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Abstract
Chlorophyll is a vital component of photosynthesis and must be produced throughout the plant life cycle. Light-dependent protochlorophyllide
oxidoreductase (LPOR) is a pivotal enzyme in the chlorophyll biosynthesis pathway, catalyzing the conversion of Pchlide to Chlide. The presence
of different types of LPOR ensures the efficient synthesis of chlorophyll in photosynthetic organisms during the dark-light transition. In addition
to the transcriptional, translational, and post-translational regulation of LPOR function under different abiotic stresses, the nature of the substrate
also influences LPOR function. Here, a perspective on chlorophyll synthesis and the development of chloroplasts is offered, the importance of
LPOR in safeguarding plant light energy utilization is summarized, the gene expression pattern and structural-functional features of LPOR are
outlined, as well as the role of LPOR in abiotic stress tolerance response, the catalytic mechanism of LPOR as well as the modulation of LPOR by
light  signals  and  other  environmental  factors  are  discussed.  The  aim  is  to  provide  references  for  the  cultivation  and  innovation  of  plant
germplasm resources with stress tolerance.
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Introduction
 

Chlorophyll importance in light use efficiency (LUE)
The  demand  for  food  has  sharply  increased  because  of  the

growing population[1,2].  Improving the LUE of crops represents
the  primary  option  for  increasing  crop  yield  potential[3].  LUE
refers to the efficiency by which a crop produces biomass from
absorbed light energy, which is measured by the accumulation
rate  of  photosynthetically  active  radiation  in  relation  to
biomass  per  unit  of  intercepted  or  absorbed  light[4].  The
improvement  of  LUE  depends  on  the  rate  of  photosynthesis
and  the  efficiency  of  converting  light  energy  into  fixed
carbon[5].  The  principal  methods  of  improving  LUE  include  (i)
extending  photosynthetic  time,  (ii)  increasing  the  area  of
photosynthesis,  and  (iii)  increasing  the  rate  of  photosynthesis.
Therefore,  enhancing  photosynthetic  efficiency  is  crucial  for
increasing  yield[6].  Photosynthesis  is  the  process  by  which
plants and photosynthetic bacteria use light energy and CO2 to
produce carbohydrates and O2

[7]. During photosynthesis, plants
convert  light  energy  into  chemical  energy,  which  is  used  for
plant growth. Chlorophyll plays an important role in photosyn-
thesis  in  higher  plants  and  has  multiple  functions  in  this
process[8].  Related  proteins  bind  with  chlorophyll  and  form
complexes  that  capture,  convert,  and  redirect  light  energy[8].
Chl a and Chl b are the primary substances of the core protein
complex  and  light-harvesting  antenna  protein  complex  of
photosystems, respectively[9]. 

Role of LPOR in chlorophyll synthesis and
chloroplast development

Chlorophyll biosynthesis is a complex process completed by
multiple  enzymes  (Fig.  1).  Accurate  and  stable  chlorophyll
synthesis is critical for plant growth and development because
free chlorophyll and its precursors, the tetrapyrrole compounds
can  be  photosensitive  and  phototoxic  to  cells.  This  effect  is
most pronounced in the photosystem II reaction center, which
is  highly  exposed  to  oxidative  damage[10−12].  Chlorophyll
synthesis  consists  of  two  parts.  The  first  part  is  the  common
pathway of  tetrapyrrole  substance synthesis,  starting from the
synthesis of glutamyl tRNA and ending with Pro.  This pathway
involves  the  enzymes  glutamine  tRNA  reductase,  delta-amino
ketones  pentanoic  acid  dehydratase,  uroporphyrinogen  III
synthase,  coproporphyrinogen  III  oxidase,  and  protopor-
phyrinogen  oxidase.  The  second  aspect  involves Pro chelation
with  Mg2+ in  the  chlorophyll  synthesis  pathway,  requiring
involved enzymes Mg-chelatase, Mg-protoporphyrin IX methyl-
transferase,  POR,  chlorophyllide  a  oxygenase,  chlorophyll
synthase,  and  chlorophyllase.  The  rate-limiting  enzyme  POR
performs  a  crucial  catalytic  role  in  chlorophyll  synthesis  by
transforming  Pchlide  into  Chlide[13].  LPOR  also  participates  in
chloroplast  development  and  serves  as  the  primary  protein
component in PLBs of etioplasts[14,15]. Two types of POR exist in
nature: DPOR (EC 1.3.7.7) and LPOR (EC 1.3.1.33)[16]. From evolu-
tionary  terms,  DPOR  is  the  older  enzyme,  a  multisubunit
enzyme containing three separate subunits, and very similar to
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nitrogen-fixing  enzymes.  DPOR  catalyzes  Pchlide  reduction  in
an ATP-dependent manner and is oxygen-sensitive, and is pre-
sent in non-flowering land plants,  algae,  and cyanobacteria[17];
LPORs  are  thought  to  have  evolved  in  cyanobacteria  about  2
billion  years  ago  as  a  result  of  increased  atmospheric  oxygen
levels  and  are  not  sensitive  to  oxygen[18].  LPOR  is  present  in  a
wide  range  of  organisms,  including  plants,  algae,  cyanobacte-
ria, and anaerobic photosynthetic bacteria[19−21]. However, only
LPOR is present in angiosperms, indicating that induction with
light is necessary for angiosperms to produce chlorophyll[22,23].
These  characteristics  make  LPOR  essential  in  chlorophyll
biosynthesis and chloroplast development in angiosperms.

