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Abstract
Original and pure seeds are the most important factors for sustainable agricultural production, development, and food security. Conventionally,

seed protection and certification programs are carried out on several classes from breeders to certify seed based on a physical, biochemical, and

genetic evaluation to approve seed as a cultivar. In seed industries, quality assurance programs depend on different methods for certifying seed

quality characteristics such as seed viability and varietal purity. Those methods are mostly conducted in a less cost-effective and timely manner.

Combining machine learning (ML) algorithms and optical sensors can provide reliable, accurate, non-destructive, and quick pipelines for seed

quality assessments. ML employs various classifiers to authenticate and recognize varieties through K-means, Support Vector Machines (SVM),

Discriminant  Analysis  (DA),  Naive  Bayes  (NB),  Random  Forest  (RF)  and  Artificial  Neural  Networks  (ANNs).  In  recent  years,  progress  in  ANN

algorithms as  deep learning simplifies  big  data  analytics  procedures  by  categorizing learning and extracting distinct  levels  of  multiplex  data.

Deep learning opened a new door for developing a smartphone as a fast and robust substitute for the online seed variety discrimination stage

through developing a Convolutional neural networks (CNNs) model-based mobile app. This review presents machine learning and seed quality

assessment areas to recognize and classify seeds through long-standing and novel ML algorithms.
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 Introduction

For many years, farmers have been urged to cultivate geneti-
cally  pure  seeds  with  a  high germination rate.  Releasing high-
quality  seeds  is  the  first  step  toward  sustainable  food  produc-
tion  and  stable  economic  profits.  Therefore,  seed  testing  and
certification  processes  have  been  arranged  to  facilitate  this
process[1].  In  the  seed  certification  process,  four  classes  of
seeds, including (i) nucleus, (ii) breeder, (iii) foundation, and (iv)
certified  seeds,  should  be  evaluated  based  on  some  features
that  will  be  explained  as  follows[2].  Four  features  are  investi-
gated  through  physical  purity,  seed  health,  moisture  content,
and  genetic  purity  in  the  four  seed  classes  to  achieve  high-
quality seeds (Fig. 1). Physical purity determines equality in size
and shape, free of stones, weed seeds, and other crop varieties
ranging from 96% to 98%. Seed health is a critical attribute that
presents  germination  capacity  and  vigor  with  no  contamina-
tion  of  microbes  and  insect  damage.  Besides,  it  would  be
necessary to keep the seeds' proper moisture content because
it plays a crucial role in germination capability and viability. The
optimum moisture level is 9%−13% which protects seeds from
diseases  and  insects  spreading[2].  Genetic  purity  is  an  impor-
tant  characteristic  that  implies  preserved  innate  traits  from
parents  to  progenies.  During  the  seed  certification  process,
offspring  should  look  like  their  mother  plant[3].  Distinctness,
uniformity, and stability (DUS) tests along with molecular mark-
ers  analysis  are  performed  to  confirm  that  a  new  variety  is
distinct  from  other  varieties,  its  features  are  uniform  and  the
variety is stable with relevant phenotypic traits from one gener-
ation  to  the  next[4].  The  genetic  purity  of  the  certified  seeds
should  be  99%,  while  it  can  be  decreased  by  several  factors

comprising a  mechanical  mixture  of  different  seeds,  mutation,
genetic  drift,  etc.  Thus,  off-type  and  impure  seeds  should  be
removed from pure seeds[5]. Most of the seed certification eva-
luation steps have produced big datasets that are difficult to be
analyzed by the conventional statistical methods. For instance,
image  analysis  is  considered  as  a  significant  field  of  study
employed  in  image  identification,  classification,  and  anomaly
recognition[6].  Image  analysis  is  used  for  the  classification  of
different  seed  varieties  in  several  crop  species,  including
wheat[7],  barley[8],  rice[9],  and corn[10].  The most prevalent sens-
ing  systems  are  multi-spectral  and  hyperspectral  imaging,
synthetic  aperture radar  (SAR),  thermal  and near-infrared (NIR)
cameras,  and  optical  and  X-ray  imaging[11].  Since,  the
mentioned multi-spectral and hyperspectral systems are costly,
other cost-effective methods based on computer vision system
(color,  size,  shape,  and  morphological  characteristics)  were
employed in several crops[12−16].

In the certification process, seed classification can be carried
out  based  on  visual  characteristics  with  the  involvement  of
experts.  This  conventional  system  is  time-consuming,  costly,
and relies on experts'  information. In contrast,  identification of
seed  properties  and  varieties  has  been  performed  through
image processing that is fast, accurate, and reliable[16]. This clas-
sification  technique  generates  valuable  information  on  seed
quality,  recognition  of  impurities,  and  outliers[17].  Images
provided by sensing systems generate an outstanding amount
of  data[18],  requiring advanced computational  and mathemati-
cal analyses skills.

