT. Furthermore, MBC concentra-
tion  was  34.1%  greater  in  NT  than  RT.  The  increase  in  MBC
concentration was correlated with the results of increase in SOC
concentration.  Site-specific  factors  including  soil  depth  and
mean  annual  temperature  significantly  affected  the  response
ratio of MBC under NT as compared to the duration of NT.

 Soil microbial biomass nitrogen
Microbial biomass nitrogen (MBN) is a prominent indicator of

soil fertility as it quantifies the biological status of soil. Soil MBN
is strongly associated with organic matter of the soil. The nitro-
gen  in  MBN  has  a  rapid  turnover  rate  thereby  reflecting  the
changes in management strategies way before the transforma-
tions in total N are discernable[77].

In an experiment on continuous silage maize cultivation with
crop  rotation,  Cerny  et  al.[78] observed  that  organic  fertilizers
exerted  an  affirmative  influence  on  the  soil  MBN.  During  the
application  of  organic  manure  MBN  decreased,  but  there  was
higher  MBN  content  as  compared  to  control.  However,  addi-
tion of mineral nitrogenous fertilizers exerted an adverse effect
on  MBN  content  in  experiments  with  maize.  El-Sharkawi[79]

recorded  that  organic  matter-treated  pots  resulted  in
maximum  MBN  content  than  urea-treated  pots.  The  sludge
application  enhanced  total  MBN  and,  therefore,  could

implicitly  benefit  crop  production  particularly  in  poor  soils[18].
Sugihara et al.[80] observed that during the grain-filling stage in
maize,  residue and/or fertilizer  addition exerted a pronounced
influence on soil microbial dynamics; however, a clear effect of
residue  and  ⁄or  fertilizer  addition  was  not  observed.  Microbial
biomass nitrogen reduced dramatically from 63–71 to 18–33 kg
N  ha˗1 and  C:N  ratio  at  the  same  time  increased  more  than
ten-fold in all plots.

Malik et al.[81] apprised that the organic amendments signifi-
cantly enhanced MBN concentrations up to 50% more than the
unamended  soil.  Wang  et  al.[82] evaluated  the  influence  of
organic  materials  on  MBN  content  in  an  incubation  and  pot
experiment  with  acidic  and  calcareous  soils.  The  results
revealed that MBN content which was affected by the different
forms  of  organic  amendments,  increased  by  23.37%−150.08%
and  35.02%−160.02%  in  acidic  and  calcareous  soils,  respec-
tively.  The  MBN  content  of  both  soils  decreased  with  the
increase  in  the  C/N  ratio  of  the  organic  materials,  though  a
higher  C/N  ratio  was  effective  for  sustaining  a  greater  MBN
content for a very long time.

Dhaliwal  &  Bijay-Singh[52] observed higher  MBN levels  in  NT
soils (116 kg ha−1) than in cultivated soils (80 kg ha−1). Kumar et
al.[83] ascertained  that  in  surface  layer,  MBN  content  was  11.8
mg kg−1 in CT which increased to 14.1 and 14.4 mg kg−1 in ZT
and  RT  without  residue  retention  and  20.2,  19.1  and  18.2  mg
kg−1 in  ZT,  RT  and  CT  with  residue  incorporation,  respectively
(Table  1).  In  the  subsurface  layer,  the  increased  tendency  on
account  of  tillage  and  crop  residue  retention  was  identical  to
those  of  0−15 cm layer  but  the  magnitude was  comparatively
meagre  (Table  1).  In  comparison  to  control,  the  persistent
retention  of  crop  residues  led  to  significant  accrual  of  MBN  in
the surface layer.

Xiao  et  al.[75] determined  that  the  MBN  content  decreased
with  tillage  treatment  having highest  value  in  no tillage  treat-
ment,  however,  the  difference  among  the  treatments  was
negligible. Soil perturbations decreased the aggregate size and
thus  lower  the  soil  aeration  and  exposure  of  fresh  organic
matter  which  restricted  the  growth  of  microorganisms.  The
results  also  concluded  that  MBN  content  is  highly  sensitive  to
tillage.  Ginakes  et  al.[84] assessed  the  impact  of  zone  tillage

Table 1.    Effect of different treatments on contents of various fractions of soil organic carbon[38].