A multitude of  investigations have demonstrated that  LPOR
plays a pivotal role in the response to abiotic stress, influencing
the biosynthesis of chlorophyll, and exhibiting a certain level of
stress  resistance.  A  synthesis  was  conducted  of  the  research
conducted  domestically  and  internationally  on  LPOR,  encom-
passing  its  structural  characteristics,  catalytic  reaction  mecha-
nism,  optical  signal,  temperature,  moisture,  and  the  factors
influencing its activity. 

Overview of the characteristics of LPOR
 

Gene expression patterns of LPOR
LPOR  is  a  single  polypeptidase  that  is  encoded  within  the

nucleus. It has a transporter protein segment at its N-terminus.
This transporter protein segment transports LPOR into the plas-
tid after it is transcribed. LPOR is highly similar to the SDR family
and  needs  photoactivation  to  reduce  Pchlide  and  perform
biological  functions[24].  Previous  studies  investigated  LPOR  in
several  species,  including Arabidopsis  thaliana[25], Brassica

oleracea[26], Oryza  sativa[27], Hordeum  vulgare[28], Zea  mays[29],
Nicotiana tabacum[30], Cucumis sativus[31], and Pisum sativum[32].
Pchlide,  the  precursor  of  chlorophyll  synthesis,  failed  to
undergo  the  requisite  reduction  in  time,  thereby  allowing  the
production  of  a  substantial  amount  of  ROS  upon  exposure  to
light,  which  resulted  in  the  oxidative  damage  and  chlorophyll
bleaching  of  the  seedling[33].  In  addition,  the  accumulation  of
ROS  in  chloroplasts  also  impairs  the de  novo synthesis  of
protein D1 (also known as photosystem b-a or  PsbA),  which is
essential  for  PSII  repair[34].  The  enzyme  LPOR  catalyzes  the
conversion of pchlide into chlide,  a process which enables the
developing  seedling  to  gain  the  capacity  to  perform  photo-
synthesis[35].  The  production  of  chlorophyll  is  thus  facilitated,
thus  allowing  the  seedling  to  grow  in  an  autotrophic
manner[15].

The  different  gene  expression  patterns  of  LPOR  subtypes
prevent  direct  photooxidative  harm  in  yellow  seedlings  when
exposed to  light.  In Arabidopsis,  three LPOR subtypes,  namely,
LPORA,  LPORB,  and  LPORC  were  identified[36,37].  At  the  early
stage of plant development, AtPORA and AtPORB are expressed
during  etiolation  in Arabidopsis seedlings[35]. AtPORB and
AtPORC are synthesized abundantly in slightly mature seedlings
and,  subsequently,  in  mature  plants[35].  Upon  light  exposure,
the expression levels of AtPORB and AtPORC are directly corre-
lated  to Chl  a content  and  the  stacking  of  thylakoids  in
seedlings[38,39].  The  cpSRP43  as  a  chaperone,  stabilizes  the
enzyme and provides the optimal quantity of PORB during leaf
greening and heat  shock[40].  In  contrast,  cpSRP54 enhances  its
binding to the thylakoid membrane,  thus ensuring a sufficient
level  of  metabolic  flux  during  late  chlorophyll  biosynthesis[40].
Two  LPOR  subtypes,  namely,  OsPORA  and  OsPORB,  were

 

