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Abstract
Aluminum (Al) toxicity inhibits root growth, affecting the ability of plants to absorb water and nutrients. Although magnesium (Mg) can decrease

Al phytotoxicity, its effect on plant root growth in minimal solution containing calcium (Ca) and Al is not yet known. We evaluated the root length

of wheat and maize genotypes with different sensitivities to Al in minimal solution containing different combinations of Al and Mg: (i) control

(without Al and Mg); (ii) with 0.15 mmolc L−1 of Al; (iii) with 0.15 mmolc L−1 of Al plus 2 mmolc L−1 of Mg; and (iv) with 0.15 mmolc L−1 Al plus 10

mmolc L−1 of Mg. By measuring the difference in root length, we found that the minimum solution method with 0.15 mmolc L−1 of Al was efficient

to classify the wheat and maize genotypes tolerance to Al. The Al-sensitive wheat and maize genotypes showed a higher reduction in root length

compared  to  the  Al-tolerant  genotypes  when  subjected  to  a  solution  containing  Al.  The  addition  of  Mg  in  the  solution,  especially  at  higher

concentration (10 mmolc L−1 of Mg), effectively alleviated Al toxicity and favored root growth of wheat and maize genotypes. Our results suggest

that Mg alleviates the toxic effects of Al on root growth of wheat and maize genotypes in minimal solution containing Ca and Al and that both the

use of  Al-tolerant  wheat  and maize genotypes and the maintenance of  adequate levels  of  Mg in the soil  solution are important  strategies  to

alleviate Al toxicity to plants.
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Introduction

Wheat (Triticum aestivum L.)  and maize (Zea mays L.)  are the
most  consumed  cereals  in  the  world[1].  Because  both  species
are naturally sensitive to aluminum (Al) toxicity[2], genetic impro-
vement programs have been trying to develop Al-tolerant culti-
vars.  Al3+ is  present in toxic concentrations in 40% of  the agri-
cultural  soils  across the globe, limiting the yield of Al-sensitive
cultivars such as wheat and maize[3]. The highly weathered soils
of tropical and subtropical regions generally have high acidity,
toxic  levels  of  Al,  and  low  reserves  of  phosphorus  (P),  calcium
(Ca), magnesium (Mg), and potassium (K)[4,5]. In Brazil, acid soils
predominate  in  the  North  and  Midwest  regions,  followed  by
the Southeast and South regions[6].

When  grown  in  acid  soils,  Al-sensitive  plants  respond  with
morphological,  physiological,  and  biochemical  changes[7].  An
irreversible consequence of  the toxic effects  of  Al  is  the cessa-
tion  of  root  growth.  At  the  root  apex,  cell  division  is  blocked,
which  alters  root  elongation,  increases  cell  wall  rigidity,  and
consequently  interferes  with  water  and  nutrient  uptake  effi-
ciency in plants and impairs grain production[8−14]. A reduction
in root length of maize plants with increased exposure time to
Al due to the inhibition of both cell division and elongation was
observed by Batista et al.[15]. Thus, plant height and dry mass of
both roots and shoots were also affected. According to Clark[16],
morphological  changes  caused  by  Al  can  lead  to  nutritional
disorders  with  reduced  levels  of  P,  Ca,  Mg,  and  K  in  plant
tissues.

The reduction in Mg content in the maize root because of Al
toxicity  was  more  pronounced  than  that  of  other  nutrients[16].
Since Mg has a positive effect on root growth, low Mg content
can  be  an  important  response  in  plants  sensitive  to  Al.  Al

induces  the deposition of  callose in  the plasmodesmata chan-
nels,  physically  inhibiting  symplastic  transport  between  cells
and  promoting  nutritional  deficiencies[17].  Several  studies
suggest  that  the  main  toxic  effect  of  Al  in  plants  is  due  to  an
Al-induced  Mg  deficiency  caused  by  a  blockage  in  Mg
transport[18−20].