Treatments

PMN (mg kg−1) MBC (mg kg−1) MBN (mg kg−1) DOC (mg kg−1)

Depths (cm)

0−15 15−30 0−15 15−30 0−15 15−30 0−15 15−30

Tillage practices
ZTR 12.4 11.2 562.5 471.1 20.2 18.9 198.6 183.6
ZTWR 8.5 7.6 350.4 302.1 14.1 12.6 167.1 159.2
RTR 10.6 9.9 490.2 399.3 19.1 17.2 186.4 171.6
RTWR 7.6 6.6 318.1 299.8 14.4 13.7 159.5 148.7
CTR 9.3 8.5 402.9 354.4 18.2 16.6 175.9 168.9
CT 6.7 5.6 307.9 289.5 11.8 9.7 142.5 134.6

Nitrogen management
Control 3.6 2.8 218.3 202.9 10.8 10.4 103.7 92.3
80 kg N ha−1 5.3 4.4 241.1 199.4 14.9 12.2 128.3 116.9
120 kg N ha−1 8.9 7.6 282.7 220.9 16.5 16.1 136.8 123.6
160 kg N ha−1 9.8 8.4 343.9 262.9 19.4 18.1 164.8 148.9
200 kg N ha−1 10.4 9.7 346.3 269.6 22.7 21.7 155.7 136.4

ZTR = Zero tillage with residue retention, ZTWR = Zero tillage without residue retention; RTR = Reduced tillage with residue retention, RTWR = Reduced tillage
without residue retention, CTR = Conventional tillage with residue incorporation; CT = Conventional tillage without residue incorporation.
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intensity  on  MBN  in  a  corn-kura  clover  cropping  sequence.
Microbial biomass nitrogen was influenced by time and type of
tillage  treatment.  Temporal  studies  revealed  that  MBN  was
higher after tillage treatment than the values possessed before
tillage.  Under  different  tillage  treatments,  higher  values  were
recorded in ST (shank-till) and DT (double-till) over NT and RZT
(zone-till) treatments.

 Potentially mineralizable nitrogen in the soil
Another biological parameter, PMN, is a crucial parameter of

soil  fertility  due  to  its  association  with  soil  N  supply  for  crop
growth.  Also,  PMN  indicates  the  status  of  soil  microbial
community  associated  with  PMN,  whether  it  is  improving  or
degrading.  Forest  soils  are  characterized  by  greater  levels  of
PMN than CT receiving conventional  chemical  fertilizers which
could  be  assignable  to  improved  microbial  activity  in  the
former  soils  than  the  latter[48,77].  Aulakh  et  al.[85] assessed  the
effect of various combinations of fertilizer N, P, FYM and wheat
residue  (WR)  applied  to  soybean  and  soybean  residues  added
to  wheat  under  CT  and  CA.  The  added  fertilizers  of  N  and  P,
FYM,  and  crop  residue  enhanced  the  mean  weight  diameter
and water-stable aggregates thus favoured the development of
macro-aggregates.  The  treatment  INF  +  FYM  +  crop  residue
performed  better  among  all  the  treatments.  The  net  flux  of
mineral  nitrogen  from  the  mineralizable  fraction  is  used  to
measure  potentially  mineralizable  N  which  indicates  the
balance  between  mineralization  and  immobilization  by  soil
microbes[77].  Nitrogen  mineralization  is  widely  used  to  assess
the ability  of  SOM to  supply  inorganic  nitrogen in  the form of
nitrate which is the most common form of plant-available nitro-
gen.  Kumar  et  al.[83] observed  an  increase  in  PMN  which  was
higher  in  surface  soil  than  sub-surface  soil  thereby  implying
that  high  OC  accumulation  on  account  of  crop  residue  reten-
tion was the most probable cause.

Verma  &  Goyal[86] assessed  the  effect  of  INM  and  organic
manuring  on  PMN  and  observed  that  PMN  was  substantially
affected by different organic amendments.  Potentially  minera-
lizable  nitrogen  varied  between  19.6−41.5  mg  kg−1 soil  with
greater  quantity  (2.5%)  in  vermicompost  applied  plots  than
FYM  treated  plots.  The  INF  treatments  resulted  in  lower  PMN
content  which  could  be  due  to  nutrient  immobilization  by
microbes. Mahal et al.[87] reported that no-till resulted in higher
PMN  content  than  conventional  tillage  treatments.  This  trend
was due to the maintenance of  SOM due to the residue cover
and reduction of soil erosion under no-tillage system[88]. On the
contrary, tillage practices led to the loss of SOC owing to loos-
ened surface soil and higher mineralization of SOM.

 Microbial respiration in soil
Soil  respiration is  referred as the sum of CO2 evolution from

intact soils because of the respiration by soil organisms, mycor-
rhizae  and  roots[89].  Various  researchers  have  proposed  soil
respiration as a potential indicator of soil microbial activity[52,77].
Gilani  &  Bahmanyar[90] observed  that  addition  of  organic
amendments  enhanced  soil  respiration  more  than  the  control
and  synthetic  fertilizer  treatments.  Moreover,  among  organic
amendment  treatments,  highest  soil  respiration  was  observed
in  sewage-sludge  treated  soils.  Under  controlled  conditions  in
saline-sodic  soil,  Celis  et  al.[91] reported  that  sewage  sludge
resulted  in  a  higher  soil  respiration  rate  than  mined  gypsum
and  synthetic  gypsum.  The  application  of  gypsum  because  of
minimal  organic  matter  intake  had  little  effect  on  soil  respira-
tion.  The  addition  of  organic  matter  especially  during  early

spring  led  to  higher  microbial  biomass  and  soil  respiration
albeit  diminished  levels  of  nitrate-N.  Moreover,  SOM  hinders
the  leaching  of  nitrate  ions  thereby  resulting  in  a  better  soil
chemical environment[71].