Fig.  1    Chlorophyll  biosynthesis  pathway.  1:  glutamine-tRNA  reductase,  2:  delta-amino  ketones  pentanoic  acid  dehydratase,  3:  urinary
porphyrins original  III  synthetase,  4:  coproporphyrin III  oxidase,  5:  protoporphyrin oxidase,  6:  Mg-chelating enzyme, 7:  Mg-protoporphyrin IX
methyltransferase,  8:  the  original  chlorophyll  acid  ester  oxidoreductase,  9:  chlorophyll  acid  ester  a  oxygenase,  10:  chlorophyll  synthase,  11:
chlorophyllase, 12: chlorophyllide a oxygenase, 13: ferrous chelase.
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identified  in  rice[27].  During  early  leaf  development, OsPORA is
expressed  in  darkness,  whereas OsPORB is  expressed  through-
out  the  entire  leaf  development  process  regardless  of  light
conditions[41].  Previous  studies  demonstrated  that  although
OsPORA and OsPORB have overlapping biochemical functions,
the response of OsPORB to constant light or physiological func-
tions  during  reproductive  growth  cannot  be  substituted  with
OsPORA[27].  Barley  also  has  two  LPOR  subtypes[13]. In  vitro
measurement  revealed  that HvPORA is  expressed  in  etiolated
seedlings,  and  its  expression  is  downregulated  after  light
exposure[42].  On  the  contrary, HvPORB is  expressed  during
morphogenesis  in  leaf  development  regardless  of  light  condi-
tions[42]. In addition, barley etioplast contains a distinctive light-
harvesting complex called LHPP, of which HvPORA is an essen-
tial  component[42].  The  LHPP  complex  is  prepared  in  advance
for the LPOR-catalyzed transformation of Pchlide under light to
prevent  the  free  Pchlide  phototoxicity  after  light  exposure,
which causes photobleaching of seedlings[43]. 

Structural characteristics and functions of LPOR
A comparison of the amino acid sequences of LPOR in barley

and Synechocystis reveals  that  the  conserved  Cys  residue
sequence  is  closely  linked  to  the  binding  and  catalysis  of
substrate  Pchlide  conversion.  Point  mutation  experiments  on
various  Cys  residues  revealed that  Cys276 is  the active  site  for
Pchlide  binding.  Additionally,  Cys303  functions  as  a  pigment-
binding  site  with  low  affinity.  Both  Cys  residues  participate  in
the assembly and stabilization of PORB in the etioplast[44,45].

LPOR’s  structure,  along  with  other  SDR  family  members[24],
contains  the  Rossmann-fold  structure  that  binds
dinucleotides[46].  The  structure  has  three  flexible  regions  posi-
tioned at amino acid residues 146–160, 228–255, and 284–291.
Binding  to  the  NADPH  binding  site  of  LPOR  is  closely  associ-
ated with amino acid residues 146–160 and 228–255,  whereas
amino  acid  residues  284–291  plays  a  crucial  role  in  regulating
substrate  Pchlide  binding.  In  contrast  to  the  other  SDR  family
members,  the SDR proteins stand out for utilizing Asn-Ser-Tyr-
Lys  to  facilitate  proton  transfer  from  tetrads,  leading  to  the
production of stable reaction intermediates[46].  However, LPOR
employs  Thr  residues,  particularly  Thr145,  to  replace  the  Ser
residues.  The  structural  modeling  of  the  ternary  enzyme-
substrate  complexes  constructed  from  crystal  and  electron
microscopy data also confirmed the differences in the orienta-
tion  of  LPOR  to  the  substrate  Pchlide  and  the  structure  of  the
LPOR  active  site[47−49].  Further  results  indicate  that  the
conserved Tyr and Gln residues in LPOR are essential for Pchlide

binding,  while  the  active  site  Cys  residue  is  crucial  for  both
hydride and proton transfer reactions in LPOR[48].

LPOR  participates  in  both  chlorophyll  biosynthesis  and
chloroplast  development[50].  Chloroplasts  originate  from
proplastids,  and etioplasts are transitional forms of chloroplast
development. Etioplasts are characterized by the lack of chloro-
phyll and possession of a distinctive membrane structure called
PLBs[15]. LPOR is the main protein constituent of PLBs, compris-
ing  more  than  90%  of  the  total  protein  content  of  PLBs[51].
Carotenoids act in parallel with DET1 to regulate the transcrip-
tional formation of LPOR and plastids PLBs, thereby controlling
chloroplast  development[52].  PLBs  have  diverse  LHPP  com-
plexes  with  distinct  absorption  spectra,  namely,  LPOR-
Pchlide633,  LPOR-Pchlide640,  and  LPOR-Pchlide655,  with  peak
absorptions  at  633,  640,  and  655  nm,  respectively[26,53].  The
photoactive  binary  complex  of  LPOR-Pchlide655 binds  to
NADPH  after  light  detection  and  catalyzes  Pchlide  reduction,
leading  to  light  conversion  and  gradual  formation  of  Chl[53].
Moreover,  the  decomposition of  the  PLB lattice  structure  initi-
ates  grana  stacking,  leading  to  the  complete  development  of
chloroplasts[50].  Nonetheless,  LPOR-Pchlide633,  which  is  not
photoactive,  can degrade after  exposure to light,  thereby trig-
gering  an  outburst  of  ROS  in  chloroplasts.  Severe  instances  of
such degradations may result in cell death[32]. 