Mg  deficiency  exerts  a  significant  influence  on  the  partitio-
ning  of  dry  matter  and  carbohydrates  between  the  above-
ground  and  belowground  parts.  Stress  due  to  Mg  deficiency
causes  a  sharp  increase  in  the  aboveground-to-root  dry  mass
ratio,  which is  associated with massive accumulation of  carbo-
hydrates  in  the  leaves,  especially  sucrose  and  starch[21].  These
effects  are  indicative  of  severe  impairment  in  the  export  of
photoassimilates by the leaves caused by Al toxicity.

In plant cells,  Mg2+ ions play a specific  role in the activation
of enzymes involved in respiration, photosynthesis, and nucleic
acid (DNA and RNA) synthesis. They are required by many enzy-
mes  in  phosphate  transfer,  including  the  enzymes  ATPases,
ribulose-1,5-diphosphate (RuDP) carboxylase, RNA polymerase,
and  protein  kinases.  In  addition,  Mg2+ ions  play  an  important
role as a central constituent of the chlorophyll molecule[22,23].

Considering  that  Mg  has  an  important  role  in  reducing  Al
phytotoxicity[2,24,25],  the objective of this study was to evaluate
the  root  growth of  maize  and wheat  genotypes  with  different
sensitivities  to  Al  in  a  minimal  solution  containing  different
combinations  of  Al  and  Mg.  It  was  hypothesized  that  (i)  the
minimal solution method with 0.15 mmolc L−1 of  Al  is  efficient
to classify Al-tolerant maize and wheat genotypes; (ii)  Al-sensi-
tive  wheat  and  maize  genotypes  show  a  greater  reduction  in
root  length  compared  to  Al-tolerant  genotypes  when  subjec-
ted to a solution containing a toxic level of Al; (iii) the presence

Technology in
Agronomy ARTICLE
 

© The Author(s)
www.maxapress.com/tia

www.maxapress.com

mailto:efcaires@uepg.br
https://doi.org/10.48130/tia-0024-0022
https://doi.org/10.48130/tia-0024-0022
https://doi.org/10.48130/tia-0024-0022
https://doi.org/10.48130/tia-0024-0022
https://doi.org/10.48130/tia-0024-0022
mailto:efcaires@uepg.br
https://doi.org/10.48130/tia-0024-0022
https://doi.org/10.48130/tia-0024-0022
https://doi.org/10.48130/tia-0024-0022
https://doi.org/10.48130/tia-0024-0022
https://doi.org/10.48130/tia-0024-0022
http://www.maxapress.com/tia
http://www.maxapress.com


of Mg in the solution, especially at higher concentrations,  alle-
viates the toxic effects of Al on root growth of wheat and maize
genotypes; and (iv) the alleviation of Al toxicity by the addition
of  Mg  is  more  pronounced  in  Al-sensitive  than  Al-tolerant
wheat and maize genotypes. 

Materials and methods
 

Site description, experimental design, and
treatments

The study was conducted at the Plant Breeding Laboratory of
the State University of Ponta Grossa, Paraná, Brazil. Two experi-
ments  were  carried  out,  one  with  wheat  and  another  with
maize.  A  randomized  complete  block  design  in  a  split-plot
arrangement  was  used,  and  the  treatments  were  replicated
three times in  both experiments.  Four  combinations  of  Al  and
Mg  in  minimum  solution  were  used  in  the  main-plot  treat-
ments.  The  subplot  treatments  consisted  of  four  wheat  geno-
types  in  the  first  experiment  and  four  maize  genotypes  in  the
second  experiment.  Both  experiments  included  Al-sensitive
and Al-tolerant genotypes.

All  plots  received  2  mmolc L−1 of  Ca.  The  main-plot  treat-
ments  were:  (i)  control  (without  Al  and  Mg);  (ii)  with  0.15
mmolc L−1 of Al; (iii) with 0.15 mmolc L−1 of Al plus 2 mmolc L−1

of Mg;  and (iv)  with 0.15 mmolc L−1 of  Al  plus 10 mmolc L−1 of
Mg. The Al and Mg concentrations were based on the study by
Silva et al.[26].

