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Abstract
Feeding  the  growing  global  population  necessitates  increased  agricultural  production,  yet  agriculture  remains  a  vulnerable  sector  facing  significant
challenges from limited land resources,  environment,  and climatic  constraints.  To enhance agricultural  productivity  and farm profitability,  it  is  crucial  to
quantify  the  interactions  among  soil,  plant  growth,  environmental  factors,  and  management  practices.  This  aids  policymakers  and  farmers  in  making
informed decisions to mitigate risks associated with agricultural productivity. The advent of BIG-DATA in agriculture and various crop simulation modeling
approaches at multiple spatiotemporal scales offers valuable insights into seasonal and in-field soil-crop variability, enabling accurate crop yield, and quality
estimation. Agricultural models serve as essential tools for management and planning, facilitating the adaptation of new technologies to site-specific factors
such as climate, soils, and cropping patterns. Despite their importance, there is a lack of comprehensive understanding regarding the principles, utility, and
challenges of these crop models. This review critically evaluates the utility, simulation processes, datasets, predictability, advantages, and disadvantages of
diverse  crop  simulation  modeling  approaches.  It  examines  the  current  state-of-the-art  agricultural  systems  models  and  their  implications  for  crop
management,  growth  forecasting,  nutrient  management,  and  yield  prediction,  highlighting  complex  interactions  between  agro-meteorology,  soil,  and
crops across different scales. Furthermore, it addresses future challenges for agricultural system models in the context of climate change and environmental
shifts,  underscoring  the  necessity  for  additional  research.  The  emergence  of  BIG-DATA  and  high-performance  computing  in  agricultural  simulation
modeling  presents  new  challenges  that  demand  innovative  solutions  to  improve  forecasting  and  mitigate  production  risks  caused  by  environmental
constraints and associated stresses.
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Introduction

The  invention  of  machines  such  as  calculators  and  computers
helped  scientists  to  determine  the  relationships  among  the  diffe-
rent system components. With the very first revolutionary studies by
Brouwer  &  De  Wit  and  de  Wit  et  al.[1,2],  crop  modeling  has  been  in
existence as a research activity, for almost 50 years. However, in the
last two decades, its application in the agricultural system has been
appreciable[3−8]. According to a previous study[3], with the invention
of  the  mainframe  computers  during  the  1960s  crop  simulation
modeling  progressed  to  a  puerile  stage  in  the  1970s,  reached  an
adolescent stage in the 1980s, and gained development stage in the
1990s. Descriptive and mathematical modeling grew during the late
1950s.  Around  one  decade  later,  in  1960,  concepts  of  systems
dynamics  began  which  enabled  the  time-related  demonstrations
of  flow  processes  and  their  interactions  with  different  system
components[3].

In  the  infancy  and  juvenile  stages,  many  expectations  grew
around  the  crop  model  that  it  would  answer  the  queries  of  crop
science  in  many  areas  that  would  help  further  develop  a  compre-
hensive model.  During 1970, concepts of system dynamics became
formalized,  and  their  improvement  continued  through  1980  by
computer programming techniques,  model calibration, verification,
and validation[5]. In the 1980s, initial efforts were focused on finding
a complete characterization of crop behavior in an extensive range
of environmental situations[6]. However, during the 1990s, the atten-
tion  was  geared  in  the  direction  of  applications  of  modeling  in

agronomic  practices  and  policy  decision-making[6].  During  the
1990s,  crop  models  established  their  use  on  farm  and  regional
scales. Simultaneously and more importantly, in 1990, the world saw
the  rise  of  the  era  of  information  technology[7].  Agriculture  and
industry  are  an  integral  part  of  agricultural  science,  thus  improved
knowledge  of  ecosystem  interaction,  which  is  influenced  by  envi-
ronmental  and  management  systems,  has  significantly  extended
the  perspective  for  a  decision  support  system.  Linking  the  cavity
between  simulations  (which  mimic  agricultural  processes)  and  the
application  of  the  simulation  outputs  in  decision  support  by  crop
managers is challenging and thought-provoking[7]. The flow of infor-
mation  to  managers  encompasses  interfacing  between  computer
output  and  the  people  who  are  the  information  users  (Fig.  1a).
During  the  early  period  of  the  21st century,  the  functions  of  crop
growth models were improved, and the progress strategy shifted to
applications of models in policy support[9].

Modeling  is  a  valuable  tool  for  conceptualizing  and  comprehen-
ding  systems,  projecting  future  scenarios,  and  testing  hypotheses
regarding  the  effects  of  disruption  on  a  system's  overall  behavior
concerning changes to its constituent parts. In general, models may
be  classified  in  two  ways:  (1)  by  their  method,  or  how  the  internal
process  operates;  and  (2)  by  their  thematic  application  or  the  the-
matic topic they are being utilized for[10,11].  For modeling processes
to be effective, the choice of methodologies concerning the theme
topics  is  essential.  There  are  many  distinct  modeling  techniques,
and  they  are  not  all  equally  effective  for  system  conceptualization,
analysis,  prediction,  and/or  prospection.  Each  technique  has  a

Technology in
Agronomy REVIEW
 

© The Author(s)
www.maxapress.com/tia

www.maxapress.com

mailto:sumanta.das@uq.net.au
https://doi.org/10.48130/tia-0024-0032
https://doi.org/10.48130/tia-0024-0032
https://doi.org/10.48130/tia-0024-0032
https://doi.org/10.48130/tia-0024-0032
https://doi.org/10.48130/tia-0024-0032
mailto:sumanta.das@uq.net.au
https://doi.org/10.48130/tia-0024-0032
https://doi.org/10.48130/tia-0024-0032
https://doi.org/10.48130/tia-0024-0032
https://doi.org/10.48130/tia-0024-0032
https://doi.org/10.48130/tia-0024-0032
http://www.maxapress.com/tia
http://www.maxapress.com


different  level  of  complexity,  calls  for  different  data  and  requires
various  application skill  levels.  The crop simulation models,  initially
developed as research tools, had their utmost practicality and utility
in the scientific research program. The benefits of assimilating crop
simulation  modeling  into  a  scientific  research  program  were
summarized[12] as (1) to identify the gaps in knowledge; (2) to create
and  test  hypotheses,  to  support  the  design  of  experiments;  (3)  to
identify  the  most  critical  variables  through  sensitivity  analysis;
(4)  to  facilitate  improved  communication  among  inter-disciplinary
researchers;  and  (5)  bringing  different  people  like  investigators,
academics,  experimenters,  and  manufacturers  together  to  unravel
common problems.

Efforts have been made from the beginning, to promote the use
of  crop  models  as  a  research  tool  in  decision-making  processes[10].
DSSs  have  advanced  through  the  centuries  from  fundamental
single-decision rules to multi-criteria standardization software. In its
simple type,  a  DSS can be developed for  a  pest  management thre-
shold, designed using empirical relationships and ground data on a
calculator.  More  sophistically,  DSS  can  be  on  a  communicating
computer  system  that  makes  use  of  databases,  simulation  models,
and decision-based algorithms in an integrated manner[13].  Charac-
teristically,  a  DSS  must  have  a  measurable  output  and  should  give
importance  to  the  final  users  for  problem-solving  and  decision-
making.

While crop modeling is an emerging area of agricultural systems,
it  requires  a  thorough  understanding  of  the  fundamental  simula-
tion  process  and  multidisciplinary  research  data  and  a  methodical
pipeline to develop it.  However,  a  knowledge gap exists  in  develo-
ping an independent crop simulation model to understand complex
BIG-DATA structure, interactions between variables, extricating agri-
cultural systems, and how models operate and function. Hence, it is
necessary  to  review the various agricultural  simulation models  and
their utility, simulation process, datasets, predictability, advantages,
and  disadvantages,  etc.  This  article  reviews  the  current  state-of-art
agricultural systems models and their implications on crop manage-
ment,  crop  growth  forecasting,  nutrient  management,  and  yield
prediction,  unraveling  complex  interactions  between  agro-
meteorology,  soil,  and  crop,  etc.  for  different  crops  at  a  local  to
global  scale.  Future  difficulties  for  agricultural  system  models  and
the need for additional research are also covered. The review should
improve  the  existing  understanding  of  agricultural  system  mode-
ling  to  help  stakeholders  with  appropriate  model  selection  and
future model development. 