Artificial intelligence (AI) has a broad range of applications in
agriculture,  from robotics,  soil,  and crop monitoring to predic-
tive  analytics  that  provide  farmers  with  beneficial  data  to
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achieve  more  from  the  land[19].  Machine  learning  (ML),  as  a
branch of AI, is known as a reliable and effective computational
approach  to  develop  model-based  methods  that  can  increase
the efficiency of breeding procedures[20]. ML algorithms such as
K-means,  support  vector  machines  (SVM),  artificial  neural
networks  (ANNs),  linear  polarization,  and  wavelet-based  filter-
ing[6] can be employed in different fields of study such as image
analysis.

 Long standing ML algorithms

In  this  review,  the  aim  was  to  (1)  briefly  describe  the  seed
processing steps, (2) review the past and current efforts to effi-
ciently  analyze  big  datasets  derived  during  seed  processing
through  ML  algorithms,  and  (3)  provide  a  future  direction  in
this area to facilitate seed processing steps using novel mathe-
matical  methods.  Different  types  of  ML  algorithms  were
exploited  in  different  steps  of  seed  certification.  Each  tested
algorithm has its advantages and disadvantages. In this section,
some important algorithms in the seed certification process are
explained in detail.

 Artificial neural networks (ANNs)
ANNs  algorithms  are  one  of  the  most  broadly  used  algo-

rithms  in  seed  recognition  research[21].  ANN-based  modeling
structures  are  stimulated  by  the  human  brain's  neurological
processing  ability.  It  could  be  considered  as  an  encouraging
approach  for  managing  the  nonlinearities  and  complexities  of
complex  processes  like  seed  recognition  that  is  replete  with
incalculable,  noisy,  fractional,  and  missing  data.  ANN-based
models  could  make  models  of  compound  dynamic  structures
without an understanding of the comprehensive basic physical
mechanisms  in  multivariate  traits.  There  are  various  ANN
models, though the basic principle is similar[22].

An  ANNs  model  contains  several  neurons  as  signal-process-
ing  components  that  are  connected  by  synapses  as  unilateral
communication  channels.  An  ANN  receives  input  signals,
processes the received signals,  and finally  produces an output
signal. Every ANNs is linked to at least one other neuron based
on  its  significant  degree  of  a  particular  connection  to  the
network that is called the weight coefficient[23].  The generated
signals from other neurons are considered as input data of [X1,
X2,  ...  ,  Xm].  The  input  data  are  multiplied  by  their  associated
synaptic weights (Wkj) and then moved to the artificial neuron.

Furthermore, a bias input (bk) is considered an additional input
signal  to  the  artificial  neuron.  The  Strength  of  the  incoming
signals  is  calculated  by  aggregating  weighted  input  data  and
the bias  input  (Σ(weight*input  )  +  bias)[24].  An activation func-
tion  (λk)  is  imposed  to  model  that  decreases  the  domain  of
incoming signals into a limited value, and finally, the non-linear
output  (Yk =  f Σ (weight  *  input)  +  bias  )  is  generated.  Activa-
tion functions lead to the no-linear transformation of input that
makes  the  ANN  capable  of  learning  and  performing  complex
tasks  (Fig.  2).  The  most  common  activation  functions  in  ANN
systems  are  binary  step,  identity,  softmax,  sigmoid/logistic,
tangent, hyperbolic tangent, and Gaussian[25].

ANN models are classified on the basis of their learning mode
into  supervised/unsupervised  or  on  their  structures  into  feed-
forward or feedback recall methods[26]. Supervised ANNs uses a
set of data patterns in the learning procedure that has separate
input  and  output.  However,  unsupervised  ANN  algorithms
employ a set of data patterns in the training process with only
input values. Feedforward ANN models exploit unilateral infor-
mation  processing  approaches  that  transmit  data  only  from
inputs  to  outputs.  In  contrast,  feedback  ANN  models  employ
the  bilateral  stream  that  results  in  achieving  insights  from  the
prior layers letting feedback to the next layers in any neuron[26].

Synapses  transfer  numerical  weights  to  diminish  the  error
between real and simulated data in several training algorithms.
However,  optimizing  ANN  models  has  some  complications
including  data  compilation,  data  processing,  topology  selec-
tion,  training  and  testing  the  selected  model,  and  simulation
and validation of the established ANN models.

There are several types of ANNs that every have been devel-
oped into particular problems and applications. Some networks
are appropriate for  solving conceptual  complications,  whereas
others  are  proper  for  data  modeling  and  function  estimation.
The  most  popular  ANNs  in  seed  classification  and  recognition
are Kohonen networks,  multilayer perceptron (MLP),  networks,
deep  neural  networks  (DNNs),  and  convolutional  neural
networks (CNNs) (Fig. 3)[22].

