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Abstract
The  common  bean  (Phaseolus vulgaris)  is  a  widely  consumed  legume  worldwide  and  holds  significant  value  in  terms  of  direct  human

consumption, surpassing all other legume crops combined. This study aimed to assess the applicability of the APSIM common bean model under

different  water-management  conditions  and  cultivars  in  southeastern  Iran.  A  two-year  field  experiment  was  conducted  at  the  Agricultural

Research Station of Shahid Bahonar University of Kerman, Iran, spanning from 2020 to 2021. The experiment followed a split-plot design with a

randomized complete block structure and included four replications. The primary irrigation factor consisted of three levels, representing 80%,

60%, and 40% of crop capacity, while the secondary factor encompassed early and late-maturity cultivars. To evaluate the model's performance,

simulated and measured grain yield, total dry matter, leaf area index (LAI), and soil water content were compared using the adjusted coefficient of

correlation,  normalized  root  mean  square  errors  (nRMSE),  and  model  efficiency  (EF).  The  results  indicated  a  satisfactory  agreement  between

predicted and observed grain yield (nRMSE = 12% and EF = 0.92). Similarly, the agreement between simulated and observed total dry matter was

reasonable (nRMSE = 13% and EF = 0.83).  The observed and predicted soil  water  content  also exhibited good agreement.  Consequently,  the

APSIM common bean model proves suitable for research purposes, particularly in the areas of irrigation and cultivar selection.
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 Introduction

P. vulgaris,  a plant species extensively grown and cultivated,
is  a  member  of  the  Fabaceae  family,  commonly  known  as  the
legume  family.  This  particular  species  holds  great  importance
as  a  staple  food  crop  worldwide,  contributing  significantly  to
the provision of  protein,  fiber,  vitamins,  and minerals.  Further-
more,  the  common  bean  serves  as  a  vital  source  of  dietary
protein for  numerous individuals  residing in South and South-
east Asia, a considerable portion of which adhere to vegetarian
diets. With approximately 24% of easily digestible protein, and
an  abundance  of  fiber,  antioxidants,  and  phytonutrients,
common  bean  seeds  are  consumed  in  various  forms,  such  as
whole  or  split,  ground  into  flour,  or  utilized  as  sprouts[1].
Beyond  their  nutritional  value,  common  beans  play  a  pivotal
role in the realm of sustainable agriculture. Their unique ability
to fix  nitrogen in the soil  not only enriches its  fertility  but also
lessens  reliance  on  artificial  fertilizers.  Crop  simulation  models
have  been  utilized  to  examine  the  impacts  of  the  most  effec-
tive  management  practices  on crop productivity  over  the  pre-
vious  two  decades.  To  illustrate,  the  CROPGRO  model[2] can
simulate  the growth and development  of  three legume crops,
namely  common  bean  (Phaseolus  vulgaris),  peanut  (Arachis
hypogaea),  and  soybean  (Glycine  max).  Additional  generic
models encompass STICS[3] and EPIC[4].  These models are com-
prised  of  a  singular  collection  of  subroutines  and  are  parame-
terized with coefficients that are externally sourced to the code.
Nevertheless,  it  has  been  recognized  that  this  particular

approach, while enhancing the functionality of the model for a
variety  of  species,  may result  in  a  trade-off  in  terms of  physio-
logical rigor and predictive capability[5] .

Different approaches are used in current models for legume
production to simulate growth and development. One simpler
approach,  as  exemplified  by  Sinclair’s  soybean  model[6] ,  has
been  expanded  to  include  cowpea  (Vigna unguiculata),  black
gram  (Vigna mungo)[7] and  chickpea  (Cicer arietinum L.)[8].  In
contrast, the CROPGRO model provides a more detailed cover-
age  of  various  physiological  processes.  Both  models  incorpo-
rate  the  dynamics  of  biomass  and  nitrogen  in  response  to
climate, nitrogen, and water supply. However, CROPGRO neces-
sitates the specification of more than 40 crop-specific and culti-
var-specific  parameters,  which  can  complicate  the  interpreta-
tion  and  limit  its  adaptability  to  different  environments  and
cultivars.  The  APSIM-legume  model  seeks  to  strike  a  balance
between  the  two  by  offering  a  comprehensive  simulation  of
crop  growth  and  development  without  the  need  for  a  large
number of parameters that are difficult to quantify[9].