Decision-making process: human-computer
interaction

Humans  make  all  decisions,  either  directly  or  indirectly,  through
his/her  mind.  Decisions  also  envisaged  as  to  whether  to  carry  on
doing  things  as  they  are  being  done  or  to  modify  the  process  for
getting  a  gainful  outcome.  In  reality,  decisions  are  altered  by  the
authority  who  controls  the  resources  as  inputs.  Human  memory  is
everything that observes and learns through experience like right or
wrong and good or bad. All these are put in storage as information
in the mind and knowledge is built  up for making future decisions.
When  an  individual  faces  a  problem,  the  content  stored  in  the
memory  are  reviewed.  Some  attention  arises  almost  immediately
whereas some are more delayed. Generally, decisions are selections
to stay on a course of action or to choose a different path[13].  Natu-
rally,  when an individual  meets  with  new circumstances  where  the
intuition is  to  take more effective measures,  an effort  will  be made
to  investigate  the  condition.  Consequently,  a  renewed  aspect  may
be adapted to reconsider and lessen the risks for that existing condi-
tion.  These  complex  processes,  which  go  on  in  a  human's  mind,
are  programmed  in  the  computer  as  it  is  mimicking  the  decision-
making  ability  of  a  human.  Here  several  problems  are  ordered  in
chorus and processing goes on every time (day or night, consciously
or  unintentionally,  etc.)  till  the  situations  are  fixed  to  the  point
where risk is lowered sufficiently, and safe action can be taken[13]. All
these  are  necessary  to  understand  how  simulations  could  be  a
potentially excellent platform for decision support systems (Fig. 1b).

Computer  programs  comprising  spreadsheets,  expert  systems,
simulations,  and  relevant  items  can  be  an  excellent  foundation  of
information  for  DSS[14].  Recently,  progress  has  been  made  in  the
field  of  computer  programming  e.g.,  through  language  develop-
ment,  machine  learning,  information  storage,  retrieval,  deep  lear-
ning,  and  other  computer-related  development,  to  uphold  the
acceptability  and  interest  of  simulation-based  decision  support  for
managing the system. Simulation is the art of mimicking the system
and tracking the dynamic changes in the system over time. Strictly,
models  are  mathematical  equations  with  specific  guidelines  that
define  and  delineate  a  system.  Simulation  comprises  running  the
model  equations  or  algorithm  for  calculating  values  over  time  in  a
dynamic  manner[15].  All  the  real-world  phenomena  in  an  agricul-
tural  system  can  be,  focused  on  system  interaction  to  some  accu-
racy.  Thus,  simulation  models  are  resources  that  can  be  used  to
supply  data,  information,  and  knowledge  to  decision-makers  in
agriculture.
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Fig.  1    (a)  Information  system  and  decision-making  interconnection,  and  (b)  decision  makers - where  decisions  are  made  (adapted  from  Barrett  &
Jones[14]).
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Biological  systems  are  much  more  complex,  where  several
components interact with each other simultaneously in a non-linear
fashion.  This  nonlinearity  should  be  taken  into  consideration  for
prediction  to  understand  model  performance.  In  most  cases,  the
understanding  of  these  interactions  is  inadequate  and  frequently
directed  by  experimental  confirmation  of  full  system  performance
instead  of  empirical  evidence  on  the  mechanism  that  leads  to  the
overall  system performance[16,17].  Due to these inherent limitations,
mathematical modeling is only advocated for nonliving physical and
chemical  processes[10].  On  the  other  hand,  the  simulation  model
constructed  on  quantitative  biological  processes  along  with  their
interactions can afford a solid understanding of the behavior of biolo-
gical  systems  and  thus  aid  in  managing  the  operations  to  attain
specific targets. Through the last few decades, computer simulation
has demonstrated itself to be a promising tool in basic and applied
biological research[13].  In many primary and applied sciences, incre-
dible progress has been made in simulation modeling to become an
integral part of biological research. 

Components of a simulation model
 

System
A  system  is  a  well-defined  part  of  the  real  world,  which  is  an

assembly  of  several  components,  and  their  interrelationships  are
integrated purposefully  to understand some part  of  the real  world.
System  components  are  selected  based  on  the  objective  of  the
study.  Thus  in  another  way,  systems  can  be  defined  as  assemblies
of  mutually  interacting  items  that  are  influenced  by  external
forces[17,18].  For  example,  classical  crop  models  describe  the  crop
and  its  root  zone  inside  the  soil  as  components  that  cooperate  in
multifaceted  ways  and  are  also  influenced  by  the  ambient  condi-
tions  (weather  pattern)  and  management  practices  adopted  for
their growth. 

Environment
The  system  environment  consists  of  everything,  excluding  the

system's  components.  Similarly,  a  system  boundary  is  a  concept  of
the  restrictions  of  the  system  components,  separating  them  from
the  environment.  In  a  simulation  model,  the  environment  may
influence  or  affect  the  system  and  its  components  in  many  ways,
but the reverse is not valid, e.g., the influence of the environment by
the  system.  Thus  the  environment  does  not  have  to  be  modeled
where the system should be. It can be exemplified as in a crop simu-
lation  model,  the  crop  is  influenced  or  sometimes  affected  by  the
ambient  air  temperature,  humidity,  vapor  pressure,  and  insolation
but  does  not  itself  influence  back  these  environmental  conditions.
The influence of the latter event happens only minutely and is thus
considered negligible in many cases. 

Models
A  model,  as  described  above,  is  a  mathematical  depiction  of

a  system,  and  modeling  is  the  procedure  of  building  that
representation[17]. Theoretically, the process of building a model of a
system is unlike and a requirement for computer simulation. 

Simulation
This  consists  of  the  sequential  processes  essential  for  mobilizing

or resolving a model to simulate the real system behavior. The simu-
lation  process  is  computerized  by  developing  logic  and  diagrams,
computer coding, or writing the program and applying the written
code  on  a  computer  to  harvest  anticipated  outputs[17].  In  general,
modeling and computer simulation are not so widely different and
in fact, they have strong interrelation. 

Inputs and outputs
Inputs  are  factors  like  exogenous  variables,  driving  variables,  or

forcing  functions  within  the  environment  that  impact  the  perfor-
mance  of  the  system  but  are  not  influenced  by  the  system  as
described earlier. Inputs in a crop system model like rainfall, air tem-
perature,  and  solar  radiation  vary  with  time  and  numerical  values
and affect soil water and crop dynamics. Similarly, the outputs from
the system signify  the different behavior  of  the system, which is  of
concern to the crop modeler. For example, the outputs from a crop-
ping system simulation model would give crop biomass, crop yield,
water content of the soil component, etc.[18]. 

Parameters and constants
Generally,  constants  are  measures  with  consistent  and  precise

values  that  persist  the  same  when  experimental  circumstances  are
diverse  or  when  modeled  to  simulate  different  genotypes  or
organisms[19].  The  molecular  weight  of  water  and  Earth's  gravita-
tional  constant  are  some  typical  examples  of  constants.  On  the
other  hand,  model  parameters  are  the  amounts  whose  values  are
less  confident but  are expected to be identical  during a simulation
process.  The  functional  role  of  light  in  plant  photosynthesis,  the
resistance  to  soil  water  flow,  temperature  rise  and  respiration  loss
are suitable examples for defining model parameters. 

State variables
State  variables  are  those  that  define  the  conditions  of  system

components[17].  These  variables  adjust  themselves  with  time  in  a
dynamic simulation model as the system components interact simul-
taneously  with  each  other  and  with  the  surrounding  environment.
Soil water content and crop yield are examples of state variables. 

Process model
The  interconnection  between  system  components,  more  specifi-

cally,  between  state  variables  in  the  system  happens  because  of
several  processes[13].  We  occasionally  advocate  the  term  process-
oriented,  to  define  models  that  designate  the  movement  and
storage  of  mass,  momentum,  energy,  or  other  substances.  For
instance,  the  state  variable,  i.e.,  crop  biomass  varies  due  to  photo-
synthesis and respiration processes. Similarly, the soil water (another
state  variable)  fluctuates  due  to  rainfall,  runoff,  percolation,  and
evapotranspiration processes occurring in the field. 

Calibration
When  a  model  is  developed,  it  needs  calibration  which  entails

making  modifications  or  adjustments  to  model  parameters  to
give  the  best-simulated  prediction  as  obtained  in  the  real-world
observation[17]. The main model structure can be kept the same, and
only the state variables are adjusted to get a reliable output. 

Validation
The calibrated model output should be compared to real system

data  that  has  not  been  used  before  in  model  calibration  or  para-
meter estimation[17]. Validation is performed with a completely new
data set to define if the model is satisfactorily precise for its applica-
tion as defined by the objectives of the simulation study. 