 Kohonen network
Kohonen network algorithm, known as self-organizing maps

(SOM), is a type of unsupervised learning algorithm, consisting
of  two-layer  networks  where  the  input  and  output  layers  are
completely  connected where similar  patterns  are  promoted in
the  vicinity  to  one  another  that  results  in  a  2D  map  of  the
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Fig. 1    The characteristics that are evaluated in different seed classes during seed certification process.
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output  neurons  (Fig.  3)[27].  Neurons  that  are  closest  to  input
win,  and  only  weights  of  the  winning  neurons  and  their
neighbors  are  updated.  Kohonen  networks  map  high-dimen-
sional data into a smaller space that leads to data compression.
Kohonen  networks  are  employed  for  clustering  (data  group-
ing),  pattern recognition, image segmentation, fuzzy partition-
ing,  and  classification[28].  Chickpea  seed  varieties  were  identi-
fied through unsupervised ANNs,  a  self-organizing map (SOM)
that  showed  a  better  performance  with  79%  accuracy  com-
pared  to  supervised  ANN  with  73%  accuracy.  SOM  can  learn
new  things  and  changes  with  variable  conditions  and  inputs.
However,  unsupervised  learning  algorithms  do  not  result  in
expected outputs[29]. Besides, classification and identification of
plants were made in leaf blade samples by the ANNs based on
backpropagation  algorithm  (BP),  KNN  algorithm,  Kohonen
network based on SOM algorithm, and support vector machine.
The training and identification time of the Kohonen network is
moderately short, but the error rate of the Kohonen network is
also very high due to the Kohonen network being applied with-
out  supervision  (Table  1).  Comparisons  between  four  algo-
rithms indicated that it could be effective for clustering, but it is

not proper as a classifier and cannot deliver sufficient informa-
tion to separate from other items[30].

 Multilayer perceptron (MLP)
Multilayer  perceptron  (MLP)  is  a  class  of  feed-forward  artifi-

cial  neural  networks  developed  by[31].  MLP  is  a  non-linear
computational process that is highly efficient for the classifica-
tion and regression of complex features. Furthermore, MLP was
created  to  address  non-linear  classification  problems  that
further  layers  of  neurons  employed  between  the  input  layer
and  the  output  neuron,  and  these  neurons  are  called  hidden
layers  (Fig.  3).  Thus,  these  hidden  layers  process  the  informa-
tion  achieved  from  the  input  layers  and  process  them  to  the
output  layer  that  develop  perceptrons  to  resolve  non-linear
classification  problems[32].  MLP  is  frequently  employed  for
modeling and forecasting complex attributes,  such as  yield[33],
classification seed varieties[7], weed discrimination[34], unknown
seed identification[35]. This algorithm discovers the relationship
between  the  input  and  output  variables  through  some  inter-
connected  processing  neurons  that  identify  a  solution  for  a
particular  problem[36].  However,  MLP  is  time-consuming
method  that  may  result  in  inaccurate  modeling.  Besides,  MLP

 

Fig. 2    A schematic illustration of an artificial neuron.

 

Fig. 3    ANNs algorithms from old to new versions.
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regularly  employs  few  hidden  neurons  that  makes  it  inappro-
priate for modeling and predicting than other algorithms with
more hidden neurons[33] (Table 1).

 Discriminant analysis (DA)
Discriminant  analysis  (DA)  is  a  flexible  classifier  that  was

exploited  to  classify  observations  into  two  or  more  groups  or
classes, and it examines methods and degrees of the contribu-
tion  of  variables  to  group  partitioning  (Figs  4 & 5).  It  was
employed  for  image  processing  by  several  scholars  in  textural
analysis  in  wheat  (Fig.  5)[37] and  color  analysis  in  castor[38].  In
wheat,  a  stepwise  discrimination  system  was  exploited  for
selection  and  ranking  of  the  most  important  textural  features

by LDA (linear discriminate analysis) classifier with 98.15% accu-
racy  in  top  selected  traits  in  nine  cultivars[37].  Furthermore,
color  analysis  in  castor  through  partial  least  squares-discrimi-
nant analysis (PLS-DA) and LDA demonstrated that the PLS-DA
model  with  98.8%  accuracy  was  more  efficient  than  LDA.  It
showed that this method was straightforward, quick, beneficial,
and inexpensive (Table 1)[38].

Chen et al. analyzed 28 color features of five corn varieties by
step-wise  discriminant  with  90%  accuracy[39].  In  addition,  the
color and shape attributes of Italian landraces of the bean were
investigated using LDA that showed 82.4%−100% accuracy[40].
However,  another  research  used  the  shape  plus  texture
features to recognize two weed species, rumex, and wild oat, in

 

Table 1.    Comparisons among ML algorithms.

ML algorithms SOM MLP DA SVMs RF NB CNNs

Accuracy + +++ ++ ++++ +++++ +++ ++++++
Flexibility + ++ + +++ ++++ +++ ++++++
Advantages Fast Non-linear
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interactions is
difficult, future
predictions
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original data

Oversensitive
to redundant
or irrelevant
attributes,
classification
bias

It needs further
developments
for big data
analysis

 

X2

X1Support vector machines (SVMs)

Hyper plane

Maximum Margin

Support
Vectors

Fu
nc

tio
n 

2

Function 1

Canonical Discriminant Functions

Discriminant analysis (DA)

Random forest (RF)
Naive Bayes classifier

Final result
Σ

1
2
3
4
5
6
7
Group
Centroid

10

5

0

−5

−10

−10 −5 0 5 10

Fig. 4    Schematic views of SVMs, DA, NB and RF algorithms.

Technology in
Agronomy   Precision seed certification machine learning

Page 4 of 12   Ghaffari Technology in Agronomy 2024, 4: e019



Lucerne and Vetch. They employed ANNs and stepwise discrim-
inant  analysis,  while  the  ANNs  presented  better  precision
(92%−99 %) than the DA[41].