Faust et al.[92] observed that microbial respiration was associ-
ated  with  volumetric  water  content.  The  respiration  declined
with  less  availability  of  water,  thus  the  lesser  the  tillage  inten-
sity,  the  more  the  volumetric  water  content  which  conse-
quently resulted in higher microbial respiration. Another study
by  Bongiorno  et  al.[93] reflected  the  influence  of  soil  manage-
ment  intensity  on  soil  respiration.  Reduced  tillage  practices
resulted in 51% higher basal respiration than CT. Furthermore,
this  investigation  suggested  that  microbial  catabolic  profile
could  be  used  as  a  useful  biological  soil  quality  indicator.
Recently,  Kalkhajeh et  al.[94] ascertained the impact of  simulta-
neous  addition  of  N  fertilizer  and  straw-decomposing  micro-
bial  inoculant  (SDMI)  on  soil  respiration.  The  SDMI  application
boosted  the  soil  microbial  respiration  which  accelerated  the
decomposition of straw due to N fertilization. The C/N ratio did
not  affect  the microbial  respiration at  elongation and heading
stages,  whereas N fertilization enhanced the microbial  respira-
tion  to  a  greater  extent  than  the  unfertilized  control.  Addi-
tionally,  the  interaction  between  sampling  time  and  basal  N
application significantly affected microbial respiration.

Gong  et  al.[95] apprised  the  effect  of  conventional  rotary
tillage and deep ploughing on soil  respiration in winter wheat
and  observed  that  deep  ploughing  resulted  in  a  higher  soil
respiration  rate  than  conventional  rotary  tillage.  Soil  moisture
content  and  temperature  are  the  dominating  agents  influenc-
ing soil respiration which is restricted by the soil porosity.

 Effect of fertilization and tillage practices on
soil organic carbon (SOC) transformations

Soil organic carbon plays a vital role in regulating various soil
functions and ecosystem services. It is influenced by numerous
factors  like  tillage  practices  and  fertilization.  Moreover,  modi-
fied management practices may prove beneficial to avoid SOC
loss  by  increasing  its  content.  An  exogenous  supply  of  ferti-
lizers may alter the chemical conditions of soil and thus result in
transformation  of  SOC.  Tillage  practices  lead  to  frequent  soil
disturbances  which  reduce  the  size  of  soil  aggregates  and
accelerate  the  oxidation  of  SOC  thereby  reducing  its  content.
The literature  on the  influence of  fertilization and tillage  prac-
tices on the transformation of SOC is discussed below.

 Build-up of soil organic carbon (SOC) in soil
Soil organic carbon is a major part of the global carbon cycle

which is associated not only with the soil but also takes part in
the C cycling through vegetation,  oceans and the atmosphere
(Figs 1 & 2). Soil acts as a sink of approximately 1,500 Pg of C up to
1 m depth, which is greater than its storage in the atmosphere
(approximately  800 Pg C)  and terrestrial  vegetation (500 Pg C)
combined[96].  This  dynamic  carbon  reservoir  is  continuously
cycling  in  diverse  molecular  forms  between  the  different
carbon pools[97].  Fertilization (both organic and mineral) is one
of  the  crucial  factors  that  impart  a  notable  influence  on  OC
accretion  in  the  soil.  Many  researchers  have  studied  the  soil  C
dynamics  under  different  fertilizer  treatments.  Though  inor-
ganic  fertilizers  possess  the  advantage  of  easy  handling,
application and storage, they do not contribute to soil organic
carbon.  On  the  contrary,  regardless  of  management  method,
plant residues are known to increase organic carbon content.
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Katkar  et  al.[98] reported  a  higher  soil  quality  index  under
conjunctive  nutrient  management  strategies  comprising  addi-
tion of compost and green leaves along with mineral nutrients.
Mazumdar et al.[99] investigated the impact of crop residue (CR),
FYM,  and  leguminous  green  manure  (GM)  on  SOC  in  continu-
ous rice-wheat cropping sequence over a 25-year period. At the
surface  layer,  the  maximum  SOC  content  was  recorded  under
NPK + FYM than NPK + CR and NPK + GM treatments. SOC was
significantly lower under sole application of INFs (NPK) than the
mixed  application  of  organic  and  inorganic  treatments.  A
higher range of SOC content was recorded at a depth of 0.6 m
in  the  rice-wheat  system  (1.8–6.2  g  kg−1)  in  farmyard  manure
(FYM)-treated plots than 1.7–5.3 g kg−1 under NPK, and 0.9–3.0
g kg−1 in case of unfertilized plots[100]. In a research study Dutta
et al.[101] reported that rice residue had a higher decomposition
rate  (k¼ 0.121 and 0.076  day−1)  followed by  wheat  (0.073  and
0.042  day−1)  and  maize  residues  (0.041  day−1)  when  their
respective residues placed on soil surface than incorporated in
the  soils.  Naresh  et  al.[102] found  FYM  and  dhaincha  as  GM/
sulphitation press mud (SPM) treatments are potent enough to
enhance the SOC. Maximum SOC content was noted in 0–5 cm
depth that  reduced gradually  along the profile.  In  surface soil,
the  total  organic  content  (TOC)  under  different  treatments
varied  with  source  used  to  supply  a  recommended  dose  of
nitrogen (RDN) along with conventional fertilizer (CF).