Model sensitization
Sensitivity  analysis  encompasses  discovering  a  model  behavior

for  different  values  of  model  parameters[10].  Sensitivity  analysis  is
conducted to define how much a change in the value of a parame-
ter  affects  the  model  outputs.  By  this,  the  sensitivity  analysis  also
detects  critical  model  subsystems,  relationships,  and  essential
model parameters. 
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Developing a crop system model – mechanisms
and adaptation

When  crops  are  grown  under  field  conditions,  crop  simulation
models  using  soil  (e.g.,  rooting  characteristics,  moisture  holding
capacity, nitrogen mineralization ability, etc.), agronomic traits (e.g.,
date  of  sowing,  plant  density,  application  of  fertilizer,  irrigation
scheduling, etc.), and weather variables (e.g., insolation, air tempera-
ture,  humidity,  vapor  pressure  precipitation,  etc.)  can  be  used  to
understand  crop  growth  patterns  and  development,  nutrient
management, and yield estimation[6,20]. All the different crop simula-
tion models  have varying complexities,  and most  of  them simulate
crop  growth  and  development  daily/weekly/fortnightly,  and  even-
tually  predict  grain  yield[7].  Air  temperature  and  daily  photoperiod
mainly  govern  crop  phenological  development[10].  Crop  canopy
develops  based  on  water  that  is  transpired  and  radiation  inter-
cepted  to  produce  the  crop  biomass.  The  segregation  of  this
produced  biomass  into  different  organs  causes  grain  development
(Fig.  2).  Soil  water  and  nutrient  modeling,  differ  between  models.
While  a  simple  approach  doesn't  describe  the  soil,  multiple
approaches  are  required  to  describe  each  soil  layer  with  its  asso-
ciated characteristics[21]. Details on some crop models can be found
in previous studies[21,22].

For  a  varied  range  of  crops  like  cotton,  sorghum,  wheat,  corn,
soybeans,  alfalfa,  and  others[26],  dynamic  crop  growth  and  yield
models  have been developed.  These models  use plenty of  applica-
tions including managing irrigation[27,28], nutrients[20,29,30], pests and
disease[31−33],  land  use  planning[34],  identifying  suitable  crop
sequencing[35],  assessment  of  climate  change  impacts  on  crop
productivity[36−38],  and  crop  yield  forecasting[28].  However,  the
inherent  limitations  of  these  models  are  the  non-inclusion  of  all
the  factors  that  occur  in  reality  and  the  empiricism  of  the  model
that  frequently  requires  calibration,  testing,  and  site-specific
application[11].  Over  the  decades,  efforts  have  been  made  to
improve  the  model's  performance  and  its  applicability  through
minimizing these shortcomings.

Initially,  the  crop  models  were  characterized  and  established  for
their potentiality at the field scale[4,39].  Primarily, four stages of crop
development  were  identified  in  crop  simulation  (0  =  pre-emer-
gence;  1  =  vegetative;  2  =  reproductive;  3  =  ripening),  which  was
reduced  to  three  levels  at  a  later  stage[4].  The  underlying  assump-
tion for level one, i.e., potential yield level is that the normal weather
parameters (e.g., air temperature, insolation, CO2 concentration, and

relative day length) and the genetic aspects of the crop and control
the crop growth[32].

All  the  elementary  crop  development  processes,  like  photosyn-
thesis,  respiration,  tissue growth,  and development are  included in
level  one[26].  The  core  aim  of  this  level  is  to  acquire  an  understan-
ding of how these parameters influence the potential production of
a crop when other crop growth factors, i.e., water and fertilizers are
optimum, and there is no pest damage incidence. In the second tier
of the model, nitrogen, and water limitations that affect crop growth
and  development  are  considered  and  give  the  attainable  crop
yield[26].  Various  crop  models  have  proficiency  in  defining  crop
growth  and  yield  with  these  conventions[40].  At  level  three,  the
effects of pests and disease on crop yield loss and crop growth are
considered  to  make  the  model  prediction  more  realistic.  Thus,  the
actual  yield  characterization  and  yield  gap  are  quantified  by  inclu-
ding pest damage and mismanagement factors. This detailed repre-
sentation has been valuable in supporting model development and
making a theoretical framework for model applications.

There  are  many  choices  for  selecting  state  variables  for  model
development.  While  a  simple  model  contains  few  state  variables
(one  or  two  e.g.,  leaf  area  index,  leaf/canopy  dry  weight,  canopy
cover,  etc.),  a  complex  model  supports  hundreds  of  state  variables
like leaf weight, area, water content, numbers, stem-weight, length,
numbers,  panicle-weight,  number,  stage-wise  crop  biomass,  etc[26].
Thus,  a  complex  model  provides  a  more  realistic  prediction,  how-
ever, it needs to go through complex methodical processes to build
on  it.  Therefore,  it  requires  multidisciplinary  expertise  and  more
time for  the development of  a  model  framework,  training,  and tes-
ting to build an independent model that can be applied to a field to
regional  to  national  scales  by  feeding  the  datasets.  However,  in
some  cases,  a  model  with  fewer  state  variables  may  also  provide
acceptable results and considered to be useful.

A simple crop model for potential yield level with its sensitivity to
light and air temperature is depicted in Fig. 3. The relational diagram
of  the  model  includes  three  state  variables  namely:  crop  develop-
mental stage (N, No. of vegetative nodes), crop canopy biomass (Wc,
g/m2),  and  crop  root  biomass  (Wr,  g/m2).  Crop  development  indi-
cates the advancement of the crop through its different phenologi-
cal  phases.  This  may  be  observed  by  the  appearance  of  different
vegetative  and  reproductive  plant  characteristics,  such  as  leaf-to-
canopy development, first flowering, fruiting, and finally harvestable
crop  yield.  The  development  rate  is  generally  an  inverse  of  the
time  that  takes  to  complete  one  stage  to  another  during  the
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developmental life cycle. The rate of plant development is regarded
as sensitive to air temperature and occasionally to the length of the
day.  Nonetheless,  this  rate  is  generally  unresponsive  to  light,  the
concentration  of  CO2, and  other  growth  factors,  such  as  water  and
nutrient  stress  unless  they  are  severe[37].  Many  crop  models  have
been developed primarily based on air temperature and day length
for  predicting  crop  development[5,8,37].  In  a  previous  study[41] a
model  was  developed  for  planning  field  operations,  which  effec-
tively  predicted  crop  emergence,  flowering,  and  harvest  dates  for
tomatoes within 3−5 d of actual time.

The rate of crop dry matter growth mainly dependent on canopy
photosynthesis,  is  considered  to  be  an  important  parameter  in
defining crop yield,  fruit  weight,  and vegetative  growth.  Photosyn-
thesis  is  a  biochemical  process  that  translates  ambient  carbon dio-
xide  into  sucrose  (CH2O)  in  plant  leaves.  Some  of  the  converted
carbon  in  this  sucrose  again  united  with  other  major  nutrient
elements  (N,  P,  K,  and  S)  and  reserved  in  plant  tissue  and  provide
energy  for  producing new plant  tissues.  This  rate  of  tissue  produc-
tion  according  to  the  canopy  photosynthesis  and  the  composition
of  tissue  is  computed  quantitatively[42].  Further,  they  have  calcu-
lated  the  net  product  weights  as  well  as  the  energy  of  different
synthesized  biochemical  components  like  protein,  carbohydrate,
lipid, lignin, organic acid, or mineral content manufactured from 1 g
of  sucrose  (CH2O).  Based on the  contents  of  plant  tissue,  a  conver-
sion  efficiency  (E),  can  be  computed[8].  Further,  E  converts  plant
photosynthesis rate into total dry matter increase rate. This conver-
sion efficiency ranges between 0.65−0.75 (g tissue)/(g CH2O). 

Simulation modeling in crop and agricultural
farm management − implications and progress

Agricultural  production  activities  at  any  given  place  mainly
depend  on  the  potentialities  and  limitations  of  the  agro-technolo-
gies  and  also  the  socio-economic  conditions  of  the  producers[21].
The  superiority  of  the  natural  resources,  the  physicochemical  cha-
racteristics of the soil, and the prevailing climatic conditions mainly

decide  the  agro-technical  potentials  for  any  area.  The  regionally
developed  agricultural  system  has  a  strong  relationship  with  envi-
ronmental characteristics. Nevertheless, within similar natural condi-
tions,  the  capability  of  different  farming  systems  is  controlled  by
socio-economic  factors[21].  Decision-making  in  agricultural  produc-
tion systems can be categorized into three levels[43]. The first level is
called strategic management,  where planned or strategic decisions
are made on an agricultural  system based on the predictable long-
lasting behavior of these systems. This is decided by the availability
of  natural  resources  and  the  socio-economic  boundary  circum-
stances,  but  this  is  not  dependent  on  the  present  condition  of  the
system. Strategic management is mainly focused on the direction of
long-lasting  planning  and  deals  with  the  proper  choice  of  agricul-
tural systems or mixed agrarian activities, involving the farm house-
hold  (e.g.,  animal  husbandry,  dryland  farming,  horticultural  activi-
ties) and the related investment decisions. Therefore, the time range
for strategic decisions is more than one year to 10−20 years[8].