The APSIM cropping systems framework, as demonstrated in
the works of Keating et al.[10] and Holzworth et al.[9], is a model
that  has  a  proven  record  in  accurately  modeling  the  perfor-
mance of various cropping systems, including rotations, fallow-
ing,  and  the  dynamics  of  crops  and  the  environment[11−13].
What  sets  APSIM  apart  from  other  crop  models  is  its  unique
approach  of  primarily  focusing  on  simulating  the  supply  of
resources for crops, rather than solely focusing on the demand
for resources.  In  this  framework,  the soil  plays a  central  role in
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the  simulation,  as  crops,  influenced  by  weather  and  manage-
ment practices, interact with the soil in one state and leave it in
a  different  state  for  the  subsequent  crop[14].  The  aim  of  this
particular  investigation,  however,  was  to  assess  the  effective-
ness  of  APSIM-legume  in  simulating  the  growth  and  develop-
ment of two different cultivars of common bean, in relation to
various water management scenarios.

 Materials and methods

 Model description
The  legume  module,  much  like  other  crop  modules  within

APSIM emulates the growth, development,  yield,  and nitrogen
accumulation of legumes in response to various environmental
factors such as temperature, radiation, photoperiod, soil water,
and  nitrogen  availability.  The  principles  employed  in  APSIM-
legume have been expanded upon from the original modeling
approaches introduced by Ritchie[15] and subsequently summa-
rized by Ritchie[16]. The model operates on a daily time-step and
has  been  specifically  designed  to  simulate  a  homogeneous
field,  predicting  grain  yield,  crop  biomass,  crop  nitrogen
absorption and fixation, as well as the distribution of resources
within  the  plant  on  a  spatial  basis.  The  methodologies
employed  in  modeling  crop  processes  aim  to  strike  a  balance
between providing a comprehensive depiction of the observed
variations in crop performance across diverse production envi-
ronments  and  minimizing  the  number  of  parameters  that  are
difficult to quantify[17].

When  parameterizing  a  generic  model  for  legume  species,
particularly the common bean, it proves beneficial to introduce
the  concept  of  essential,  desirable,  and  optional  parameters.
Essential  parameters  are  those  that  exhibit  the  greatest  sensi-
tivity within the model and often differ significantly across vari-
ous  species.  Consequently,  these  parameters  must  be  deter-
mined through experimentation for  each species[18].  Examples
of  essential  parameters  include  the  phyllochron,  radiation
extinction  coefficient,  and  radiation-use  efficiency.  While  it  is
sometimes  possible  to  define  essential  parameters  based  on
published  sources,  due  to  their  critical  nature,  it  is  often
essential  to  verify  the  value  of  such  parameters  through  local
experimentation  using  commonly  cultivated  varieties.  The

development  of  the  common  bean  module  can  be  attributed
to  Peter  Carberry  and  Michael  Robertson,  and  their  work  is
elaborated upon in the paper authored by Robertson et al.[19].

 Calibration and validation of the common bean-
legume model

The  calibration  of  the  model  was  performed  by  utilizing
measured data obtained from a two-year field experiment that
was carried out during the growing seasons of 2020 and 2021.
The experimental design employed was a split plot, based on a
randomized complete block design with four  replications,  and
it was conducted at the Agricultural Research Station of Shahid
Bahonar  University  of  Kerman  in  Iran,  located  at  the  coordi-
nates  32.38°  N  and  51.40° E.  The  primary  factor  considered  in
the experiment  was  irrigation,  which consisted of  three levels:
80%, 60%, and 40% of the field capacity. Additionally, the sub-
factor taken into account was the maturity stage, with early and
late-maturity being the respective categories.

The date of planting was the 10th of May for both years. Each
experimental  plot  consisted  of  a  length  of  6  m  and  four  rows
with a  spacing of  50 cm between rows,  and a plant  density  of
30  plants  per  square  meter.  The  soil  texture  was  classified  as
silty  loam.  Irrigation  was  carried  out  using  a  drip  system.  The
amount  of  water  applied  to  each  plot  was  measured  using  a
counter. All plots were irrigated uniformly every four days until
the  four-leaf  stage.  After  this  stage,  irrigation  was  adjusted
based  on  the  field  capacity  using  the  weight  method.  The
common bean crop was harvested on the 10th of  July  and the
1st of  July  in  the  years  2020  and  2021,  respectively.  To  deter-
mine the grain yield, the final harvest involved the two middle
rows (10 m2) at physiological maturity (with a humidity level of
12%).  The  field  data  were  used  to  estimate  genotype-specific
parameters for the model (as shown in Table 1). The model was
calibrated using a trial and error approach, aiming to minimize
the  difference  between  observed  and  simulated  values.  Para-
meters  that  had  a  significant  impact  on  dry  matter  and  leaf
area  index  (LAI)  were  adjusted  accordingly.  This  process  was
done  until  the  model's  simulated  values  closely  matched  the
observed values for all treatments[20].