Cai  et  al.[103] ascertained  that  long-term  manure  application
significantly  improved  SOC  content  in  different  size  fractions
which followed the sequence: 2,000–250 µm > 250–53 µm > 53
µm  fraction.  Naresh  et  al.[22] determined  that  mean  SOC
content  increased  from  0.54%  in  control  to  0.65%  in  RDF  and
0.82% in RDF + FYM treatment and improved enzyme activity;
thus,  ultimately  influenced  nutrient  dynamics  under  field
conditions. The treatments RDF + FYM and NPK resulted in 0.28

 
Fig. 1    Impact of different fertilization regimes on abundance of the microbial biomarker groups . Error bars represent the standard error of
the means and different letters indicate significant differences at p < 0.05 among treatments. Source: Li et al.[60].

 
Fig.  2    Soil  organic  carbon (SOC)  dynamics  in  the global  carbon
cycle.
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Mg  C  ha−1 yr−1 and  0.13  Mg  C  ha−1 yr−1,  respectively  and  thus
higher  sequestration  than  control.  Zhao  et  al.[104] determined
that in the surface layer,  significant increase in SOC content in
each  soil  aggregate  was  noticed  under  straw  incorporation
treatments  over  no  straw  incorporated  treatments  (Fig.  3).
Moreover, the aggregate associated OC was significantly higher
in  the  surface  layer  than  the  sub-surface  layer.  The  highest
increment in aggregate-associated OC was noted in both maize
and  wheat  straw  (MR-WR)  added  plots  followed  by  MR  and
least  in  WR.  Besides,  all  of  the  three  straw-incorporated  treat-
ments  exhibited  notable  increase  in  SOC  stock  in  each  aggre-
gate  fraction  in  the  surface  layer  of  the  soil.  In  the  subsurface
(20−40 cm) layer under MR-WR, significant rise in SOC stock of
small  macro-aggregates  was  observed,  whereas  there  was  a
reduction  in  SOC  stock  in  the  silt  +  clay  fraction  than  other
treatments.  The  straw-incorporated  treatments  increased  the
quantity  of  mineral-associated  organic  matter  (mSOM)  and
intra-aggregate particulate organic matter, (iPOM) within small
macro-aggregates  and  micro-aggregates  especially  in  the
topmost layer of the soil.

Srinivasarao et al.[105] reported that SOC content was reduced
with the addition of INFs (100% RDN) alone as compared to the
conjunctive  application  of  inorganic  and  organic  or  sole  FYM

treatments.  Earlier,  Srinivasarao  et  al.[106] reported  that  FYM
treated  plots  exhibited  greater  per  cent  increase  in  SOC  stock
than  mineral  fertilized  plots  and  control.  Tong  et  al.[107] ascer-
tained  that  the  application  of  NP  and  NPK  significantly
improved SOC stocks. On the contrary, fertilized soils could also
exhibit  decrease  in  carbon  content  than  control.  Naresh  et
al.[108] determined  that  higher  biomass  C  input  significantly
resulted  in  greater  particulate  organic  carbon  (POC)  content.
Zhang et al.[109] ascertained that long-term addition of NPK and
animal manures significantly improved SOC stocks by a magni-
tude of 32%−87% whereas NPK and wheat/ and or maize straw
incorporation  enhanced  the  C  stocks  by  26%−38%  than
control. Kamp et al.[110] determined that continuous cultivation
without fertilization decreased SOC content by 14% than uncul-
tivated  soil.  However,  super  optimum  dose  of  NPK,  balanced
NPK  fertilization  and  integration  of  NPK  with  FYM  not  only
improved SOC content  but  also SOC stocks  over  the first  year.
In  conventionally  tilled  cotton-growing  soils  of  southern  USA,
Franzluebbers  et  al.[111] estimated  that  carbon  sequestration
averaged 0.31 ± 0.19 Mg C ha−1 yr−1. Mandal et al.[112] reported
maximum  SOC  stock  in  the  surface  layer  of  the  soil  (0–15  cm)
which  progressively  diminished  with  depth  in  each  land  use
system.  A  significant  decrease  in  SOC  stock  along  the  profile

 
Fig. 3    Distribution of OC in coarse iPOM (intra-aggregate particulate organic matter) fine iPOM, mSOM (mineral-associated matter), and free
LF (free light fraction) of small macro-aggregates and micro-aggregates in the 0–20 cm and 20–40 cm soil layers under MR-WR (return of both
maize  and  wheat  straw),  MR  (maize  straw  return),  WR  (wheat  straw  return).  Different  lowercase  and  uppercase  letters  indicate  significant
differences at p < 0.05 among treatments and depths respectively[104].
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depth  was  also  observed  by  Dhaliwal  et  al.[47] in  both  crop-
lands  and  agroforestry.  In  the  topmost  soil  layer,  highest  SOC
stock was recorded in rice–fallow system while the lowest was
in the guava orchard[112].