Reaction mechanism of Pchlide reduction to
Chlide catalyzed by LPOR

In plants, Pchlide reduction is an important rate-limiting step
within the chlorophyll synthesis pathway. In angiosperms lack-
ing DPOR, chlorotic seedlings rely on LPOR to turn green. LPOR
requires  light-induced NADPH as  a  reducing agent  to  catalyze
the  Pchlide  conversion.  In  regular  plant  development,  LPOR-
Pchlide-NADPH  forms  a  ternary  complex  that  accumulates
during  the  dark  morphogenesis  of  the  etioplast;  the  NADPH
hydride on the nicotinamide ring is transferred to the C17 posi-
tion  of  Pchlide  through  light  induction  (Fig.  2).  Then,  the
conserved Tyr residue transfers a proton to the C18 position of
Pchlide. Thus, the C17 and C18 double bonds of the Pchlide-D
ring  are  reduced,  resulting  in  the  creation  of  Chlide.  Then,
Chlide  undergoes  esterification  and  further  modifications  to
form Chl a and Chl b[47,54]. 

Method of LPOR entering plastids
LPOR  is  a  protein  encoded  in  the  nucleus,  synthesized  into

large pPORs in  the  cytoplasm,  and then modified to  enter  the
plastid[55] (Fig. 3). The process of LPORs entering chloroplasts is
distinct[56]. Prior studies verified that pPORA relies on substrates

 

Fig. 2    The C17–C18 double bond of Pchlide is restored to chlorophyll by light.
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to  enter  chloroplasts,  whereas  pPORB  does  not  require  any
substrate for entry[57]. TOC33 is an essential core component in
the complex of PORA and PORB import channels in cotyledons
and  leaves[56,58].  PTC52  is  a  unique  Pchlide  a  oxygenase
complex  located  in  the  plastid  envelope.  It  is  responsible  for
associating  the  synthesis  of  Pchlide  b  with  the  import  of
pPORA[59].  In  RNAi  plants  lacking  PTC52  transcripts  and
proteins, pPORA cannot be imported to plastids normally. This
phenomenon causes an excessive accumulation of Pchlide and
leads  to  ROS  accumulation  and  cell  death  during  greening[59].
In addition, CDF1 present on thylakoids and capsules interacts
with the LPOR subtype and plays a crucial role in the introduc-
tion  and  stability  of  LPOR[55].  Deletion  of  CDF1  leads  to  a
decrease  in  LPOR  protein  accumulation,  which  normally
hinders  chlorophyll  synthesis,  damages  PLB  formation,  affects
chloroplast  development  under  light,  causes  photobleaching
of  plants  under  light,  and  inhibits  plant  growth[55,60].  Various
pathways  of  LPOR  import  into  plastids  guarantee  normal
chloroplast  development  and  chlorophyll  biosynthesis.  This
finding  suggests  that  factors  beyond  the  components  of  the
core  complex  of  the  import  channel  participates  in  the  trans-
portation of nuclear-encoded plastid proteins. Plastid-localized
membrane-bound  factors,  such  as  TTP1,  play  a  role  in  LPOR-
directed import  into chloroplasts.  TTP1 deficiency leads to  the
accumulation  of  glutamate  receptors,  enhances  pentosamine
ketoglutarate  synthesis  and  reduces  POR  levels,  which  in  turn
leads  to  increased  sensitivity  to  reactive  oxygen  species  and
slower greening of yellowing seedlings[61]. 

Regulation of LPOR enzyme activity

For the reduction of Pchlide to occur, LPOR catalysis requires
photoactivation[23].  The  catalytic  efficiency  of  the  reaction

varies  with  different  light  qualities,  and  the  quantum  yield  of
the reaction is 3–7 times higher under red light (647 nm) than
under  blue  light  (407  nm)[62].  Moreover,  LPOR's  catalytic  reac-
tion efficiency varies when combined with different substrates.
Several  studies  suggested  that  cabbage’s  photobleaching  is
primarily  caused  by  short-wavelength  light  (625–630  nm)  of
7 μmol  photons  m−2∙s−1.  Light  with  wavelengths  longer  than
630–640  nm  causes  bleaching  and  photoreduction,  whereas
that  with  wavelengths  higher  than  640  nm  predominantly
causes  photoreduction[26].  Similar  conclusions  can  be  reached
through  various  methods,  such  as  behavioral  spectroscopy,
pigment  content  measurement,  and  kinetic  analysis.  These
studies  indicated  that  under  low  light  intensity,  the  excitation
energy  of  the  short-wavelength-absorption-type  Pchlide
causes  the  photoreduction  of  long-wavelength-absorption-
type Pchlide; in comparison, photobleaching occurs under high
photochemical light[63].