 Support vector machines (SVMs)
Support  vector  machines  (SVMs)  introduced  by  Vapnik  in

2000 can be considered one of the most prevailing and simple
machine  learning  algorithms[42].  SVMs  can  be  categorized
based on the output  variable  to  the Support  Vector  Classifica-
tion  (SVC)  that  classifies  data,  and  the  Support  Vector  Regres-
sion (SVR),  which determines  regression[6].  The data  was  sepa-
rated  into  training  and  validation  sets.  The  majority  of  the
dataset  was assigned to the training set,  whereas the rest  was
partitioned  into  the  validation  set  based  on  different  approa-
ches such as cross-validation (Fig. 4)[43].

SVMs  are  usually  applicable  to  a  two-class  problem  that
creates  a  boundary  between  two  groups  in  linear,  non-linear,
and  trade-off  penalty  parameters  to  handle  complexity  (Fig.
4)[44]. In non-linear relationships, SVM can discover patterns and
performances.  SVMs  have  several  benefits  over  MLP  depend-
ing  on  the  dataset,  which  can  analyze  complex  networks  and
employ  numerous  learning  problem  formulations  to  solve  a
quadratic  optimization  problem[45].  Besides,  SVMs  showed  a
greater  advantage over  ANNs due to  diminishing the general-
ization error by exploiting the structural risk minimization prin-
ciple  rather  than  the  practical  one  used  in  ANNs[21].  Even
though  there  are  several  benefits  of  the  SVM,  there  are  some
noticeable  flaws  including,  algorithmic  complexity  leading  to
longer training time of the classifier in large data sets, develop-
ment  of  ideal  classifiers  for  multi-class  problems,  and  unbal-
anced data sets (Table 1)[46]. SVM was employed in several stud-
ies  for  discrimination  and  classification  (Table  2).  For  soybean
seed discrimination, several morphological and color attributes
from  several  seed  classes  were  analyzed  by  SVMs.  Results
showed  that  color  traits  had  better  discrimination  ability  than
morphological  traits  with  77%  and  59%  accuracy,
respectively[47]. When the purity of waxy corn seeds was identi-
fied  by  image  analysis  of  morphological  and  texture  features
through  SVM  that  data  showed  98.2%  accuracy[48].  Further-
more,  an  SVMs classifier  was  employed to  detect  seed defects
in a large volume of corn seeds using color and texture features
analysis. The results showed that the best accuracy (81.8%) was

obtained  through  the  combination  of  both  color  and  texture
analysis  than  color  and  texture  individually[49].  The  same
method  was  exploited  to  identify  corn  varieties  with  the  best
accuracy (94.4%)[50].

 Random forest (RF)
Random  forest  (RF)  was  developed  by  Breiman[51] that  is

known as an effective method for seed classification[16],  object
recognition[52],  plant  phenomics,  and  genomics[53].  The  RF  is
based  on  multiple  decision  trees,  which  are  built  at  the  same
time  (Fig.  4).  They  are  constructed  by  bootstrapping  data
samples to learn, similar to bagging (bootstrap aggregation).

During training for each tree, the bootstrapped data samples
are used as observations, and another randomly chosen beech
of bootstrapped data samples is used as an out-of-bag observa-
tion.  This  is  done  repeatedly  until  every  sample  has  been  left
out  of  one  bag.  Out-of-bags  are  used  as  an  input  for  a  newly
built  random  forest  with  the  same  number  of  trees[54].  The  RF
algorithm can be extended to multiclass, sequential regression,
and binary  classification problems.  The RF algorithm has  been
extended  to  the  tree  pruning  problem,  called  'non-Breiman
random forests'. In this regard, it is possible to generate resam-
pled  trees  and  use  them  as  a  candidate  for  each  node  in  the
constructed decision tree. The selection of the best tree is made
based  of  mean-square  error[16].  Despite  these  advantages,  RF
generates  a  large  number  of  candidate  predictors  that  makes
the  evaluation  of  pairwise  interactions  difficult.  Also,  future
predictions  require  the  original  data  due  to  no  possibility  of
replicating predictions without an actual forest[55].

RF along with SVMs were exploited to discriminate soybean
varieties  based  on  color  and  morphological  features.  Data
showed  RF  classifiers  discriminated  color  features  better  than
morphological features with a better accuracy 78% better than
SVMs (77%)[47].  However, three algorithms including, RF, SVMs,
and  K-Nearest  Neighbors  (KNN)  were  employed  to  classify  dry
beans through a computer vision system for seed certification.
The  results  showed  the  better  accuracy  of  the  KNNs  classifier
(95%), while the accuracy of RF and SVMs was 93.1% and 93.5%
respectively.  The  RF  model  accuracy  exceeded  95.5%  when
using  principal  component  transform  was  compared  with  the
original  variables[16].  Another  research  classified  rice  through

 

Fig. 5    Schematic views of ML applications in seed recognition, classification and grading.
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image features of rice seed including, color, shape and texture.
RF  classifiers  was  employed  along  with  SVMs,  while  RF  classi-
fiers through simple features showed the greatest classification
with accuracy of 90.54% than SVMs[56].