Nath  et  al.[113] determined  that  there  was  accrual  of  higher
TOC in surface layers as compared to lower layers of soil under
paddy  cultivation.  This  accrual  could  be  adduced  to  left-over
crop  residues  and  remnant  root  biomass  which  exhibited  a
decreasing trend with soil depth. Das et al.[114] determined that
integrated  use  of  fertilizers  and  organic  sources  resulted  in
greater  TOC  as  compared  to  control  or  sole  fertilizer  applica-
tion. Fang et al.[115] observed that the cumulative carbon miner-
alization  differed  with  aggregate  size  in  top  soils  of  broad-
leaved  forests  (BF)  and  coniferous  forests  (CF).  However,  in
deep  soil  it  was  greater  in  macro-aggregates  as  compared  to
micro-aggregates in BF but not in CF (Fig. 4).  By and large, the
percent  SOC  mineralized  was  greater  in  macro-aggregates  as
compared  to  micro-aggregates.  Dhaliwal  et  al.[100] ascertained
that SOC accrual was considerably influenced by residue levels
and  tillage  in  surface  soil  (0−20  cm);  albeit  no  variation  was
observed  at  lower  depth  (20−40  cm).  The  SOC  content  was
greater  in  zero-tilled  and  permanently  raised  beds  incorpo-
rated with  residues  as  compared to  puddled transplanted rice

and  conventionally  planted  wheat.  Pandey  et  al.[116] reported
that no-tillage prior to sowing of rice and wheat increased soil
organic carbon by 0.6 Mg C ha–1 yr–1. The carbon sequestration
rate on account of no-tillage or reduced tillage ranged between
0−2,114  kg  ha–1 yr–1 in  the  predominant  cropping  system  of
South Asia,  Xue et al.[117] observed that the long-term conven-
tional  tillage,  by  and  large,  exhibited  a  significant  decline  in
SOC owing to degradation of soil structure, exposing protected
soil  organic  matter  (intra-soil  aggregates)  to  microbes.  There-
fore,  the  adoption  of  no-tillage  could  hamper  the  loss  of  SOC
thereby resulting in a greater or equivalent quantity of carbon
in comparison to CT (Fig. 5).

Singh et al.[118] determined that carbon stock in the 0-40 cm
layer increased by 39, 35 and 19% in zero-tilled clay loam, loam,
and  sandy  loam  soils,  respectively  as  compared  to  conven-
tional  tilled soils  over  a  period of  15 years.  Kuhn et  al.[119] also
apprised  about  the  advantages  of  NT  over  CT  vis-a-vis  SOC
stocks across soil  depths. In the surface layer (0−20 cm) NT, by
and  large,  resulted  in  higher  SOC  stocks  as  compared  to  CT;
however,  SOC  stocks  exhibited  a  declining  trend  with  soil
depth,  in  fact,  became  negative  at  depths  lower  than  20  cm.
Sapkota  et  al.[120] observed  that  over  a  period  of  seven  years,
direct  dry-seeded  rice  proceeded  by  wheat  cultivation  with

a

b

c

 
Fig. 4    (a) Soil aggregate fractions of two depths in two restored plantations of subtropical China, (b) organic carbon and (c) its mineralization
from various soil aggregates within 71 d at various soil depths in two restored plantations of subtropical China. Error bars show the standard
error  of  the  mean.  The  different  letters  represent  significant  differences  among  the  different  soil  aggregate  fractions  within  a  depth  at p <
0.05[115].
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residue retention enhanced SOC at 0-60 cm depth by a magni-
tude of 4.7 and 3.0 t C ha−1 in zero-tillage (ZTDSR-ZTW + R) and
without tillage (PBDSR-PBW + R), respectively. On the contrary,
the conventional tillage rice-wheat cropping system (CTR-CTW)
decreased the SOC up to 0.9 t C ha−1 (Table 2).