The wheat genotypes used in the subplot treatments of the
first  experiment  were:  cultivar  BH  1146  (tolerant),  cultivar
Anahuac  (sensitive),  line  L01,  and  line  L14.  The  cultivars  BH
1146  and  Anahuac  were  provided  by  the  seed  bank  of  the
Agronomic  Institute  of  Campinas  (IAC).  The  lines  L01  and  L14
were provided by the seed bank of the Plant Breeding Program
of  the  State  University  of  Ponta  Grossa.  The  L14  line  is  more
sensitive to Al than the L01 line[27].

The maize genotypes used in  the subplot  treatments  of  the
second experiment were: line Al 237 (tolerant), line Al 53 (sensi-
tive),  and  two  hybrids  with  unknown  Al-tolerance  (AG  9025
PRO3  and  K  9606  VIP3).  The  two  inbred  maize  lines  (tolerant
and  sensitive  to  Al)  were  provided  by  the  seed  bank  of  the
Brazilian Agricultural Research Corporation (EMBRAPA). 

Experiment management and evaluation
The minimum solutions were prepared in rectangular polye-

thylene pots with a capacity of  8 L of  solution.  The Ca,  Al,  and
Mg  sources  used  to  prepare  the  solutions  were  CaCl2.H2O,
AlCl3.6H2O,  and  MgCl2.6H2O,  respectively.  The  seeds  of  differ-
ent  wheat  and maize genotypes were placed to germinate on
paper  rolls  Germitest® in  a  germination  chamber  for  64  h  at
23 °C and 72 h at 25 °C, respectively, with 100% relative humi-
dity and a 24-h photoperiod.

The  germinated  seeds  of  wheat  and  maize  were  removed
from the Germitest® paper  and selected for  similar  size of  the
primary root.  During the selection process,  the seedlings were
sprayed  with  water  to  prevent  root  dehydration.  The  initial
measurement (IM, in cm) of the primary root length was taken
using a ruler,  considering the value from the seed to the apex
of the primary root. The selected seedlings were transferred to
expanded  polystyrene  trays  with  96  cells  (12  ×  8  cells),  each
with a hole in the bottom to allow contact of the primary root
with the treatment solution.

The  seedlings  were  distributed  in  two  rows  of  12  cells  for
each genotype so that each subplot was composed of 24 seed-
lings.  All  trays  in  each  block  were  placed  in  their  respective
solutions  at  the  same  time  and  remained  immersed  for  48  h.
Aeration was uniform and constant throughout the experimen-
tal period, assisted by an oxygenation pump. The pH of all solu-
tions  was  measured  during  the  immersion  period  and,  when
necessary, adjusted to a value of 4.3. The adjustment was made
using  NaOH  solutions  (to  raise  pH)  or  HCl  (to  lower  pH).  After
the  48-h-exposure  period,  the  trays  of  minimal  solutions  were
removed and the measurement of the length of the main root
of  all  seedlings was again taken with a  ruler,  which was consi-
dered the final measurement (FM, in cm). The difference in root
length (DIF,  in  cm) was calculated by subtracting the FM from
the IM, based on the method proposed by Mazzocato et al.[28]. 

Statistical analysis
The  results  were  subjected  to  analysis  of  variance  (ANOVA),

and the effects of treatments were compared by the LSD test at
p <  0.01.  When  there  was  a  significant  interaction  effect  of
treatments with Al and Mg solutions (main plots) and wheat or
maize  genotypes  (subplots),  the  necessary  unfolding  was  per-
formed.  The  statistical  analyses  were  carried  out  using  the
SISVAR software[29]. 

Results

ANOVA  showed  a  significant  interaction  effect  of  the  treat-
ments  involving  solution  containing  Al  and  Mg  (S)  and  plant
genotypes (G) on DIF (Table 1).