 Naive Bayes (NB)
Naive Bayes (NB) classifiers are simple probabilistic classifiers

based on the Bayes hypothesis that implies the independence
of pair traits[57].  In comparison with other classifiers like Neural
Networks and Support Vector Machines, NB calls for quite little
data for training, thus it does not include several parameters. It
trains data fast and simply implemented. However,  NB is over-
sensitive  to  excessive  or  unrelated  attributes.  When  some
attributes  are  extremely  correlated,  they  take  great  weight  in
the final decision, resulting in a decrease in accuracy of predic-
tion  of  correlated  features  and  classification  bias[58].  It  was
employed  in  several  studies  to  identify  and  classify  different
seeds and plants (Table 2). NB is usually employed to recognize
weed  seeds  based  on  morphological,  color,  and  textural  char-
acteristics  from  images[59].  This  algorithm  decreases  the
number  of  parameters  to  nearly  ideal  sets  in  every  feature[60].
The NB classifier  outperformed ANN algorithms in weed seeds
identification[34].  Moreover, it was exploited in the seeds classi-
fication of Kama, Rosa, and Canadian wheat varieties according
to their morphological features as the second-highest accuracy

classifier  (94.3%),  though  ANN  algorithms  showed  the  highest
performance (95.2%) than NB[61].

 Novel ML algorithms

 Deep Neural Networks (DNNs)
Deep ANNs are commonly mentioned as deep learning (DL)

or  DNNs[62].  They  are  a  fairly  novel  part  of  ML  with  multiple
processing layers to learn complex data representation through
multiple  levels  of  concepts  that  are  known  as  representation
learning.  It  transforms  the  representation  from  starting  level
with  the  raw  input  into  a  representation  at  a  higher,  moder-
ately  abstract  level  through  g  simple  and  non-linear  modules
Thus,  compound  functions  can  be  learned  by  creating  suffi-
cient transformations. The leading benefit of DL in some cases
is to extract features through the model itself. DL models have
developed intensely in several sectors and industries, including
agriculture.  DNNs  are  basically  ANNs  with  multiple  hidden
layers  among  the  input  and  output  layers  and  can  also  be
supervised, partially supervised, and unsupervised[63].

 Convolutional Neural Networks (CNNs)
CNN is a popular DL model,  which extracts feature maps via

executing  convolutions  in  the  image  domain.  For  instance,  a
color image makes up three 2D arrays of pixel intensities in the

 

Table 2.    Examples of applied machine learning models in modern seed recognition and classification studies.

Plant species Type of machine
learning Classifier Accuracy Features Purpose Ref.

Corn Digital image MLP 98.83% Texture - spectrum hybrid Seed varietal purity [10]
Wheat Digital image ANNs 85.72% Morphology Seed varietal purity [7]
Wheat Digital image ICA-ANN hybrid 96.25% Color, morphology,

and texture
Seed varietal purity [72]

Wheat Digital bulk image LDA 98.15% Texture Seed varietal purity [37]
Wheat Digital bulk image ANNs 97.62% Texture Seed varietal purity [73]
Forage grass
(Urochloabrizantha)

FT-NIR spectroscopy
& X-ray imaging

RF 85% Spectrum-composition
hybrid

Seed germination & vigor [74]

Corn FT-NIR spectroscopy PLS-DA 100% Chemical composition Seed germination & vigor [75]
Pepper FT-NIR & Raman

spectroscopy
PLS-DA 99% Chemical composition Seed germination & vigor [76]

57 weed species Digital image NB & ANNs 99.5% Color, morphology,
and texture

Weed identification [59]

Wheat Video processing ANN - PSO hybrid 97.77% Shape, texture & color Physical purity & weed
identification

[77]

Rice Digital image MLP 99.46% Morphology, texture & color Seed varieties classification [9]
Rice Digital image ANNs − Morphology Seed grading [78]
Rice Digital image DFA 96% Morphology Physical purity [79]
Soybean Aerial imagery CNNs 65% Object detection Weed identification [80]
Soybean Digital image CNNs 97% Color, texture and shape Seed deficiency [66]
Soybean Digital image CNNs 86.2% Color, texture and shape Seed counting [70]
Corn Digital image MLP 94.5% Color Physical purity [81]
Soybean Flatbed scanner SVMs & RF 78% Color Seed grading [47]
Bean Digital image RF 95.5% Color, texture and shape Seed varieties classification [16]
Corn Hyperspectral image SVMs 98.2% Spectrum-texture –

morphology hybrid
Seed varieties classification [48]

Corn Digital image SVMs 95.6% Color and texture Seed varieties classification [49]
Corn Digital image GA–SVM hybrid 94.4% Color, texture and shape Seed varieties identification [50]
Corn Digital image CNNs 95% Color, texture and shape Haploid and dioploid

discrimination
[82]

Corn Digital image CNNs 95% Color, texture and shape Seed varieties identification [83]
Barley Digital image DA & K-NN 99% Color, morphology & texture Seed varieties classification [8]
Barley Digital image CNNs 93% Color, morphology & texture Seed varieties classification [84]