When  the  strategic  decisions  have  managed  the  assortment  of
a  particular  cropping  system,  the  farmer,  at  the  field  level  is
confronted with the task of  applying a certain number of  cropping
systems[44].  A  visible  feature  of  agricultural  production  systems  is
that they function in scarcely expected and extremely variable natu-
ral environments[45]. Though the climate for a given location is deli-
neated based on the long-term average, it barely assists the farmers
in  real-time  decision-making.  The  real  performance  of  an  agricul-
tural  system  depends  primarily  on  weather  conditions  which  fluc-
tuate  from  year  to  year  rather  than  on  climate[46].  That  is  why,  in
most agricultural systems, the value of the tactical decision-making
procedure,  which  deals  with  the  reaction  to  these  variables  and
changeable  environments  is  the  main  issue  in  achieving  their
success.  Thus  the  time  limit  for  tactical  management  (i.e.,  seasonal
decision-making) is one year, for handling issues like the choice of a
particular  crop variety,  mixed cultivation practice,  and the distribu-
tion of land (how much and where) for various crops[44].

Lastly, some decisions are to be made on a day-to-day basis, these
include farm activities like the best sowing date for a particular crop,
irrigation scheduling (timing and requirement), fertilizer application,
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pest  and  disease  management  (pesticide  spraying),  and  final  crop
harvesting. These decisions coming under the operational level  are
mainly concerned with daily activities[32]. 

Strategic management
Strategic management mainly emphasizes enabling and assisting

the dialogue with several stakeholders, rather than aiming at answe-
ring  management  to  experts[47].  This  has  directed  the  progress  of
the 'discussion' support software system[48],  which aims to facilitate
negotiation  about  management  strategy  that  is  pertinent  and
important  to  the  decision-makers.  Substantial  choices  exist  for  the
current  situation  in  cropping  systems  investigation  and  modeling,
which  can  contribute  to  enhanced  negotiations  about  long-lasting
economic  and  ecological  issues  related  to  today's  agricultural  pro-
duction  systems[49,50].  A  number  of  these  prospects  have  been
discovered  through  the  1990s  and  cropping  system  simulation
models,  like  APSIM  (Agricultural  Production  system  SIMulator[51],
CropSyst[52],  STICS[53],  and  DSSAT  (Decision  Support  System  for
Agrotechnology  Transfer[22],  was  developed  with  these  goals  in
mind.

Gradually,  crop  simulation  models  are  used  to  discover  and
project  opportunities  for  farm  and  regional  land  use  systems.
Research  within  a  farm  or  on  a  regional  scale  using  a  crop  model
needs  proper  attention to  the system's  physical  circumstances  and
the  agroecological  production  choices[49,50].  As  soon  as  adequate
information  on  different  components  of  agricultural  production
systems,  i.e.,  soils  and  climate  are  available,  crop  models  are  valu-
able  tools  for  evaluating  their  efficiency  that  is,  enumerating  the
inputs and outputs of a new production system. The use of crop and
soil  models to study at the farm and regional scale in two different
approaches  are  established  and  explained[9].  In  the  first  strategy,  a
range  of  well-defined  data  points  regarding  soil  and  climate  in  a
region are used to simulate crop yields, simultaneously, a geographi-
cal  information  system  (GIS)  is  used  to  intercalate  input  data  and
cumulative outcomes for the whole region[54].  For example, a study
employed earth observation data integrated with a GIS-based deci-
sion  support  approach  to  evaluate  soil  salinity  and  land  capability
for  rice  cultivation  in  selected  regions  of  eastern  coastal  India[55].
These  different  approaches  are  promising  to  investigate  a  small
number of land uses with lesser spatial interaction but with substan-
tial physiological detail. Instances of such tactics are the delineation
of  an  agro-ecological  zone  for  potato  production  at  the  global
scale[50] and an evaluation of probable global food supply for several
situations with reverence to food demand, employing low and high
external  input  production  systems[56].  In  the  second  strategy,  crop
models,  along  with  accompanied  empirical  relations  and  skilled
knowledge,  are  united  in  so-called  technical  coefficient  generators
(TCGs)  for  production  activities[49].  Here,  in  this  approach,  a  wide
range  of  land  use  systems  in  terms  of  inputs  and  outputs  are
assessed  by  crop  models  and  consequently  grouped  to  a  farm  or
regional  scale  using  bio-economic  standardized  models[9,44,57−59].
Examples of  such TCGs are PASTOR, LUCTOR[60],  and TechnoGIN[61].
The  combined  use  of  TCGs  with  optimization  models  is  predomi-
nantly supportive in circumstances where different substitute crops
and  production  knowledge  must  be  assessed  concomitantly  and
where  spatial  or  temporal  interfaces  are  inadequate  or  less  perti-
nent for the type of queries to be resolved. 

Tactical management
Tactical  management  fundamentally  deals  with  decisions  taken

once  (e.g.,  medium-term  decisions)  during  the  growing  season.
Decisions  are  taken  here  mainly  concerned  with  the  selection  of
crop or variety, distribution of land to various crop cultivations, and
choosing  the  most  suitable  sowing  or  planting  date.  Through  the

program  called  TACT,  an  attempt  was  made  for  a  tactical  decision
support  system  that  mainly  targets  farm  advisers  and  consultants
that could be enthusiastically operational by farmers[62]. It comprises
a  wheat  simulation  model  (which  includes  wheat  crop  develop-
ment, biomass accumulation, and yield) through an understandable
interface[62] that  computes  probability  distributions  of  yield  and
gross margin, using locational data, soil type, and its characteristics,
wheat  varietal  information,  the  adjustment  in  wheat  sowing  time
and  weather  conditions  to  date  and  past  rainfall  accounts.  Apart
from computing crop physiological and yield performances, TACT is
also  useful  in  climatological  studies[62].  This  influences  the  judg-
ment on the break of season conditions, with principles narrated by
the  operator  along  with  the  past  day-to-day  rainfall,  frost  occur-
rence,  and air  temperature records.  This  particular  type of  informa-
tion supports tactical decision-making by approximating the threats
of replantation when crops are sown early and the consequences of
losing an early sowing chance.

Considerable attention has been obtained in the previous decade
regarding computer-aided tactical decision support systems[63].  It is
now  feasible  to  quantify  in-season  rainfall  variability  for  semi-arid
areas  based  on  the  occurrence  of  global  phenomena  like  El  Niño/
Southern Oscillation (ENSO) phenomenon[64]. This practice has been
reasonably  effective  in  the  north-eastern  part  of  Australia  due  to
three  probable  factors:  (i)  an  extremely  variable  weather  condition
that  intensified  insecurity  in  farming  decisions[65];  (ii)  the  capability
to foretell threats by using seasonal climate forecasting[66,67]; and (iii)
research environments that bring up close associations amid investi-
gators and decision-makers[63].

The  CropARM  software  tool  (formerly  known  as  WhopperCrop-
per)  was  developed  using  115  years  of  climate  records  and  the
APSIM  model  to  predict  the  potential  year-to-year  variability  in
yields,  rainfall,  temperature  effects,  and  crop  growth  to  help  make
decisions in effective crop management at farmer's field[68]. Another
previous  study[66] cited  one  of  the  worthy  applications  obtained
using the Whopper Cropper approach. This application pertained to
addressing a critical issue containing seasonal climate forecasting in
planning  summer  cropping  options  in  farmer  fields  in  the  Callide
Valley  of  Central  Queensland,  Australia.  For  this,  the  positive  SOI
phase (Southern Oscillation Phase) for September–October was con-
sidered.  When  the  SOI  was  positive  during  this  period,  it  indicated
an increased chance of  above-average seasonal  rainfall,  prompting
farmers  to  sow  sorghum  earlier  than  usual.  Thus,  it  was  recom-
mended to sow medium-duration hybrid sorghum on November 15.
Using  a  100-year  historical  climate  record,  they  conducted  simula-
tions that generated a 100-year time series of yield outcomes, with
variations  linked  primarily  to  different  seasonal  climate  conditions.
Their analysis revealed annual fluctuations in sorghum yields under
this  scenario  compared to  the  long-term average,  with  a  particular
focus  on  years  where  the  SOI  was  positive  during  September–
October.  These  positive  SOI  phases  were  often  associated  with
higher-than-median  sorghum  yields,  demonstrating  how  seasonal
climate  forecasting  during  such  phases  helped  mitigate  the  risk  of
low crop yields. 