The  active  site  of  LPOR  plays  a  critical  role  in  its  catalytic
activity.  Tyr275  and  Lys279,  which  are  essential  active  sites  of
LPOR,  along  with  four  conserved  Cys  residues  involved  in
substrate binding, have a very important function in the opera-
tion of LPOR. Tyr275 and Lys279 regulate the efficiency of LPOR
photoactive  state  formation  by  participating  in  the  coordina-
tion  of  NADPH  and  Pchlide  at  enzyme  catalytic  sites[64].  LPOR
photoactivity  is  regulated  by  several  Cys  binding  sites  with
different substrate affinities[58]. Any mutation at these sites can
affect LPOR photoactivity[65].

Furthermore,  proteins  interacting  with  LPOR  regulate  their
enzyme  activity  in  various  ways.  The  structural  stability  of  the
LHPP complex is crucial for plant greening. The presence of TLs
has been demonstrated to influence the activation of LPORs in
response  to  regulators[66].  Research  indicated  that  galactosyl
diacylglycerol  impacts  the  catalytic  reaction  of  LPOR  by

 

Light

Dark

Fig.  3    Regulatory  networks  of  the  PORA,  PORB,  and  PORC  genes  in A.  thaliana.  Positive  interactions  are  indicated  by  arrows,  negative
interactions by blunt ends, and the direction of protein movement by arched arrows. Helices represent mRNA, and ellipses represent proteins.
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influencing  the  creation  and  breakdown  of  the  Pchlide-LPOR-
NADPH  complex,  which  affects  the  biosynthesis  of  plant
chlorophyll[67].  Feedback  regulation  is  usual  in  chlorophyll
biosynthesis.  Fluorescent  protein  is  one  of  the  tetrapyrrole
biosynthesis  negative  feedback  regulators  in  higher  plants.  It
directly  interacts  with  LPOR  and  cooperates  with  LPOR  nega-
tive  feedback  to  regulate  chlorophyll  biosynthesis[68].  The
protein  LIL3  regulates  plant  greening  through  direct  interac-
tion with LPOR. The mutation in lil3 causes a considerable loss
of  LPOR  protein,  affecting  its  posttranslational  modifications,
which lead to abnormal chlorophyll synthesis[69]. Pchlide trans-
formation catalyzed by LPOR involves protein phosphorylation.
Previous  research  demonstrated  that  certain  plastid  ADP-
dependent  kinase impacts  the membrane association of  LPOR
via reversible protein phosphorylation regulates PLB formation,
promotes  light-dependent  diffusion,  and  ultimately  facilitates
chloroplast development[70]. 

Regulation of LPOR by environmental factors
 

Regulation of LPOR gene by light–dark transition
Light  is  necessary  for  angiosperms  to  turn  green,  and  the

reaction  involved  is  Pchlide  reduction[56].  Several  researchers
examined prevalent transcription factors in light signaling, and
they summarized and predicted the availability of multiple light
response  elements  on  the  promoter  of  genes  involved  in
chlorophyll  biosynthesis,  further  highlighting  the  importance
of  light  signaling  in  chlorophyll  synthesis  in  plants[71].  Under
dark  conditions, PORC expression  is  extremely  reduced  or
completely  inhibited  because  of  the  suppression  of  PIF3,
histone  deacetylase  1,  and  SCL  proteins.  Research  indicated
that  the  phytochrome  proteins  PHYA  and  PHYB,  which  are
photosensitive receptors found in plants,  play a role in chloro-
phyll  biosynthesis.  When  exposed  to  white  light,  PHYA  and
PHYB  positively  regulates LPOR,  promoting  chlorophyll
biosynthesis[33].  Terminal flower 2 protein located downstream
of  the  PHYA  signal  regulates  the  expression  of  PORA  and
promotes chlorophyll synthesis[72]. Under shading or low-inten-
sity far-red light, the expression levels of PORB and PORC in the
phyA mutant  is  substantially  suppressed[73,74].  Far-red  light
exposure  leads  to  the  far-red-blocked  greening  phenomenon
in plants. PHYA suppresses LPOR gene expression under far-red
light,  resulting  in  irreversible  plastid  damage  that  restrains
proper  greening  ability  of  seedlings[75].  The  sigma  factor  is  a
nuclear-encoded protein regulated by PHYA that participates in
the  regulation  gene  expression  in  chloroplasts  and  influences
reverse  signaling  from  plastids  to  nuclei  to  promote  plant
greening and plastid development[75].