MLP:  Multilayer  Perceptron,  ICA:  Imperialist  Competitive  Algorithm,  ANNs:  Artificial  Neural  Networks,  LDA:  linear  discriminate  analysis,  FT-NIR:  Fourier
transform  near-infrared,  PLS-DA:  partial  least  squares  discriminant  analysis,  NB:  naïve  Bayes,  PSO:  partial  swarm  optimization,  DFA:  stepwise  discriminant
function  analysis,  CNNs:  Convolutional  neural  networks,  SVM:  support  vector  machine,  GA:  genetic  algorithm,  DA:  discriminant  analysis,  K-NN:  K-nearest
neighbors, SVMs: support vector machines.
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three  color  channels  that  data  formed  of  multiple  arrays  are
processed  through  the  CNN.  There  are  four  main  concepts
behind CNN, including local connections, shared weights, pool-
ing,  and  the  application  of  several  layers[15].  A  CNN  network
(Fig.  6)  is  made up of a series of stages that every convolution
layer  has  three  stages  including,  convolution,  detector,  and
pooling  stages.  First,  in  a  convolutional  stage,  units  are
arranged  in  feature  maps.  Therefore,  a  filter  bank,  a  set  of
weights,  connects  every  unit  of  local  patches  in  the  feature
maps of the previous layer to produce a set of linear activations.
All  units  in  a  feature  map  are  assigned  the  same  filter  bank.
Next,  the  outcome  of  the  aggregated  local  weights  has
proceeded over  a  non-linearity  function that  is  called  rectified
linear  unit  (ReLU).  This  stage  is  sometimes  called  the  detector
stage.  Finally,  the  pooling  function  offers  the  output  of  the
network  at  a  certain  location  with  a  summary  statistic  of  the
adjacent  outputs.  Thus,  functions  of  the  pooling  stage  adjust
the  output  of  the  layer  better[64] (Fig.  3).  CNN  algorithms
displayed  successful  application  in  agriculture,  particularly  for
the identification and classification of unclear feature data, like
the  delicate  features  of  small  seeds[65].  It  was  reported  that  a
lightweight CNN could identify the defects on the full surface of
seeds  in  seed  sorting  equipment.  Three  lightweight  models
(SqueezeNet, ShuffleNet, and MobileNetV2) were employed for
training  and  deployment.  Comparison  between  the  classifica-
tion  results  of  the  lightweight  networks  and  classic  networks
showed that the classic network is two times greater in training
time, three times longer in prediction time, and 41 times longer
in training model size. Though the average accuracy of the clas-
sic  networks  is  only  3%  higher  than  that  of  the  lightweight
networks,  the  overall  performance  of  lightweight  networks  is
significantly  better  than that  of  classic  networks.  The decrease
in average accuracy is due to the lower accuracy of SqueezeNet
(0.89), while MobileNetV2 and ShuffleNet showed accuracies of
0.97  and  0.96,  similar  to  the  accuracy  of  the  classic  networks
(0.97)[66].  Another  study[67] employed  SeedNet,  a  new  kind  of
CNN and precise both in accuracy and training time for classifi-
cation  and  identification  of  several  seed  images  belonging  to
distinct families. Moreover, ten state-of-the-art CNNs were com-
pared with SeedNet and classical machine learning approaches.
As  a  result,  SeedNet  showed  strong  performance  in  both
datasets  and  lower  training  time  compared  to  the  other
networks. The CNNs presented robust performances compared
to  the  traditional  methods  in  accuracy  and  time  training[67].

Taheri  in  2021  exploited  VGG16,  a  CNN  framework  model  for
automatic  recognition  of  chickpea  varieties  through  seed
images taken by a  digital  camera and a  mobile  phone camera
in  the  visible  spectrum  (400–700  nm)  (Fig.  6).  VGG-16  is  an
architecture  of  the  VGGNet  that  contains  over  15  million
parameters  of  convolutional  layers.  It  can  extract  the  image
features  containing  shape,  color,  and  texture.VGG16  design
was improved by a global  average pooling layer,  dense layers,
batch normalization, and dropout layers. The average accuracy
of the modified CNN model was over 94%. They proposed that
this  method  can  be  applied  in  the  seed  industry  and  mobile
applications as a fast and strong automated seed identification
procedure[14].  Further,  VGG-16  architecture  was  employed  for
the  automated  identification  of  grapevine  cultivars  by  leaf
Imaging[68]. Similarly, the VGG16 model was employed to iden-
tify  and classify  14  common distinct  seeds.  In  VGG16 architec-
ture,  the  last  layer  was  substituted  with  five  performed  layers:
the average pooling layer, the flattening layer, the dense layer,
the  dropout  layer,  and  the  softmax  layer.  As  a  result,  training
and testing accuracy reached over 99%[69].  Moreover,  CNN has
been exploited for computing the number of seeds in soybean
pods.  The  architecture  of  CNN  comprises  12  convolutional
layers  besides  an  output  softmax  layer  where  every  convolu-
tional layer is characterized by its number and size filter and the
stride.  CNN  and  SVM  methods  were  employed  in  the  project,
while results showed CNN higher accuracy (86.2%) in seed-per-
pod estimation than SVM (50.4%)[70]. Another study proposed a
mobile  application  that  was  developed  to  detect  and  classify
seed  images  through  serval  CNN  models  with  high  accuracy.
Four  different  CNN  models,  including  Inceptionv3,  Xception,
ResNet50, and Inception ResNetV2 models were applied for the
detection  and  classification  of  15  types  of  seed  images  with
99% accuracy[71].