Operational management
Operational  management  states  the  day-to-day  management

strategy of  agricultural  production systems[69].  It  mainly  focuses  on
decisions, made by individual farmers, on timing and the amount of
interferences  needed  in  their  crops.  From  time  immemorial,  the
capability  of  crop  growth  simulation  models  in  the  operational
management of the field crop has been acknowledged[70]. As a part
of  operational  decision  support  systems,  the  possibility,  and  utility
of crop growth simulation models have been extended from the last
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decade  due  to  the  amalgamation  of  mechanistic  or  process-based
crop  growth  simulation  models  with  ground  observation
practices[5]. A combination of both remote sensing and crop simula-
tion  modeling  approaches  can  lead  to  further  enhancements  in
environmentally  comprehensive  agricultural  production  through
the improved decision support system[69−71]. 

Water management
Water, a freely available natural resource is overexploited in most

of  the  countries  of  the  world  and  agriculture  has  frequently  been
sorted  out  as  one  of  the  areas  where  it  is  mostly  misused.  Studies
have  demonstrated  the  usefulness  of  providing  timely  irrigation
that  can  significantly  improve  water  use  efficiency  and  crop-water
productivity[72−74]. In addition, the development of a software-based
decision  support  system  (DSS)  is  necessary  to  aid  in  the  more  effi-
cient use of irrigation water by farmers[75−77].

To  assess  an  efficient  management  strategy  for  increasing  rice
productivity,  the  ORYZA-W  model[78] was  used  in  light  of  farmers'
approaches  to  risk.  Furthermore,  a  modified  version  of  the  CERES
(Crop  Environment  Resource  Synthesis) - Wheat  model,  i.e.,
WIRROPT7,  an  interactive  computer  program,  was  proposed[79] to
discover  its  potentialities  in  intra-seasonal  irrigation  regime  mana-
gement  that  enhances  total  gross  margin  for  a  particular  soil,
weather,  and  crop  management  combinations.  Likewise,  irrigation
management  of  cotton  and  maize  crops  in  South  Texas  was  also
evaluated using the Environmental Policy Integrated Climate (EPIC)
model[80].  The  model  was  particularly  developed  to  estimate  crop
yield,  crop  water  uptake,  crop  evapotranspiration  (ETc),  and  water
use  efficiency  (WUE).  The  following  two  parameters,  i.e.,  ETc  and
WUE were estimated to find the interactions between the yield and
crop water uptake.  Further,  the authors stated that the EPIC model
works  well  for  both  under  full  and  deficit  irrigation  conditions  in
Southern  Texas  and  is  useful  in  developing  a  DSS  for  irrigation
scheduling.  In  a  study,[81] reported  the  applicability  of  the  Hydro-
LOGIC software tool for managing irrigation in the cotton industry in
Australia.  The  main  aim  of  developing  this  tool  was  to  optimize
water  use  and  irrigation  management  with  information  produced
by  computerized  decision  support.  Another  cotton  growth  model
and a DSS software tool is OZCOT[82] which also proved the capabi-
lity  to  improve  the  estimation  of  yield  and  water  use  efficiency  by
augmenting  strategic  and  tactical  irrigation  judgments  in  the
Australian furrow irrigation cotton production systems.

All information given above comes under a strategic water mana-
gement  system.  However,  to  improve  the  whole  farm  production,
the  availability  of  within-farm  irrigation  water  is  essential,  particu-
larly,  during the in-season growth of  crops (e.g.,  rice)  on which the
crop  yield  is  heavily  reliant.  Therefore,  an  accurate  estimation  of
yield using any crop simulation model also requires quantification of
daily water use by crops, especially from close to flowering to matu-
rity  stages.  In  this  context,  water  management  under  the  opera-
tional head is also important to be considered. Numerous irrigation
scheduling models  were constructed for  water  production and use
purposes by FAO[83]. It is a space where the models have been used
widely  as  DSSs.  However,  as  these  models  do not  directly  consider
the  process  of  crop  growth  dynamics  across  the  season,  they  may
not  accurately  predict  or  forecast  the  water  stress  impacts  on  crop
growth and development[74,77].

On the other hand, in the process-based mechanistic crop simula-
tion  models,  like  CERES-Maize[84],  EPIC[85],  and  CROPSYST[52],  the
impacts of soil water reduction in the progression of the crop deve-
lopment  cycle  are  considered.  Thus,  their  capability  to  forecast
water  stress  effects  on  crop  development  is  more  effective[86].  One
of the early works using the EPIC-PHASE simulation model for irriga-
tion scheduling[86] can be illustrated as an example case. The model

was  used  as  a  real-time  crop  simulation  and  expected  to  give  the
necessary  answers  regarding  irrigation  scheduling  of  a  crop,  for
example when to irrigate? How much to irrigate daily? etc. Their out-
comes  exhibited  the  prospective  development  that  a  farmer  could
use  for  scheduling  irrigation  giving  the  estimated  water  stress
within  the  plant  and  soil[9].  Nevertheless,  the  effectiveness  of  the
model  in  helping  make  decisions  on  irrigation  scheduling  is  also
somewhat  reliant  on the precise  weather  forecast,  and perhaps for
that  reason,  the  study  observed  there  is  a  range  of  variance  in  the
simulation  outcome  for  operational  irrigation  due  to  an  improper
input of weather forecast data.

From  an  agronomic  perspective,  it  is  also  essential  to  consider
additional  components,  such  as  updating  daily  weather  forecasts,
defining the risk factors in crop yield, and the magnitude of poten-
tial climatic errors rendering to the crop stage, etc. in a crop simula-
tion model[7].  To study the effectiveness of the use of daily weather
data  in  estimating  soil  water  content,  which  in  turn,  will  be  useful
for  scheduling  irrigation,  a  pilot  irrigation  scheduling  mission  was
conducted in Northern Zululand in South Africa[87]. Weekly meteoro-
logical  data  were  measured  from  an  Automatic  Weather  Station
(AWS) and communicated by electronic means to the experimental
site.  The  model  was  used  to  quantify  soil  water  availability  daily,
which  subsequently  helped  in  generating  prevailing  soil  water
status and helped in deciding the next possible time to irrigate.

Further,  more  advanced  approaches  by  integrating  remote  sen-
sing  imagery  and  crop  simulation  models[54,71] were  considered  to
be promising to provide insights into real-time water management
options  over  a  wide  geographical  area.  The  strategy  encompasses
two modules:  (i)  at  first,  using remote sensing data,  system charac-
terization  was  done  through  a  probabilistic  data  assimilation  pro-
cess, where the irrigation system features and operational manage-
ment  practices  were  predicted  using  the  space-based  tool,  and
subsequently;  (ii)  this  was  used  in  optimizing  water  management,
discovering  water  management  selections  under  diverse  levels  of
water  accessibility[47].  For  regional  scale  modeling,  a  soil–water–
atmosphere–plant  model  (SWAP)  was  used  as  a  deterministic-
stochastic model[88]. The input data to develop a regional scale crop
simulation  model  for  water  management  may  include  satellite
imagery  (e.g.,  Landsat  7  ETM+,  Landsat  8  OLI,  etc.),  crop  sowing
dates,  irrigation  scheduling,  soil  physicochemical  properties,  depth
to the groundwater table, and quality of water crop evapotranspira-
tion (ET), etc. and all can be simulated within a model interface, e.g.,
using  a  SWAP  model  and/or  a  surface  energy  balance  of  land
(SEBEL)[89].  The  calculated  dispersed  information  was  consequently
used as input data for discovering water management choices.

Studies  report  that  crop  productivity  can  be  significantly  enhan-
ced  by  following  effective  water  and  crop  management  practices
under  water-limiting  conditions[84,85,90,91].  Changing  the  date  of
sowing  and  their  allocation  in  the  irrigated  fields  were  found  to
influence crop yield considerably[7]. Likewise, the management deci-
sions  may  supplement  the  use  of  deficit  irrigation  practices.  In
general,  the  farmers  may  allow  their  crops  to  be  moisture-stressed
by  about  27%  before  applying  the  irrigation  water  based  on  the
existing  circumstances  within  a  farm.  Under  water-limiting  condi-
tions,  high  equity  in  the  water  supply  might  affect  the  healthier
performance  of  the  irrigation  system[74].  An  early  crop  sowing  may
also  accompany  this  during  the  growing  period  with  widespread
dispersal.  However,  the  above  is  also  realistic  during  the  profuse
availability  of  water,  but  the  growers  have  higher  degrees  of  inde-
pendence  in  crop  sowing.  There  exists  an  ideal  stage  where  the
advantage would explain the extra usage of irrigation water; outside
this point, water must be saved[52]. In a further practical approach, if
a regular climate projection is accessible, the method can be useful
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to  discover  water  management  decisions  much  earlier  during  the
wheat-growing period[52].