To  calibrate  and  validate  the  water  content,  soil  moisture
content  data  collected  from  two  field  experiments  conducted
in 2020 and 2021 were utilized. To validate the crop model, the

 

Table 1.    Cultivar-specific parameters for a early- and late-maturity common bean cultivars.

Parameter Units Parameter description Late-maturity
cultivar

Early-maturity
cultivar

Cardinal temperatures for
thermal time calculation

°C Base temperature 7.5 7.5

Optimum temperature 30 30
Maximum temperature 40 40

Shoot_rate Degree-days/mm Thermal time required per mm elongation by young shoot
before emergence

0.6 0.56

node_app_rate Degree-days Thermal time required for node appearance on main stem 100 92
Leaves_per_node lf/node No. of leaves per plant per main stem node 2 2
Extinction_coef Extinction coefficient (at default row spacing) 0.40 0.40
Rue g/MJ Radiation-use efficiency 0.94 0.94
frac_leaf_pre_flower Fraction allocated to leaves pre-flowering 0.55 0.60
frac_leaf_grain_fill Fraction allocated to leaves in grain fill 0.30 0.35
frac_stem2 pod Fraction allocated to pod before grain fill 0.46 0.49
frac_pod2 grain Fraction allocated to pod relative to grain during grain fill 0.28 0.28
n_conc_crit g/g Critical nitrogen concentration of grain 0.045 0.045
Specific_root_length mm/g Specific root length 65000 65000
Trans_eff_coef Pa Transpiration efficiency coefficient 0.0055 0.0055
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dry matter,  LAI,  and grain yield traits acquired from these field
experiments  were  taken  into  account.  To  assess  the  variances
between  the  observed  and  simulated  data,  various  metrics
were employed[21].

These metrics included the coefficient of determination (R2),
the 1:1 line, the normalized root mean square error (nRMSE) as
proposed  by  Wallach  &  Goffinet[22],  and  the  model  efficiency
(EF)  as  defined  by  Willmott[23].  These  metrics  were  utilized  to
compare the observed and simulated values of key parameters
such  as  grain  yield,  dry  matter,  leaf  area  index  (LAI),  and  soil
moisture content.

nRMSE (%) =

√∑n
i=1 (S i−Oi)2

n
× 100

O
(1)

EF = 1−
∑n

i=1 (Si−Oi)2∑n
i=1 (o−Oi)2 (2)

OWhere, , O, S,  and  n  represent  the  average  observed  data,
observed  data,  simulated  data,  and  number  of  observations,
respectively.  The  accuracy  of  the  model  improves  as  the  nRMSE
value approaches zero. Additionally, a value of one for EF (model
efficiency)  indicates  that  the  simulated  values  better  depict  the
trend  in  the  measured  data  compared  to  the  average  of  the
observations[24].  Furthermore,  a  higher  R2 value  nearing  unity
demonstrates that the model accurately replicates reality.

 Results and discussion

 Model parameterization
For  the  majority  of  the  plant's  growth  period,  there  was  a

notable  correspondence  between  the  leaf  area  index  and  the
distribution  of  dry  matter  among  different  plant  tissues,  in
accordance  with  the  observations  made  in  the  experimental

study  of  two  distinct  cultivars.  The  calibration  of  the  model
employed  in  this  study,  as  demonstrated  in Fig.  1,  yielded
results  that  reasonably  approximated  the  predicted  values  of
dry  matter  for  both  the  early-maturity  and  late-maturity  culti-
vars,  based  on  the  2020  experimental  data.  The  calibration
analysis  revealed that  the nRMSE and EF values  for  dry  matter
were  7%  and  0.86,  respectively,  for  the  early-maturity  cultivar,
and  9%  and  0.97,  respectively,  for  the  late-maturity  cultivar.
Moreover, the coefficient of determination (R2) values obtained
from  the  regression  analysis,  comparing  the  observed  and
simulated values of dry matter ranged from 0.92 to 0.96 for the
two cultivars. Furthermore, when it came to the leaf area index,
the RMSE and EF values were 12% and 0.96, respectively, for the
early-maturity  cultivar,  and  10%  and  0.94,  respectively,  for  the
late-maturity cultivar, as depicted in Fig. 2.