In  the  dark,  PORA  activity  is  initiated  by  acetylation  in  the
presence  of  HDAC,  which  regulates  chlorophyll  synthesis[76].
Meanwhile,  phytochrome  interacting  factor  1  binds  to  the  G-
box  DNA  sequence  element  (CACGTG)  of  the  PORC  promoter
and positively regulates PORC expression[77] (Fig. 3). After expo-
sure  to  light,  PIF3  is  phosphorylated  and  inactivated,  and
histone  H4  is  acetylated[78].  Moreover,  light  facilitates  the
expression  of  miR171  and  hinders  gibberellic  acid  synthesis,
thereby promoting the expression of DELLA protein. However,
miR171  and  DELLA  inhibit  the SCL transcription,  resulting  in  a
significant  increase  in  the  PORC  expression  under  light[79,80]

(Fig.  3).  In addition,  light positively regulates the expression of
the  transcription  factor  HY5,  which  binds  directly  to PORC to

promote its gene expression[81]. HY5 interacts with PHYB in the
dark through COP1/SPA1; after exposure to light, the transcrip-
tion factor HY5 is released. HY5 cooperates with the biological
clock  of  PIFs  to  regulate  the  transcription  level  of PORC[81,82]

(Fig. 3).
The dark-to-light transition enables plants to transition from

the  skotomorphogenesis  to  the  photomorphogenesis  state.
This  process  is  often  accompanied  by  changes  in  phytohor-
mones,  which  regulate  the  expression  of  different  PORs  in
different  ways[83].  EIN  3  and  EIN  3-like  1  positively  regulate
PORA and PORB[84].  Cytokinins  significantly  enhance  the  tran-
scription of POR mRNA and accelerate plant greening, whereas
abscisic  acid  has  the  opposite  effect[85].  Auxin  binds  to  the
promoters  of PORA and  GUN5  through  ARF2  and  ARF7  to
inhibit their expression directly, with the help of IAA14[86]. Addi-
tionally,  growth  hormones  are  known  to  inhibit  chlorophyll
biosynthesis.  Inhibition  of  their  expression  directly  inhibits
chlorophyll  biosynthesis[86].  In Arabidopsis,  the  structures  of
PORA and PORB are mostly the same, except for the initial tran-
sit  peptide.  However,  they  perform  different  functions  and
cannot  replace  each  other.  PORA  solely  performs  during  the
initial  stage of  light  exposure in  yellowing seedlings,  and light
significantly  inhibits  PORA.  Following  light  exposure,  the
expression  of PORA declines  rapidly,  whereas PORB stays
constantly expressed.[25].

The  regulatory  mechanisms  of PORA, PORB,  and PORC are
interconnected  and  not  completely  independent.  When  ethy-
lene is applied under light, EIN3 regulates the transfer of COP1
from  the  cytoplasm  to  the  nucleus.  Thus,  the  activity  of
extranuclear  COP1  is  blocked,  and  the  expression  of PORC is
inhibited.  When  ethylene  is  absent  under  light,  COP1  mainly
exists in the cytoplasm, and HY5 initiates PORC transcription[87]

(Fig. 3).
The  expression  of LPOR mRNA  exhibits  noteworthy  cyclic

variations[88].  Reveille  1  directly  binds  to  the PORA promoter
through the EE motif (AAAATATCT) and regulates the transcrip-
tion of PORA[88] (Fig.  3). AtPORB expression is  regulated by the
biological clock, whereas AtPORC expression is independent of
the biological clock. This finding corresponds to the regulation
of OsPORB expression observed in  rice  grown under  short-day
conditions.  The  LPOR  enzyme  in  cucumber  is  encoded  by  a
single  gene,  with  its  expression  under  light  being  six  times
greater  than  that  under  dark  treatment[31].  Upon  exposure  to
light,  the  LPOR  level  decreases  slightly,  followed  by  a  gradual
increase in LPOR expression from 3 to 12 h[31].

Research on light signal regulation of LPOR primarily focuses
on plants turning green during the transition from darkness to
light.  Further  experiments  must  be  conducted  to  determine
whether changes occur in the expression, content, and enzyme
activity  of  LPOR  during  shading  (including  changes  in  light
intensity  and  quality)  and  whether  it  is  an  essential  enzyme
affecting chlorophyll biosynthesis during variations in the light
environment. 