CropSyst[52],  EPIC[26],  CROPWAT[92],  APSIM[51],  and  CERES[93] are
some of the decision-support-based crop simulation models for irri-
gation  management.  Nevertheless,  most  of  these  models  need
exhaustive input parameters or information (which is rather hard to
acquire) that defines crop growth performance, yield, water use, etc.
(e.g., APSIM, CERES). In order to get a reliable estimation, the models
should  be  sufficiently  calibrated,  validated,  and  adequately  vigor-
ous.  Due  to  this  reason,  detailed  information-requiring  models
might  be  less  useful  than  simple  and  robust  models[3],  such  as
the  newly  available  FAO  water  productivity  model[94],  and/or
AquaCrop[94].  The  AquaCrop  model  is  mainly  dedicated  to  simulat-
ing  achievable  yield  according  to  the  availability  of  water.  This  is
supposed  to  have  a  most  favorable  balance  in  precision,  easiness,
and robustness[94] that may help estimate the optimal level of irriga-
tion  requirement  that  maximizes  the  farm  profitability  even  in
water-limited  environments[23].  In  addition,  the  AquaCrop[94] pro-
vides a good symphony between accuracy and straightforwardness
and  has  been  parametrized  for  more  than  15  different  cultivated
crops  grown  at  diverse  locations.  Several  researchers  report  the
usefulness of the AquaCrop model to estimate, with judicious accu-
racy,  both total  crop biomass and harvest  yield under different irri-
gation  treatments  i.e.,  from  no  water  stress  to  mild  (or  sometimes
severe)  water  stress[23,77,90,95,96].  The  model  includes  different  soil-
based  parameters  (like  water  balance),  crop  parameters  (crop
growth,  development,  and  yield),  and  atmospheric  parameters
including  the  thermal  regime,  rainfall,  evapotranspiration,  and
atmospheric  carbon  dioxide  concentration,  etc.  SWASALT  simula-
tion model was used to evaluate farm irrigation water management
options using a  one-dimensional  in  the Haryana district  in  India[97].
The study, further showed that in many circumstances, saline water
of up to 7.5 dS/m can be applied without any harm to crop produc-
tion  on  a  long-term  basis.  The  simulation  experiment  further
prescribed  that  the  use  of  the  canal  and  saline  water  alternatively
had an advantage over combination use.

Due  to  these  underlying  advantages,  AquaCrop  has  been
explored  by  several  researchers  for  preparing  irrigation  strategies.
For  example,  in  Bolivia,[24] ideal  rates  of  irrigation  application  were
derived (that include time intervals of applying the depth of water)
from evading moisture stress and assuring maximum water produc-
tivity  using  historical  climate  data.  Further,  they  inferred  their  fin-
dings  in  simple  charts  that  were  advantageous  to  policymakers,
extension  consultants,  and  farmers.  However,  apart  from  extensive
usage of irrigation scheduling based on agronomic practices, it  still
has a problem with optimization. Thus, Geerts et al.[24] resolved this
optimization  problem  for  three  different  field  crops  simulated  by
the  AquaCrop  model.  They  established  an  optimization  system  for
producing  suboptimal  irrigation  schedules  that  indirectly  includes
the  crop  water  stress  response,  and  subsequently  used  these  as
preliminary predictions for complete optimization of day-to-day irri-
gation.  Execution  of  this  optimization  with  several  standards  of
water quotas as a function that articulates the association between
water  quota and yield.  Another  study[98] verified the potentiality  of
the  AquaCrop  model  (V  4.0,  developed  by  FAO)  for  simulating
winter  wheat  canopy  cover  (CC),  actual  crop  evapotranspiration
(ETcact),  total  soil  moisture  content  (TMC)  and  wheat  grain  yield
(GY)  for  in  flood  irrigation  conditions  in  the  semi-arid  region  of
central  Morocco.  Model  calibration  was  done  using  those  parame-
ters affecting CC, ETcact, TMC, and GY through comparison between
observed and simulated results. Effectiveness of the model in simu-
lating CC, ETcact, TMC, and GY with average values of the Mean Bias

Error  (MBE)  between  measured  and  estimated  values  varied
between −4.6%, −0.23 mm/d,  17.56 mm, and 0.05 t/ha for  the cali-
bration, and 7.89%, −0.01 mm/d, 0.5 mm, and 0.06 t/ha for the vali-
dation respectively  for  two successive growing periods.  The results
from the several simulations (irrigation scenarios) showed the model
recommended  early  crop  sowing  as  compared  to  later  in  saving
water  and  gaining  adequate  harvested  yield.  Furthermore,  a  study
investigated  the  capability  of  HYDRUS-1D  in  simulating  irrigation
water  for  three  different  field  crops[99].  To  configure  water  and  salt
movement  procedures,  they  combined  HYDRUS-1D  with  FAO-56
(dual  Kc  approach).  Field  experimentations  were  done  in  the
command  area  of  a  conventional  irrigation  canal  system  in  Hetao
Irrigation  District  in  2012  and  2013  using  maize,  sunflower,  and
watermelon  crops.  Two  experimental  year  observations  were  used
for  model  calibration  and  validation  and  simulation  of  moisture,
salinity,  and  crop  yield  gave  comparable  results  with  the  observed
data. The study depicted that due to over-irrigation, a bulk quantity
of  irrigation  water  was  percolated,  which  again  was  reused  mainly
by the crop during its upward movement through the capillary rise.
They  concluded  that,  for  applying  water-saving  measures,  enough
consideration  should  be  given  to  the  distribution  of  cropping
patterns and controlling groundwater along with technical improve-
ment in irrigation scheduling. 

Yield prediction
The  DSSAT-CSM-CERES,  conventionally  known  as  DSSAT-

CSM[22,100],  is  a  cereal  crop  simulation  model  that  simulates  crop
growth  and  development  using  crop  physiological  traits  and
management  practices  under  normal  weather  conditions[93].  The
model  also  offers  the  opportunity  to  evaluate  the  impacts  of  an
under-optimal irrigation management strategy on biomass accumu-
lation, grain yield, and WUE of winter wheat[100]. It has already been
demonstrated  that  the  capability  of  the  DSSAT-CSM-Wheat  model
for optimizing crop management practices can lessen the economic
ambiguity for agricultural production[22,100].  The efficacious applica-
tion of the DSSAT-CERES model in simulating crop growth and yield
in  response  to  crop  management  and  ecological  factors  has  been
described under  diversified soil  and climatic  conditions in  different
regions across the world[88,93,101−103].

DSSAT-CERES  model  for  a  precise  estimation  of  winter  wheat
grain  yield,  biomass,  and  WUE  that  efficiently  guided  in  making
decisions  on  irrigation  management  in  the  Texas  High  Plains[104].
The model was calibrated with ground observations of winter wheat
grown under nine irrigation treatments varying from dryland to full
irrigation.  The  model  gave  an  accurate  prediction  for  crop  pheno-
logical observations, crop biomass, grain yield, and crop evapotran-
spiration  with  many  similarities  with  observed  data.  Simulated
biomass  yield  exhibited  a  significant  benefit  of  applying  100  mm
irrigation  water  at  the  jointing  or  booting  stage  rather  than  using
140 mm water at  the anthesis  or  grain filling stage.  Keeping deficit
irrigation  at  the  grain  filling  stage  remarkably  augmented  WUE
compared  to  full  irrigation  (400  mm)[104].  Furthermore,  the  web-
based  InfoCrop  wheat  model[7] estimated  yield  and  crop  biomass
significantly with R2 of 0.958 and 0.947 and RMSE of 0.054 and 1.318,
respectively  under  different  irrigation  and  nitrogen  management
conditions.  This  opens  a  state-of-the-art  tool  for  developing a  crop
simulation  model  to  be  used  as  a  DSS  tool  in  the  crop  production
system.