 Model evaluation
Figure  3 depicts  the  outcomes  of  model  validation  for  two

varieties  of  early-  and  late-maturity  using  experimental  data
collected in 2021. The validation results demonstrated that the
model accurately predicted the leaf area index (LAI) (Fig. 3). For
example,  the  normalized  root  mean  square  error  (nRMSE)  and
model  efficiency  (EF)  for  LAI  were  found  to  be  20%  and  0.62,
respectively. Furthermore, the coefficient of determination (R2)
value  for  the  regression  analysis  between  the  observed  and
simulated LAI was determined to be 0.83 for both cultivars.

Moreover,  the  model  validation  results  indicated  that  the
model also effectively predicted the dry matter and grain yield
of  common  beans  in  2020  and  2021.  According  to Fig.  3,  the
values of nRMSE, EF, and R2 for grain yield were 12%, 0.92, and
0.97,  respectively.  Similarly,  for  dry  matter,  these  values  were
13%,  0.83,  and  0.91,  respectively.  These  findings  suggest  that
the APSIM-legume model was capable of accurately simulating
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Fig. 1    Simulated (lines) and measured (data points) values of dry matter of (a) early- and (b) late-maturity cultivars.
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the growth and grain yield of common beans for two consecu-
tive years and across different cultivars.

The nRMSE values for soil water content exhibited a range of
14%  in  the  year  2020  to  12%  in  the  year  2021,  as  depicted  in
Fig.  4.  Additionally,  the  EF  values  displayed  variation,  with  a
range of 0.94 in 2015 to 0.80 in 2016, also shown in Fig. 4. This
provides  evidence  that  the  APSIM-legume  model  accurately
captured  the  soil  water  balance  during  the  growth  period  of
the  common  bean  across  different  years.  The  APSIM-legume
model  underwent  testing using an independent  set  of  experi-
ments,  primarily  conducted  in  the  tropics  and  subtropics  of
Australia. These experiments encompassed various factors such
as  cultivar,  sowing  date,  water  regime  (irrigated  or  dryland),
row spacing, and plant population density[19]. The model, intro-
duced  by  Robertson  et  al.  in  2002[19],  aimed  to  simulate  crop
growth  and  development  with  comprehensive  coverage,
eliminating  the  need  for  an  excessive  number  of  parameters.
The  model  adopted  a  generic  approach,  acknowledging  the

shared  physiology  and  simulation  methods  across  numerous
legume  species.  When  simulating  grain  yield,  the  model
accounted  for  77%,  81%,  and  70%  of  the  variance,  with  RMSE
values  of  31,  98,  and  46  g·m−2 for  common  bean  (n  =  40,
observed  mean  =  123  g·m−2)[25].  However,  the  simulation  of
biomass at maturity proved to be less accurate, explaining 64%,
76%,  and  71%  of  the  variance,  with  RMSE  values  of  134,  236,
and 125 g·m−2 for common bean, peanut, and chickpea, respec-
tively.

However,  it  has  been  asserted  that  the  occurrence  of  a
10%−20%  normalized  root  mean  square  error  (nRMSE)  thre-
shold  in  the  context  of  model  inaccuracies  is  quite
prevalent[19,26].  Indeed,  attaining  model  errors  below  these
thresholds  is  exceedingly  challenging  because  models  are
benchmarked  against  experimental  data,  which  inherently
entails  a  degree  of  error.  Furthermore,  the  incorporation  of
observation  errors  in  the  inputted  parameters  and  variables
further complicates the achievement of lower error levels.

 Conclusions

The present experiments showed that the model’s simulated
values  of  LAI,  dry  matter,  grain  yield,  and  soil  water  content
were  in  general  agreement  with  the  observed  values  across
different treatments. This indicates that the model has a robust
predictive  capability.  It  can  therefore  be  concluded  that  the
model  can  be  used  to  analyze  crop  yield  and  its  limitations  in
response to environmental conditions and management input.
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