Regulation of LPOR under abiotic stress
Changes  in  LPOR  enzyme  activity  are  one  of  the  important

factors  affecting  chlorophyll  biosynthesis  under  abiotic
stress[89,90] (Table  1).  Shading  environments  are  ubiquitous  in
nature. Increasing the content of photosynthetic pigments and
reducing Chl a/b are important shade tolerance mechanisms for
plants[91].  However,  the  molecular  mechanism  regulating
chlorophyll  synthesis  under  shade  has  not  yet  been  studied.
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Previous  proteomic  studies  indicated  that  compared  with  the
level  of  LPOR  protein  in  the  soybean  seedling  leaves  grown
under normal light, that in the soybean seedling leaves grown
under shade increases[92−94].  This increase may be a significant
reason  for  the  augmentation  observed  in  plants’ chlorophyll
content under shade conditions.

When plants undergo the process of greening, low tempera-
tures significantly hinder chlorophyll biosynthesis, leading to a
decline  in  chlorophyll  accumulation.  However,  the  extent  of
this  decline  differs  between  various  species[97].  One  of  the
primary factors contributing to this phenomenon is the inhibi-
tion of  the conversion of  Pchlide to Chlide,  which significantly
diminishes LPOR activity  and downregulates  protein and tran-
scriptional  expression  levels  at  low  temperatures[41,97,101],  This
results in the obstruction of chlorophyll synthesis and the accu-
mulation  of  ROS  at  low  temperatures[41].  These  ROS  subse-
quently  have  the  potential  to  cause  oxidative  damage  during
the  greening  process[41].  However,  spraying  exogenous
carotenoids  can  improve  the  downregulation  of  LPOR  tran-
scriptional  levels  at  low  temperatures,  thereby  reducing  their
impact  on  chlorophyll  biosynthesis[102].  Furthermore,  the
exogenous  application  of  ALA  and  H2S  was  found  to  signifi-
cantly  enhance  the  content  of  chlorophyll  and  its  upstream
precursors[103].  Previous  research  showed  that  LPOR  plays  an
important role in the cold resistance of plants[96,104,105]. CbPORB
is  resistant  to  cold  in Chorispora  bungeana[105]. CbPORB tran-
scription  and  protein  content  decrease  slightly  at  4  °C  but
significantly  decrease  over  time  at −4  °C.  Conversely,  in A.
thaliana[106] and  wheat[107],  low  temperatures  upregulate  the
HY5 expression  at  the  transcriptional  level,  and  HY5  regulates
the  transfer  of  COP1  from  the  nucleus  to  the  cytoplasm,
thereby  promoting  PORC  expression  (Fig.  3).  A  comparison  of
winter  wheat  XN1376  with  its  albino  line  XN1376B  revealed
that the expression of TaPOR2D in albino leaves with methyla-
tion  of  its  promoter  at  low  temperatures  was  an  important
factor  influencing  chlorophyll  accumulation  at  low  tempera-
tures[108]. The restricted decrease in Pchlide is the primary cause
of  the  impact  on  chlorophyll  biosynthesis  during  periods  of
high-temperature  stress[97,101,109,110].  Although  the  activity  of
the  LPOR  enzyme  in  green  seedlings  increases  under  high-
temperature  conditions[101],  the  LPOR  protein  content
decreases significantly[97], resulting in a decrease in chlorophyll
content.  Developing  seedlings  could  regulate  the  balance
between  ROS  and  Chl  levels  by  regulating  the  production  of
LPOR  enzymes[111].  PORB  plays  a  significant  role  in  the

thermoregulation  of  chlorophyll  biosynthesis  in  phototrophic
seedlings  and  FCA  (Flowering  Control  Locus  A)  induces  the
expression of  PORA and PORB by promoting the DNA accessi-
bility  of  RNA  polymerase  II  to  the  gene  promoters,  thereby
maintaining protein levels at a constant temperature[111]. Some
studies  suggest  that  melatonin can enhance plant  stress  resis-
tance  and  improve  the  impact  of  heat  stress  on  plant  chloro-
phyll  synthesis  by  upregulating  the PORA expression[110].  A
high-temperature stress-responsive protein, Ta2CP, was discov-
ered  in  a  heat-adapted  wheat  variety  that  is  also  involved  in
regulating  chlorophyll  biosynthesis  under  high-temperature
stress[109].  The results indicated that Ta2CP positively regulates
chlorophyll biosynthesis via interaction with TaPORB.  Silencing
Ta2CP  expression  downregulates TaPORB expression  and
decreases  chlorophyll  content,  whereas  Ta2CP  overexpression
upregulates TaPORB expression  and  increases  chlorophyll
content.