 ML in determining seed germination and
vigor quality

The quality  of  seeds  are  usually  determined by germination
and vigor tests[2]. This process is time-consuming and based on
experts'  experiments  and  knowledge[1].  Some  changes  in  the
chemical  compound  and  internal  features  that  lead  to  defi-
ciency in germination and vigor cannot be detected visually[85].
Therefore,  effective  techniques  like  FT-NIR  and  Raman  spec-
troscopy and X-ray imaging are vital for extracting information
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of compound features relevant to seed quality[85]. Fourier trans-
form  near-infrared  (FT-NIR)  spectroscopy  is  efficient  for  the
identification  of  seed  compounds  through  spectral  measure-
ments ranging from 780 to 2,500 nm[86].  Besides,  Raman spec-
troscopy  (RS)  is  an  analytical  spectroscopy  technique  that
employs laser sources on seed samples to capture and analyze
scattering signals by a detector[87]. Each chemical molecule has
particular vibrational frequencies that lead to identifying chem-
ical  compositions  and  viability[88].  RS  is  more  accurate  than
conventional  methods  for  discovering  seeds'  viability.  RS  was
used in the corn[75] seeds' viability test. However, X-ray imaging
can  detect  seeds'  internal  attributes  by  a  reduction  in  several
tissues[89]. ML algorithms can classify seeds quality traits (Fig. 7).
Some efficient algorithms have been exploited to predict seed
germination  and  vigor,  including  linear  discriminant  analysis
(LDA),  partial  least  squares  discriminant  analysis  (PLS-DA),  RF,
NB, and SVMs[90].

In another study for determining seed germination and vigor
capabilities of a forage grass (Urochloabrizantha) by FT-NIR and
X-ray techniques, the RF model was employed for analyzing the
compound  data  of  both  techniques  that  reached  accuracy  at
85%.  In  contrast,  the  accuracy  of  the  individual  method  was
lower  than  combined  data.  However,  LDA  and  PLS-DA  algo-
rithms showed the highest accuracy (90% for germination and
68% for vigor estimate) in the X-ray method, whereas the accu-
racy of 82% for seed germination was achieved by FT-NIR data
with  the  PLS-DA  algorithm[74].  The  physiological  quality  of  the
soybean seed lot was evaluated successfully through RF with a
higher accuracy than other classifiers:  MLP and J48[91].  A study
was  conducted  using  NIR  to  determine  seed  viability  in
Japanese  mustard  spinach.  PCA  and  SVMs  were  employed  in
the first step. Then, CNN was applied to realize the differences
between  viable  and  non-inviable  seeds  and  categorize  them
automatically.  Classification  accuracy  was  90%  showing  the
CNN was an efficient method to classify viable seeds[92].

 Data bias

Most  prediction  models  produced  by  machine  learning  do
not  display  proper  methodological  quality,  leading  to  a  high
risk  of  bias.  There  are  several  reasons  for  a  risk  of  bias:  small
study  size,  inadequate  classification  and  handling  of  missing
data, and improper control on overfitting. Improvement of the
design,  conduct,  reporting,  and  validation  of  such  studies  will
enhance  the  confidence,  speed  and  precision  application  of
prediction  models  in  several  field  of  studies[93].  For  example,
high  lot  quality  caused  unbalanced  data  in  soybean  seed

analyses.  Unbalanced  learning  results  in  surpassing  one  class
on  another  class  is  a  classification  process.  To  overcome  this
problem,  a  resample  filter  was  applied  to  prevent  bias  of  the
algorithm.  The  accurate  selection  of  resources  reduces  the
dimensionality of the data and benefit to faster function of the
classifier,  resulting in  higher  accuracy.  When classes  are  classi-
fied  incorrectly  by  classifiers,  the  classes  with  more  data  had
higher  accuracy and precision values  than the other  classes  in
unbalanced data.  A smaller  sample number of  classes resulted
in lower values of the performance compared with larger data
classes. Employing classification via regression (CVR) showed a
lower  amount  of  false  positives  in  some  classes,  led  to  better
accuracy  in  the  rejected  and  intermediate  classes  of  soybean
seed lots[91].