Overall,  all  four  wheat  (Fig.  1)  and  maize  (Fig.  2)  genotypes
showed a reduction in DIF with the addition of 0.15 mmolc L−1

of Al in the solution.
In the control treatment without Al, wheat cultivars BH 1146

and  Anahuac  showed  significantly  higher  DIF  values  than  the
L01  and  L14  lines  (Fig.  1a).  When  0.15  mmolc L−1 of  Al  was
added to the solution, the BH 1146 cultivar showed the highest
DIF  value,  the  Anahuac  cultivar  showed  the  lowest  DIF  value,
and  the  L01  and  L14  lines  showed  intermediate  DIF  values
compared  to  the  BH  1146  and  Anahuac  cultivars  (Fig.  1b).  In
this  treatment  with  Al,  the  L01  line  was  significantly  similar  to
the  BH  1146  cultivar,  while  the  L14  line  was  similar  to  the
Anahuac cultivar. In the presence of 0.15 mmolc L−1 of Al along
with  2  or  10  mmolc L−1 of  Mg,  the  lines  L01  and  L14  demon-
strated  higher  DIF  values  than  the  sensitive  cultivar  Anahuac
(Fig. 1c & d). However, the DIF of L01 was like that of the toler-
ant cultivar (BH 1146) and greater than that of the L14 line with
the addition of 10 mmolc L−1 of Mg (Fig. 1d).

The  maize  genotypes  AG  9025,  K  9606,  and  Al  53  showed
higher  DIF  values  than  the  Al  237  in  the  control  treatment

 

Table 1.    ANOVA F-test probabilities for the effects of solution containing
Al  and Mg,  wheat  and maize genotypes and their  interactions effects  on
difference in root length (DIF).

Crop Source F-probability

Wheat Solution (S) < 0.001
Genotype (G) < 0.001

S × G < 0.001
Maize Solution (S) 0.001

Genotype (G) < 0.001
S × G < 0.001
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without Al (Fig. 2a). Considering maize hybrids, K 9606 showed
a  higher  DIF  than  AG  9025  in  this  control  treatment  (Fig.  2a).
With the addition of 0.15 mmolc L−1 of Al in the solution, there
was a significant difference in DIF between the Al 237 and Al 53
maize lines (Fig. 2b). In a solution containing 0.15 mmolc L−1 of
Al  plus  2  mmolc L−1 of  Mg,  genotypes  Al  237,  AG  9025,  and  K
9606  showed  a  higher  DIF  than  the  sensitive  line  (Al  53)
(Fig.  2c).  In the treatment containing 0.15 mmolc L−1 of  Al  and
10 mmolc L−1 of Mg, hybrids AG 9025 and K 9606 revealed a DIF
value higher than the sensitive line (Al 53) and the tolerant line
(Al 237) (Fig. 2d).

The  presence  of  Al  in  the  minimal  solution  visibly  affected
the length growth of  wheat  (Fig.  3)  and maize (Fig.  4),  depen-
ding  on  the  tolerance  of  the  genotypes  to  Al  and  on  the
concentration of Mg in the solution.

For  the  four  wheat  genotypes  (BH1146,  Anahuac,  L01,  and
L14),  there  was  no  significant  difference  in  DIF  between  the
treatment  containing  only  0.15  mmolc L−1 of  Al  and  the  treat-
ment  containing  Al  along  with  2  mmolc L−1 of  Mg  (Fig.  5).
However,  all  wheat genotypes showed higher DIF in the treat-
ment with 0.15 mmolc L−1 of Al + 10 mmolc L−1 of Mg compared
to the treatment containing only 0.15 mmolc L−1 of Al.

For  maize  genotypes  Al  53  (Fig.  6a)  and  AG  9025  (Fig.  6c)
there  was  no significant  difference  in  DIF  between treatments
containing only 0.15 mmolc L−1 of Al and 0.15 mmolc L−1 of Al +
2  mmolc L−1 of  Mg.  For  the  genotypes  Al  237  (Fig.  6b)  and  K
9606  (Fig.  6d),  the  DIF  was  higher  in  the  treatment  with  0.15
mmolc L−1 of  Al  +  2  mmolc L−1 of  Mg  compared  to  the  treat-
ment  containing  only  0.15  mmolc L−1 of  Al.  In  the  treatment

containing 0.15 mmolc L−1 of Al + 10 mmolc L−1 of Mg, the DIF
was  higher  for  the  four  maize  genotypes  compared  to  the
treatment with only Al (0.15 mmolc L−1). 