Under  salt  stress,  the  decrease  in  LPOR  enzyme  activity  is  a
key  contributor  to  the  decline  in  chlorophyll  levels[89].  The
expression of genes related to chlorophyll synthesis and photo-
synthesis in peanuts (Arachis  hypogaea)  decreases significantly
under  drought  stress.  During  recovery,  the  transcript  and
protein  expression  levels  of  AhPORA  upregulate  significantly,
leading to the recovery of chlorophyll biosynthesis and photo-
synthesis[95]. This finding is consistent with the results observed
in  rice,  where  the  accumulation  of  chlorophyll  in  seedlings
developed under  water  stress  is  significantly  reduced because
of  a  decrease  in  the  accumulation  of  intermediate  precursors
for chlorophyll synthesis. In particular, the decrease in the activ-
ity  of  LPOR  enzymes,  protein,  and  gene  expression  leads  to
damage to the Shibata shift,  resulting in  a  decrease in  Pchlide
photoreduction[90].  Similarly,  when  cucumbers  experience
water stress,  the LPOR enzyme content and the transcriptional
content  directly  impact  chlorophyll  accumulation[112].  Arsenic
significantly reduced the growth rate, chlorophyll content, and
photosynthetic  rate  of  melon  plants.  In  contrast,  iron  oxide
nanoparticles  and  selenium  treatments  up-regulated  the
expression of chlorophyll synthase and LPOR and increased the
chlorophyll content of melon plants under arsenic stress[113]. In
summary,  LPOR  plays  a  crucial  role  in  regulating  chlorophyll
biosynthesis  during  adverse  conditions.  Plants  improve  their
stress  response  capability  by  regulating  their  LPOR  transcrip-
tion,  protein  level  expression,  and  enzyme  activity.  However,
the regulatory mechanism is not completely clear. Thus, further
exploration is needed. 

 

Table 1.    Effects of different stresses on the LPOR activity, protein, and transcription levels.

Abiotic stress Species Response to stress (transcript and protein expression and enzyme activity) Ref.

Water Rice LPOR content decreases. [90]
Salt/drought Peanut The expression of AhPORA is downregulated during drought and upregulated during

postdrought recovery through AhGLK.
[95]

Rice LPOR activity is downregulated by 60% in salt-treated seedlings. [89]
Chill Rice and LPOR activity is downregulated. [41]

Corydalis bungeana Turcz. LPOR's transcript and protein content slightly decline at 4 °C but dramatically decrease
at −4 °C with time.

[96]

Wheat and cucumber LPOR level is not reduced in light-exposed chill-stressed seedlings. [97]
Heat Wheat and cucumber LPOR content is greatly reduced in response to light in heat-stressed seedlings. [97]
Shade Camellia sinensis L. and

soybean
LPOR is significantly upregulated after shading, but downregulated by low R/FR ratio [93,98,99]

Rice OsPORA expression is repressed by light, and OsPORB expression is rapidly upregulated
by high-light treatment.

[100]
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Conclusions and future perspectives

In angiosperms, chlorophyll synthesis is dependent on light-
induced  activity  of  LPOR,  which  reduces  Pchlide  (Fig.  2)  and
promotes  chloroplast  development.  Different  types  of  LPOR
were  identified  in  multiple  species,  with  varying  expression
patterns.  The  different  expression  patterns  and  the  depen-
dence  of  LPOR  activity  on  the  type  of  substrate  can  optimize
preparations in the dark to ensure efficient chlorophyll synthe-
sis  with  minimal  impact  on  photosynthesis.  The  current
research  on  light  has  focused  on  the  greening  process  during
the transition from darkness to light. A large number of studies
have  gradually  revealed  the  regulatory  mechanisms  of  light
signaling factors. However, the complexity of light variations in
natural environments, such as shaded or densely planted areas
in  forests,  as  well  as  cultivation  techniques  including  strip
cropping,  result  in  varying  degrees  of  light  intensity  and  light
quality.  The  precise  regulation  of  LPOR  in  a  variable  environ-
ment  and  the  efficient  synthesis  of  the  optimal  amount  of
chlorophyll  to  ensure  the  utilization  of  light  energy  by  plants
remain  unclear.  Additionally,  numerous  studies  have  demon-
strated that LPOR plays a pivotal role in abiotic stress response
by  regulating  chlorophyll  synthesis  at  the  transcriptional  and
protein levels (Fig. 3, Table 1). However, the regulatory mecha-
nisms  at  the  posttranslational  level  have  not  been  extensively
investigated. Consequently, further investigation will provide a
theoretical  foundation  for  the  breeding  and  development  of
plant germplasm resources with stress tolerance. 
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