 Cross-validation and percentage-split

The  main  principle  to  estimate  accuracy  is  that  the  evalua-
tion  samples  should  not  be  the  same  as  the  training  samples.
Training samples are excluded from the evaluation samples of
certain parameter values that decreases the probability of over-
training and led to an increase of the generalization of the clas-
sifier[94].  Several  partitions  are  created  for  each  sample  to  be
applied  several  times  for  several  aims.  The  percentage  split
divides  data  into  training  and  testing  by  percentage  value
(70%, 30%−90%, 10% for training and testing data). It is essen-
tial  to  choose  the  best  percentage  due  to  raising
uncertainties[95]. To increase the reliability of the machine learn-
ing  results,  cross-validation  is  developed  to  train  and  asses
accuracy of samples several times. The k-fold cross-validation is
a popular validation method that randomly divided the sample
set  into  a  series  of  identical  sized  folds.  The  dataset  is  divided
into several  partitions,  or  folds  that  is  showed by k.  For  exam-
ple, if a k-value of ten is applied, the dataset is divided into ten
partitions. Thus, nine of the partitions are allocated for training
data,  while  the  remaining  one  partition  is  allocated  for  test
data. The training is iterated ten times where nine partitions are
specified for training data and a different partition is applied for
the  test  set  each  time[94].  A  study  evaluated  several  machine
learning  models  to  assess  soybean  seed  lot  quality.  Soybean
lots  evaluated  through  two  methods  of  test  sets  including
cross-validation (with 8, 10, and 12 folds), and percentage split
(with  66%  and  70%).  Results  revealed  that  the  10-fold  cross-
validation  achieved  better  figures  than  8  and  12  that  was
90.22% classification accuracy.  However,  the  method applying
66%  of  data  for  training  reached  93.55%  accuracy.  Therefore,
precise  classification  through  appropriate  algorithm  training
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lead  to  reliable  information  for  seed  quality  testing[96].  How-
ever,  in  other  research,  k  =  10  cross-validation  was  applied  to
training  and  testing  data  of  maize  seed  lots  led  to  the  high
accuracy  and  precision  of  the  classification  for  corn  seed
lots[10,97].

 Concluding remarks and future perspectives

Rapid and robust seed variety and purity recognition are the
main  challenges  in  the  seed  registration  and  certification
process.  Thus,  developing  high-throughput  analyzing  proce-
dures  is  required  to  accelerate  the  seed  variety  discrimination
accurately  and  affordably.  ML  algorithms  were  exploited  in
several  studies  to identify  seed varieties,  recognize weeds and
evaluate  seed  viability  through  image  analysis.  In  terms  of
discussing  studies  in  the  literature  and  providing  insights  into
particular  subjects in seed certification procedures,  this  review
was  dedicated  to  two  important  parts,  including:  1)  conven-
tional  machine  learning  methods  and  algorithms  and  their
application  in  seed  recognition,  vigor,  and  purity;  2)  the  deep
learning  algorithms  and  architectures  for  seed  identification
and classification.

Several conventional machine learning and feature engineer-
ing  algorithms  comprising  ANN,  DA,  RF,  SVM,  PLS-DA,  and  NB
were  employed  to  classify  and  detect  seeds.  These  algorithms
showed their great efficiency in the seed recognition and certi-
fication process (Fig. 5 & Table 2). However, it still needs human
involvement  for  feature  extraction.  Therefore,  deep  learning
was introduced to automatically extract complex data features
from  huge  volumes  of  unsupervised  and  un-categorized  data.
Deep learning simplifies big data analytics procedures by cate-
gorizing  learning  and  extracting  distinct  levels  of  multiplex
data,  particularly for discriminative purposes such as classifica-
tion and prediction. Deep learning created great opportunities
to  develop  in  situ  seed  identification  and  sorting  systems.  For
instance,  imaging data  can be easily  accessed through mobile
phones,  tablets,  or  action  cameras  (GoPro)  for in  situ informa-
tion processing. Thus, it can open a new window for utilizing a
smartphone as a fast and robust substitute for the online seed
variety discrimination stage by developing a CNN model-based
mobile  app[14].  Some  scholars  presented  that  the  CNN
algorithm is trustworthy and highly effective for variety recog-
nition[98] in  farms.  Developing  mobile  apps  would  be  a  great
approach  for  seed  producers,  processors,  and  distributors.
Besides, a real-time seed recognition system is a fast and auto-
matic  recognition  system  through  deep  learning  to  detect
seeds  deficiencies  in  the  selection  process.  The  mechanism
evaluates the whole surface features of seeds precisely via deep
learning[66].  Precise  seed  sorting  methods  will  lead  to  increas-
ing yield in the breeding industry. These developments can be
extended to invent more mobile and online apps to detect and
discriminate  several  features  of  seeds  with  minimum  human
involvement,  such  as  seeds  protein  content,  hardness,  mois-
ture  content,  and so  on.  These  developments  have evolved in
the  agriculture  sector  to  accelerate  food  production  for  the
projected  global  population  in  the  near  future.  In  summary,
deep  learning  is  a  promising  means  for  smarter,  sustainable
agriculture and secure food production.

However,  the  relatively  low  maturity  of  the  deep-learning
models  demands  further  study.  Specifically,  further  develop-
ments  are  crucial  to  adjust  deep  learning  procedures  for  big
data problems, containing high dimensionality, streaming data

analysis, scalability of deep learning models upgraded formula-
tion  of  data  abstractions,  distributed  computing,  semantic
indexing,  data  tagging,  information  retrieval,  criteria  for
extracting good data representations,  and domain adaptation.
Upcoming research should address one or more of  these diffi-
culties[99].
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