Another previous study[105] reported the applicability of the CSM-
CERES maize model in predicting maize biomass and grain yield and
in optimizing irrigation conditions in Pakistan. The crop was grown
both  under  water  limiting,  and  non-water-limiting  conditions,  and
four  growth  stage-based  and  two  potential  water  deficit-based
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irrigation  treatments  were  given  in  arid  regions.  The  calibrated
model  output  showed  a  consistent  result  with  10%  variability  as
compared to the observed value. However, the model showed more
variability in terms of predicting LAI, crop biomass, and crop yield of
–17.9% to 20.0%, –9.2% to 14.3%, and –19.6% to19.9%, respectively
during validation for two different maize hybrids Monsanto-919 and
Pioneer-30Y87.  Further,  the  study  concluded  the  usefulness  of
CERES-Maize  in  delivering  decision-making  under  different  irriga-
tion  regimes  at  the  farm  level.  In  another  study,[106] used  a  DSSAT
model for the maize crop simulation. The maize was grown in long-
term trials  with different tillage and residue management practices
in Zambia. They reported that an agronomic analysis of the location-
specific factors is required for simulating yield impacts of conserva-
tion  agriculture.  A  few  of  these  factors,  like  the  difference  in  soil
structure  between  conservation  plots  versus  tillage  practice,  can
have an impact on crop yield but are not simulated by DSSAT. These
may be merged in the simulation model through a proper parame-
terization of  relevant parameters.  Sensitivity  analysis  of  maize yield
simulation  to  three  critical  parameters  under  CA  practice  showed
that  the  DSSAT  responds  to  mulching,  specifically  when  rooting
depth is constrained, i.e., when water is an important limiting factor
for  crop  growth.  Earlier,  the  efficacy  of  the  Aqua-crop  model  for
predicting  wheat  yield  under  saline  irrigation  conditions  (4,  8,  and
12  dS/m)  using  both  salt-tolerant  and  sensitive  varieties  was
evaluated[25].  The  validated  AquaCrop  model  showed  a  significant
prediction accuracy of yield and above-ground biomass.

Despite  the  considerable  success  rates  of  the  above-mentioned
different  crop  simulation  models,  precise  crop  growth,  and  yield
modeling  over  vast  geographical  areas  by  a  single-crop  model  is
owing  to  diverse  possibilities  of  ambiguity.  To  improve  this,  a
Bayesian model averaging (BMA) method using several crop-growth
simulation  models  ensemble  to  deliver  more  reliable  estimates  of
maize yields in China,  covering a geographical  area of 148,000 km2

where  maize  is  grown  over  2,200,000  ha[60].  To  accomplish  their
objectives,  different  crop  simulation  models,  such  as  the  WOFOST
(WOrld  FOod  STudy)  model  for  studying  photosynthesis,  the
AquaCrop  model  for  studying  water  dynamics,  and  the  nitrogen-
oriented  DNDC  (DeNitrification  and  DeComposition)  model  were
used  and  compared  in  their  ability  to  accurately  estimate  maize
yield  at  a  county-level  scale.  From  this  individual  assessment,  an
integrated estimation was attained using a direct association of the
three  ensemble  members  employing  BMA  weights[99].  This  unified
scheme gave more specific predictions than any single crop model
does.  This  happened  because  a  BMA  structure  meticulously  consi-
ders the uncertainty of each simulation model while predicting crop
yield.  Additionally,  an  understanding  of  the  BMA  weights  is  also
crucial  for  comparing  regional  rainfall,  fertilization  use,  and  radia-
tion use data.  They found these values sufficiently correspond with
the  provincial  limiting  factors  as  the  high  weightage  was  obtained
in  counties  with  recurrent  droughts  using  an  AquaCrop  model.  In
contrast, WOFOST was found to be more appropriate in regions with
limiting radiation receipt. 

Nutrient management
For  quantifying  the  crop  nitrogen  requirements  for  rice,  the

ORYZA  model  was  developed[107].  The  ORYZA  is  a  'parsimonious'
model that is mainly reliant on insolation, bulk leaf nitrogen content,
and a location calibration feature. Further, the model was rigorously
tested  to  categorize  some  irrigated  rice  soils  in  India  for  their  N
supply  to  meet  the  crop  demand  up  to  the  flowering  stage  than
those where a basal dose was needed to achieve that stage[108]. The
results  obtained  from  the  model  were  found  to  be  useful  in  N
recommendation  in  terms  of  selecting  the  ideal  timing  of  N

application for the different soil N supply regimes. The same model
was also applied by a team of researchers in China, where the simu-
lation  result  achieved  considerably  higher  yields  as  attained  by
following  the  model  recommendations  as  compared  to  the  local
recommendations[109].  A  constraint  of  using  the  ORYZA  model  is
that  it  needs  to  be  calibrated  for  each  location  with  site-specific
conditions.  Some  important  decision  tools  and  their  use  in  mana-
ging crop nutrients are summarized in Table 1.

In another study[45], an APSIM simulation was used for simulating
wheat crop production and drainage passing through the crop root
zone of wheat and canola crops in response to nitrogen application
rates  from  0  to  300  kg  N  ha−1 per  year.  The  model  was  simulta-
neously trained with historical climatic data from 1889 to 2002 (rain-
fall,  temperature,  etc.)  and stored soil  moisture during crop sowing
time (SSMS) in southern Australia.  The results  exhibited the ideal  N
recommendations  rates  as  100,  150,  and 200 kg N ha−1 per  year  in
the  years  during  April/May  with  SOI  phases  as  negative  or  decrea-
sing, near zero, and increasing or positive, respectively. Comparable
results  were  obtained  for  an  associated  canola  cropping  system
using the APSIM model[51].

Under the operational management head, nutrient management
is  essential.  In  the  Netherlands,  simulation  results  based  on  the
nitrogen fertilizer recommendation are prescribed through an inter-
disciplinary  plan[115].  Based  on  the  measurements  of  crop  biomass
and mineral nitrogen contents in the wheat cropping soil root zone,
the  simulation  was  conducted  in  early  spring[115].  A  quantitative
approach to calculating fertilizer application through modeling may
help  in  better  yield  and  nutrient  use  efficiency  in  rice.  For  this,  an
assessment  of  soil  supply  efficacy  of  nutrients  along  with  the
requirement  and  internal  efficiency  of  N,  P,  K,  and  Zn  in  rice  from
field  experiments  conducted  in  20  different  sites  in  Eastern  India
was  made[112].  Site-specific  balanced  fertilizer  recommendations
were  achieved  using  the  quantitative  evaluation  of  the  Fertility  of
Tropical Soils (QUEFTS) model in their study. The calibrated QUEFTS
model  with  experiential  field  data  from diverse  locations  with  vari-
able  amounts  of  N,  P,  K,  and  Zn  resulted  in  a  good  fit  between
measured and calculated yields  and showed a  high and significant
correlation  with  N,  P,  K,  and  Zn  with  rice  yields.  The  EPIC  (Environ-
mental  Policy  Integrated  Climate  model)  was  used  to  simulate  the
response  of  crop  yield  and  SOC  (Soil  organic  carbon)  to  various
fertilization  regimes[116].  The  model  showed  promise  in  simulating
both the variability  of  crop yield  (NRMSE = 32% and 31%) and SOC
(NRMSE = 13% and 19%) during the calibration and validation stage
under diverse fertilization practices in China. The study showed the
usability  of  the  EPIC  model  in  predicting  the  impact  of  different
fertilizer regimes on crop growth and yield.

Another  location-specific  decision  support  system  model  for
nitrogen  fertilizer  recommendation  for  maize  growers  is  'Amaize
 

Table 1.    Summary of some of the decision tools widely used in crop nutrient
management.

Decision
tools Application Ref.

Amaize-N Forecasting crop yield and N-fertilizer requirements, and
planning N-fertilizer and irrigation applications for site-
specific maize crops nitrogen recommendation for maize

[110]

NuDSS Software for Irrigated Rice Nutrient management as well
as a tool for SSNM for rice

[111]

Nutrient
Expert

Software for formulation of fertilizer recommendations
as well as SSNM tool for maize and rice

[112]

QUEFTS Nutrient management for rice and wheat as well as
SSNM tool for rice and wheat

[112]

Adapt-N Nitrogen management for maize and assessing the
environmental fate of applied nitrogen

[113]

Expert-N Nitrogen management for wheat and annual crops [114]
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N'[110].  It  is  specialized  in  advising  maize  crop  yields,  and  rate  of  N-
fertilizer use for getting potential crop yield and premium economic
benefits.  Simultaneously,  it  also  forecasts  the  importance of  opera-
tor  management  decisions.  It  also  predicts  maize  production  and
indicates possible ecological impacts on maize. Simultaneously, the
system  also  provides  insights  into  the  leaching  loss  of  nitrogen
throughout  the  cropping  period  and  estimates  the  residual  soil
mineral-N at the termination of the growing season. 