 Labile carbon (LC) fractions in soil
Labile  organic  carbon  (LC)  is  that  fraction  of  SOC  that  is

rapidly  degraded by soil  microbes,  therefore,  having the high-
est turnover rate. This fraction can turn over quickly on account
of  the  change  in  land  use  and  management  strategies.  From
the  crop  production  perspective,  this  fraction  is  crucial  as  it
sustains  the  soil  food  cycle  and,  hence,  considerably  impacts

nutrient  cycling  thereby  altering  soil  quality  and  productivity.
Short-term  management  could  influence  the  labile  fraction  of
carbon[121].  However, some site-specific problems and regional
factors may influence their distribution in soil layers[102].

Banger et al.[122] observed significant alteration in labile pools
of C, for instance, particulate organic matter (POM), water-solu-
ble  C  (WSC)  and  light  fraction  of  C  (LFC)  because  of  the  addi-
tion of fertilizers and/or FYM over a 16-year period. Particulate
organic matter, LFC and WSC contributed 24%–35%, 12%–14%
and  0.6%–0.8%,  respectively,  towards  SOC.  The  increase  in
concentration  of  SOC  including  its  pools  like  POC  and  the
sequestration rate due to integrated nutrient management was
also  reported  by  Nayak  et  al.[123].  Gu  et  al.[124] observed  that

a

b

c

 
Fig. 5    The concentrations of (a) SOC, (b) total nitrogen (TN), and (c) soil C:N ratio for 0–50 cm profile under different tillage treatments in 2012
and 2013. NT = no-till with residue retention; RT = rotary tillage with residue incorporation; PT = plow tillage with residue incorporation; and
PT0 = plow tillage with residue removed. The lowercase letters indicate statistical difference among treatments at p < 0.05[117].
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mulch-treated  soils  (straw  and  grass  mulch)  had  significantly
greater  levels  of  LOC,  POC,  DOC  and  EOC  as  compared  to  no
mulch-treated soils which could be adduced to the addition of
straw, root and its sections into the soil. The content of labile C
fractions  across  all  treatments  exhibited  a  decreasing  trend
with soil depth[23,102,125].

In  a  long-term  experiment,  Anantha  et  al.[126] observed  that
the  total  organic  carbon  apportioned  into  labile  carbon,  non-
labile,  less  labile,  and  very  labile  carbon  constituted  around
18.7%, 19.3%, 20.6% and 41.4% of the TOC, respectively (Table
3).  Zhu  et  al.[20] determined  that  straw  incorporation  had  a
substantial  impact  on  TOC  and  labile  C  fractions  of  the  soil
which  were  greater  in  straw  incorporated  treatments  as
compared to non-straw treatments across all the depths. Wang
et al.[127] reported that the light fraction organic carbon (LFOC)
and  DOC  were  significantly  greater  in  the  straw-applied  treat-
ments  than  the  control  by  a  magnitude  of  7%–129%  for  both
the  early  and  late  season  rice.  The  treatments  NPK  +  FYM  or
NPK + GR + FYM resulted in greater content of very labile and
labile  C  fractions  whereas  non-labile  and  less  labile  fractions
were  greater  in  control  and  NPK  +  CR  treatment.  There  was
40.5%  and  16.2%  higher  C  build-up  in  sole  FYM  treated  plots
and  100%  NPK  +  FYM,  respectively  over  control.  On  the  other
hand,  a  net  depletion  of  1.2  and  1.8  Mg  ha−1 in  carbon  stock
was  recorded  under  50%  NPK  and  control  treatments,  respec-
tively.  Out  of  the  total  C  added  through  FYM,  only  28.9%  was
stabilized  as  SOC,  though  an  external  supply  of  OM  is  a
significant  source  of  soil  organic  carbon[69].  Hence,  to  sustain
the optimum SOC level at least an input of 2.3 Mg C ha−1 y−1 is
required.  A  comparatively  greater  quantity  of  soil  C  in  passive

pools  was  observed  in  100%  NPK  +  FYM  treatment.  The
increase in allocation of C into the passive pool was about 33%,
35%, 41% and 39% of TOC in control, suboptimal dose, optimal
dose  and  super  optimal  dose  of  NPK  which  indicates  that  the
concentration  of  passive  pools  increased  with  an  increase  in
fertilization  doses.  Water-soluble  carbon  (WSC)  was  5.48%
greater  in  the  upper  soil  layer  as  compared  to  lower  layer  of
soil. In surface soil (0−15 cm), the values of light fraction carbon
(LFC)  were  81.3,  107.8,  155.2,  95.7,  128.8,  177.8  and  52.7  mg
kg−1 in  ZT  without  residue  retention,  ZT  with  4  t  ha−1 residue
retention,  ZT  with  6  t  ha−1 residue  retention,  FIRB  without
residue addition and FIRB with 4 and 6 t  ha−1 residue addition
and CT,  respectively (Table 4).  Tiwari  et al.[128] determined that
the  decrease  in  POC  was  due  to  reduction  in  fine  particulate
organic  matter  in  topsoil  whereas  decrement  in  dissolved
organic  carbon  was  observed  largely  in  subsoil.  Therefore,  in
surface soils fine POC and LFOC might be regarded as prelimi-
nary evidence of organic C alteration more precisely, while DOC
could be considered as a useful indicator for subsoil. Reduction
in  allocations  of  fine  POC,  LFOC  and  DOC  to  SOC  caused  by
tillage and straw management strategies indicated the decline
in quality of SOC. A higher SOC concentration was recorded in

Table 2.    Influence of tillage and crop establishment methods on SOC
stock and its temporal variation under rice–wheat system[120].