Discussion
 

Root growth of wheat and maize genotypes
The wheat cultivars BH 1146 and Anahuac were found to be

tolerant  and  sensitive  to  Al,  respectively,  consistent  with  the
classification  of  these  genotypes  described  in  several
studies[30−35].  Also, L01 can be classified as moderately tolerant
and L14 as moderately sensitive to Al. In the study by Ferraz et
al.[27],  it  was  also  found  that  the  L01  line  showed  higher  tole-
rance  to  Al  while  the  L14  line  showed  higher  sensitivity  to  Al
than the other wheat genotypes studied.

The inbred lines of maize Al 237 and Al 53 showed tolerance
and sensitivity to Al, respectively, in agreement with the classifi-
cation of these genotypes by EMBRAPA[36,37].  The sensitivity to
Al of  the two maize hybrids used in our study (AG 9025 and K
9606)  was  unknown.  Based  on  treatment  with  Al  in  the  solu-
tion, the hybrids AG 9025 and K 9606 behaved as tolerant to Al.

The  impairment  of  wheat  (Fig.  3)  and  maize  (Fig.  4)  root
growth  due  to  Al  toxicity  was  visible.  Rout  et  al.[13] reported
that  Al  decreases  cell  division  in  the  tips  and  sides  of  roots,
increases  the  stiffness  of  the  cell  wall  by  cross-linking  pectins,
reduces  replication  by  increasing  the  stiffness  of  the  DNA
double  helix,  makes  P  less  available  to  plants,  decreases  root
respiration,  interferes  with  enzymatic  activity  that  governs
phosphorylation  and  deposition  of  polysaccharides  in  the  cell
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wall and hinders the absorption of water and various nutrients
by plants. In other studies conducted with wheat and maize in
nutrient solution, a reduction in root length was also observed
when  the  seedling  was  subjected  to  a  solution  containing
Al[33,38,39]. The interaction of Al3+, the main toxic form of Al, with
oxygen-donating  ligands  (proteins,  nucleic  acids,  and

polysaccharides) results in the inhibition of cell division, exten-
sion,  and  transport[40].  The  plasma  membrane  of  root  cells,
particularly  at  the  root  apex,  seems  to  be  one  of  the  main
targets  of  Al  toxicity[40].  The  toxic  effect  of  Al  appears  to  be
related to a  Mg deficiency induced by Al  due to a  blockage in
Mg transport[18−20].
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Alleviative the effect of Mg on Al toxicity in wheat
and maize

The present data revealed that adding 10 mmolc L−1 of Mg to
the  solution  increased  wheat  root  growth  by  minimizing  the
toxic  effect  of  Al.  The  data  also  showed  an  attenuation  of  the
toxic  effect  of  Al  and  a  better  response  of  the  maize  root
growth  when  10  mmolc L−1 of  Mg  was  added  in  a  solution
containing 0.15 mmolc L−1 Al.  Therefore,  Mg showed a protec-
tive action against the toxic effect of Al.

The  effect  of  Mg  supply  alleviating  Al  phytotoxicity  and
increasing  root  elongation  has  been  demonstrated  in  several
studies[2,25,41].  Assessing the alleviation of Al toxicity by cations
(Ca2+,  Mg2+,  and  Na+)  in  the  wheat  crop,  Kinraide  &  Parker[42]

found that competition between the cation and Al for external
binding sites  could be responsible  for  most  of  the decrease in
Al toxicity. In another study that evaluated the ability and inter-
action  of  Ca  and  Mg  to  decrease  Al  toxicity  in  Al-sensitive
wheat  plants,  Keltjens  &  Dijkstra[24] found  that  Mg  was  more
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effective than Ca in protecting roots against adsorbed/precipi-
tated  Al  and  in  excluding  Al  from  roots.  Under  Al  stress
conditions,  the  reduction  in  root  growth  is  mainly  due  to  Mg
deficiency  induced by  Al[18−20].  Both  Mg and Ca  could  exclude
Al  from active absorption sites.  However,  Mg is  more effective
than  Ca[20,24].  Chemically,  Al  is  more  like  Mg  than  Ca[43] and
competitively inhibits Mg uptake by plant roots[18].