Tillage and crop
establishment

methods

Depths (m)

0–0.05 0.05–0.15 0.15–0.3 0.3–0.6 0–0.6

Total SOC (t/ha)
CTR-CTW 3.5e 7.1c 8.7 7.0 26.2c

CTR-ZTW 3.9d 7.6bc 8.8 6.5 26.7c

ZTDSR-CTW 4.2d 7.5bc 9.2 6.3 27.3c

ZTDSR-ZTW 4.9c 8.9ab 8.2 6.2 28.2bc

ZTDSR-ZTW+R 6.1a 9.0ab 9.8 6.8 31.8a

PBDSR-PBW+R 5.5b 9.3a 9.3 6.0 30.1ab

MSD 0.4 1.7 2.0 1.4 2.49
Treatment effect
(p value)

<0.001 0.04 0.158 0.267 <0.001

Initial SOC content 3.6 ±
0.15

8.1 ±
1.39

8.78 ±
1.07

6.7 ±
0.73

27.1 ±
1.21

Change in SOC over seven years (t/ha)
CTR-CTW −0.16 −0.99 −0.04 0.28 −0.90
CTR-ZTW 0.28 −0.50 0.01 −0.20 −0.41
ZTDSR-CTW 0.62 −0.57 0.45 −0.34 0.16
ZTDSR-ZTW 1.34 0.84 −0.62 −0.46 1.09
ZTDSR-ZTW+R 2.49 0.96 1.04 0.16 4.66
PBDSR-PBW+R 1.89 1.22 0.51 −0.64 2.98

CTR-CTW  =  Conventionally  tilled  puddled  transplanted  rice  followed  by
conventionally  tilled  wheat,  CTR-ZTW  =  Conventionally  tilled  puddled
transplanted  rice  followed  by  zero-tilled  wheat,  ZTDSR-CTW  =  Zero-tilled
direct  dry-seeded rice followed by conventionally  tilled wheat,  ZTDSR-ZTW
=  Zero-tilled  direct  dry-seeded  rice  followed  by  zero-tilled  wheat,  ZTDSR-
ZTW+R  =  Zero-tilled  direct  dry-seeded  rice  followed  by  zero-tilled  wheat
with residue retention, PBDSR-PBW+R = Direct dry-seeded rice followed by
direct  drilling  of  wheat  both  on  permanent  beds  with  residue  retention,
MSD,  minimum  significant  difference.  Significant  different  letters  indicate
significant differences at p < 0.05.

Table 3.    Oxidisable organic carbon fractions in soils (g kg−1) at different
layers[126].

Treatment
Depths (cm)