Several  studies  have  investigated  the  interaction  among  Al,
Mg,  and  Ca  in  different  agricultural  species.  Keltjens  &  Tan[44]

observed that  Mg was  more  effective  than Ca  in  alleviating Al
toxicity  in  monocotyledonous  plants,  while  the  opposite
occurred  in  dicotyledonous  plants.  However,  an  interaction
between Mg and Al on soybean root growth was found by Silva
et al.[26],  who obtained an increase in primary and lateral roots
when 2 or 10 mmolc L−1 of Mg were added. In another study[20],
it  was  found  that  Mg  alleviated  Al  toxicity  and  had  a  higher
protective  effect  than  Ca  on  the  crops  of  rice,  bean,  maize,
wheat, and soybean.

Increased  concentrations  of  Ca2+ and  Mg2+ in  solution
appear to protect plants against Al3+ toxicity by improving the
uptake of Ca2+ and Mg2+ and alleviating the toxic effect of Al3+

on root growth[44].  Although the positive effect of  Mg in redu-
cing Al  toxicity  is  not  fully  understood,  it  could be based on a
physiological  mechanism  in  the  apoplast  that  appears  to  go
beyond alleviating a Mg deficiency through competitive inhibi-
tion  of  Mg  uptake  by  Al[20].  In  roots  of  Populus  subjected  to
treatments with and without both Al and Mg, it was found that
Mg reduced the concentration of Al and increased the concen-
tration of Mg in the root when both Al and Mg were added[25].
In addition, in the study by Zhang et al.[25] it was also observed
that  Mg  promoted  the  transport  and  distribution  of  polar

auxins,  which  led  to  a  regulation  in  the  increase  of  the  root
surface pH and alleviation in Al  toxicity.  Silva et al.[20] reported
that  the  positive  effect  of  Mg  in  reducing  Al  phytotoxicity  is
maximized  when  it  is  provided  to  plants  in  a  pre-treatment
solution (before the addition of Al), along with Al (time zero '0'),
or  within 6 h after  root  exposure to Al.  After  6  h of  root  expo-
sure  to  Al  in  the  absence  of  Mg,  the  phytotoxic  effects  of  Al
becomes  irreversible  and  the  subsequent  addition  of  Mg  can-
not  completely  restore  root  elongation.  The  results  obtained
from  the  present  study  showed  that  the  use  of  Al-tolerant
genotypes  and  the  maintenance  of  adequate  Mg  levels  in  the
soil  solution are  important  practices  in  reducing Al  toxicity  for
wheat and maize plants.  Further research on assessing Al toxi-
city and tolerance in plants with overexpressed or antisense Mg
transporters[45] could help to better clarify the effect of  the Al-
Mg interaction. 

Conclusions

The minimum solution method with 0.15 mmolc L−1 of Al was
efficient  for  classifying  the  Al  tolerance  of  wheat  and  maize
genotypes.  The  maize  hybrids  AG  9025  IPRO  and  K  9606  VIP3
behaved as  tolerant  to Al.  Al-sensitive wheat  and maize geno-
types showed a greater reduction in root growth compared to
Al-tolerant  genotypes  when  subjected  to  the  Al-containing
solution.  The  presence  of  Mg  in  the  solution,  especially  at
higher  concentration  (10  mmolc L−1 of  Mg),  alleviated  Al  toxi-
city, and increased root growth of wheat and maize genotypes.
The  use  of  Al-tolerant  wheat  and  maize  genotypes  and  the
maintenance  of  adequate  Mg  levels  in  the  soil  solution  are
important strategies to alleviate Al toxicity in plants. 
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Fig. 6    Effect of solutions containing Al (0.15 mmolc L−1), without and with Mg (2 or 10 mmolc L−1), on the variable DIF after 48 h of exposure of
maize genotypes (a) Al 53, (b) Al 237, (c) AG 9025, and (d) K 9606. Means followed by the same letters do not differ significantly by the LSD test
at p < 0.01. Error bars express the standard error of the mean (n = 3).
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