0−15 15−30 30−45 Total

Very Labile C

Control 3.6 ± 0.5c 1.4 ± 0.3b 1.3 ± 0.2a 6.3 ± 0.4b

50% NPK 4.6 ± 0.3bc 2.1 ± 0.7ab 1.5 ± 0.1a 8.1 ± 0.9a

100% NPK 4.4 ± 0.3bc 2.3 ± 0.2a 1.4 ± 0.5a 8.0 ± 0.7a

150% NPK 5.0 ± 0.2ab 2.6 ± 0.2a 1.5 ± 0.1a 9.0 ± 0.3a

100% NPK + FYM 4.8 ± 0.2ab 2.0 ± 0.2ab 1.3 ± 0.3a 8.1 ± 0.2a

FYM 5.9 ± 1.3a 2.2 ± 0.2a 1.4 ± 0.3a 9.5 ± 1.6a

Fallow 4.2 ± 0.7bc 1.5 ± 0.5b 0.7 ± 0.3b 6.3 ± 0.8b

Lbile C

Control 2.4 ± 0.3a 1.0 ± 0.2a 0.8 ± 0.4a 4.2 ± 0.6a

50% NPK 1.7 ± 0.4ab 0.9 ± 0.5a 0.7 ± 0.2a 3.3 ± 0.7a

100% NPK 1.8 ± 0.4ab 0.8 ± 0.5a 0.6 ± 0.3a 3.2 ± 0.8a

150% NPK 1.2 ± 0.3b 0.7 ± 0.2a 0.9 ± 0.2a 2.8 ± 0.4a

100% NPK + FYM 1.9 ± 0.3ab 0.7 ± 0.2a 0.7 ± 0.3a 3.4 ± 0.2a

FYM 2.5 ± 0.9a 0.7 ± 0.3a 0.7 ± 0.2a 3.9 ± 0.9a

Fallow 2.2 ± 1.0ab 1.0 ± 0.3a 1.0 ± 0.4a 4.1 ± 1.1a

Less labile C

Control 1.5 ± 0.3c 0.6 ± 0.4c 0.4 ± 0.0c 2.6 ± 0.7d

50% NPK 1.8 ± 0.1c 0.4 ± 0.1c 0.5 ± 0.2c 2.7 ± 0.1cd

100% NPK 2.5 ± 0.3ab 0.8 ± 0.1bc 1.1 ± 0.2ab 4.4 ± 0.1b

150% NPK 2.6 ± 0.2a 0.9 ± 0.1bc 0.4 ± 0.2c 3.9 ± 0.1b

100% NPK + FYM 2.7 ± 0.6a 1.5 ± 0.2a 1.4 ± 0.1a 5.6 ± 0.7a

FYM 1.9 ± 0.7bc 1.7 ± 0.2a 1.0 ± 0.2b 4.5 ± 0.7ab

Fallow 1.5 ± 0.3c 1.3 ± 0.7ab 0.9 ± 0.4b 3.8 ± 1.2bc

Non labile C

Control 1.2 ± 0.5b 1.2 ± 0.3a 0.2 ± 0.2b 2.6 ± 0.5b

50% NPK 1.2 ± 0.9b 1.7 ± 0.8a 0.7 ± 0.4ab 3.5 ± 1.8ab

100% NPK 1.3 ± 0.6b 1.5 ± 0.6a 0.5 ± 0.2ab 3.3 ± 1.0ab

150% NPK 1.4 ± 0.3b 1.5 ± 0.2a 0.8 ± 0.1a 3.7 ± 0.3ab

100% NPK + FYM 2.0 ± 0.8b 1.3 ± 0.1a 0.3 ± 0.3ab 3.5 ± 0.7ab

FYM 3.7 ± 1.3a 1.0 ± 0.2a 0.5 ± 0.5ab 5.1 ± 1.9a

Fallow 2.1 ± 0.2b 1.4 ± 0.7a 0.4 ± 0.2ab 3.9 ± 0.9ab

Values  in  the  same  column  followed  by  different  letters  are  significantly
different  at p <  0.001,  ±  indicates  the  standard  deviation  values  of  the
means.

Technology in
Agronomy   Transformation of carbon, plant nutrients and microbial biota

Page 12 of 17   Dhaliwal et al. Technology in Agronomy 2024, 4: e003



the conjoint application of INF + FYM (0.82%) and sole applica-
tion  of  INF  (0.65%)  than  control  (0.54%).  Kumar  et  al.[83]

reported  that  the  CT  without  residue  retention  had  signifi-
cantly lower labile carbon fractions (27%–48%) than zero-tillage
with 6-ton residue retention.  Moreover,  residue-retained fertil-
ized  treatments  had  significantly  greater  labile  fractions  of  C
than  sole  fertilized  treatments[125].  Kumar  et  al.[83] reported
highest  change  in  DOC  in  zero-till  with  residue  retention
(28.2%)  in  comparison  to  conventional  tillage  practices.  In  ZT,
absence  of  soil  perturbations  resulted  in  sustained  supply  of
organic  substrata  for  soil  microbes  which  increases  their  acti-
vity. On the contrary, CT practices resulted in higher losses of C
as CO2 due to frequent disturbances.

 Conclusions

The  soil  characteristics  such  as  plant  available  nutrients,
microbial  diversity  and  soil  organic  carbon  transformation  are
dwindling  on  account  of  intensive  cultivation  under  conven-
tional  tillage  practices,  therefore,  demand  relevant  manage-
ment  approaches  for  soil  and  crop  sustainability.  Long-term
application  of  organic  amendments  significantly  increases  soil
properties  by  increasing  plant  available  macro,  micro,
secondary nutrients and soil organic C, whereas the increase in
organic C by INF application is, by and large, due to increment
in organic C content within macro-aggregates and in the silt +
clay  compartments.  The  soil  organic  carbon  and  other  plant
available  nutrients  were  significantly  greater  in  conservation
tillage  systems  as  compared  to  conventional  tillage  (CT)  that
conservation  approaches  could  be  an  exemplary  promoter  of
soil productivity by modifying soil structure thereby protecting
SOM  and  maintaining  higher  nutrient  content.  The  mean
concentration  of  different  fractions  of  carbon  MBN,  PMN  and
soil  respiration  under  integrated  nutrient  management  treat-
ments  was higher  as  compared with to control.  Therefore,  the
conjoint  use  of  organic  manures  or  retention  of  crop  residues
with  inorganic  fertilizers  is  imperative  to  reduce  the  depletion
of  SOC  while  sustaining  crop  production  as  a  realistic  alter-
native.  Future  research  should  focus  mainly  on  the  usage  of

organic  and  mineral  fertilizers  in  conjunction  with  conserva-
tion tillage approaches to sustain the soil environment.
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