Pest management
The  InfoCrop,  a  generic  crop  growth  simulation  model[117],  was

used for simulating rice planthopper damage on rice genotype Pusa
Basmati 1[118]. The model used for simulating economic injury levels
(EILs)  of  the  plant  caused  by  the  pest,  and  an  iso-loss  curve  were
prepared  that  depicted  yield  loss  at  different  crop  growth  stages
along with the planthopper[118].  Thus, the study showed the useful-
ness  of  amalgamating  EILs  and  iso-loss  curves  in  monitoring  plan-
thopper  populations,  which  in  turn,  provided  a  decision  support
system for  applying pesticides  to  check  disease  spread.  Hence,  the
simulation model that was built on large crop bio-physiological and
mechanistic processes along with pest injury mechanisms, can aid in
location-specific  decision  support  tools  and  assure  pest  manage-
ment  decisions  which  further  helps  in  increasing  agricultural
systems productivity. However, pest management decisions are also
useful  under  operational  crop  management  for  increasing  crop
productivity.  Due  to  the  existence  of  complex  interactions  among
crops,  pests,  and  diseases  and  because  of  their  dynamic  nature,  a
system investigation approach is  essential  to comprehend the pro-
bable  timing  of  the  rise  of  pest  and  disease  problems  and  their
management options[32].

To have a supervised control of disease and pests, and to reduce
the  chemicals  used  in  pest  control  in  winter  wheat[119],  the  system
EPIPRE  (EPIdemic  PREvention)  was  designed  between  1977  and
1981  in  the  Netherlands.  A  foremost  benefit  of  the  EPIPRE  system
was that the growers were capable of picking up as they went along
and  were  continuously  conscious  of  what  way  the  system
performed. The system EPIPRE mainly gives three choices:  (1)  treat,
(2)  do  not  treat,  and  (3)  do  another  field  observation.  As  the  crop
season  ends,  each  farmer  gets  a  record  of  his  activities  and  the
recommendations  along  with  a  monetary  explanation  of  the  crop
protection actions. Then in the future, the results are discussed with
other  farmers  as  well  as  among  themselves  in  regional  assemblies.
The same expertise, in 1981, covered 6% of Dutch winter wheat[120]

and  saved  an  average  of  CHF£15  ha−1[119].  In  1992,  the  EPIPRE  was
used to advise on disease control  in 500 fields in Belgium and nor-
thern France[30]. However, the researchers in Sweden (1982 to 1985)
found that even if EPIPRE were a fascinating and beneficial decision
support system, it would need adjustment if it were to be applied to
the farmer's field for repetitive practice. As the model recommends
needless spraying, the inclusion of weather parameters and adjust-
ment of plant growth factors into the model to make it more useful
to  Swedish  agro-environmental  conditions  was  suggested  in  a
previous study[2].

In  another  study,  it  was  observed  that  EPIPRE-recommended
plots  yielded  3%  less  than  conventionally  treated  plots  (0.5%  of
gross  return)[121].  However,  the  growers  were  capable  of  lessening
the  spray  application  frequency  by  20%–100%.  The  inference  was
that even though the growers failed to earn more revenue, the new
method  was  environmentally  useful  and  aided  in  lessening  the
pesticide  resistance  issue[121].  Likewise,  a  decision  support  system
has been developed in Australia called SIRATAC[122]. This is a dial-up
crop management system that supports irrigated cotton cultivators
in making the right tactical  decisions in using insecticides daily[122].

It  is  comprised  of  several  simulation  models  along  with  a  decision
model that aid the farmer to decide whether to spray insecticide or
not  and  if  yes,  which  type  of  insecticide  should  be  sprayed.  There-
fore,  both  the  SIRATAC  and  EPIPRE  contributed  significantly  and
successfully  by helping in  disease interpretation and pest  manage-
ment in the crop field more effectively. 

Varietal evaluation
For  the  plant  breeders,  the  main  focus  is  to  bring  novel  crop

genotypes with enhanced characteristics like higher grain yield and
superior  quality,  which will  be suitable  for  a  wide range of  climatic
conditions. When a newly developed genotype is cultivated which is
more  ecologically  diverse  than  its  native  region,  it  is  imperative  to
evaluate  genotype-by-environment  (G  ×  E)  interactions.  The  G  ×  E
interactions mainly define the unique variations, in terms of perfor-
mances, which a newly developed genotype could show while they
are  evaluated  in  new  environments[123].  Such  interactions  possibly
will  be  significant  for  some  crops  and/or  varieties  of  a  crop  e.g.,
sunflower  crop  due  to  their  influence  on  total  yield  variance  may
range from 5% to 20%[123,124]. Information regarding the interaction
between genotypes and the environment is also essential for under-
standing  the  stress  tolerance  abilities  of  the  crop[32,96] and  for  eva-
luating  the  relative  performance  of  a  board  population.  New  bree-
ding  lines  and/or  genotypes  produced  by  breeders  are  frequently
exposed  to  multi-environment  trials  (MET)[125].  Nowadays,  these
trials  continue  to  play  a  crucial  role  in  varietal  assessment  through
breeding  programs,  in  addition  to  providing  recommendations  to
growers by extension people.

The  systems  involved  in  the  authorized  varietal  assessment  for
the field crops vary from one country to another. In Europe, there is
a  general  feature,  where  authorized  varietal  assessment  is  con-
ducted by committed organizations for testing the value for cultiva-
tion and use (VCU)[126]. The VCU method targets following real-world
farming  circumstances  in  regions  appropriate  for  each  crop[126].
These trials usually take 3−6 years,  depending on the types of crop
and country, to bring a list of recommended varieties for cultivation
which  is  either  published  in  regional  bulletins  or  national  summa-
ries.  Similarly,  in  France,  it  needs 2−3 consecutive years  of  success-
ful  field  verification  conducted  by  GEVES  (Groupe  d'Etude  et  de
Contrôle des Variétés et des Semences – an official seed and variety
testing agency) using multi-environment trials for registering a new
crop  variety  in  the  Official  Catalog  of  Plant  Varieties[47].  Subse-
quently,  to  check  their  regional  production  efficiency,  the  newly
developed varieties  are  examined over  a  broader  area  and with an
additional number of trials by technical institutes[47]. In varying agro-
environments  in  India,  the  impact  of  projected  climate  change  for
2080  on  Indian  mustard  (Brassica  juncea)  was  evaluated  using  the
InfoCrop model[127]. The crop was found sensitive to changes in CO2

concentration  and  temperature.  Additionally,  analysis  of  future
climate change situation displayed that mustard yields are expected
to  decrease  under  both  irrigated  (67%  in  Eastern  India,  48%  in
central  India,  and  40.3%  in  northern  India)  and  rain-fed  (57%  in
Eastern India, 14% in central India, and 21.4% in northern India) field
conditions.  Nevertheless,  these  decreases  have  latitudinal  discre-
pancies across the mustard-growing areas of India[47].

Nonetheless,  these  multi-environment  trials  are  expensive,  and
there is a possibility to make better and quicker usage of the infor-
mation supplied by these plentiful  trials  for  the registration of  new
varieties  and  further  recommendations  for  cultivation.  A  previous
study[128] reported  issues  regarding  the  existing  varietal  evaluation
process,  which may intensify  the risk  of  taking the wrong manage-
ment or misallocation to a variety. Thus, they[128] have developed a
unified  structure  (existing  method  plus  modeling  approach)  for
variety assessment for sunflowers using a crop modeling approach.
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A  process-oriented  methodical  pipeline  was  developed  to  support
variety  assessment  and  to  intensify  the  ecological  and  agronomic
circumstances  where  the  crop  varieties  are  regularly  verified[47].
Three steps were proposed and united in the existing procedure of
pre- and post-registration followed in France by GEVES,  aiming the
extension  activities  and  seed  corporations  to  describe  the  appro-
priate  usage of  freshly  developed genotypes  (Fig.  4).  Details  of  the
framework as done for sunflower crop is also given in Fig. 5.
 

Step 1: parameter value estimation through plant
phenotyping

The  usual  phenotyping  was  carried  out  using  five  agronomic
variables,  such  as  flowering  date,  crop  height,  moisture  content  at
harvest,  sunflower  oil  concentration,  and  grain  yield[46,128].  The

newly  developed  genotypes  were  tested  in  two  selected  fields  for

measuring  ten  out  of  twelve  variety-dependent  parameters  of  the

SUNFLO  crop  model.  These  rigorous  trials  aim  at  crop  phenology,

construction, and yield build-up (Fig. 5).
 

Step 2: evaluation of the SUNFLO crop model through variety
assessment networks

After  the  parameterization  of  the  newly  developed  varieties,  the

SUNFLO model was then assessed on the GEVES systems to decide

its  predictive  efficiency  for  this  new  genetic  material[128].  Based  on

the predictive efficiency, the model categorized the variety as valid

or  not  suitable  for  commercial  crop  varieties.  If  correct,  numerical

experimentations can be done in the next step using the model.
 

 

Recommendation from
model output

Official
registration

A
gr

ic
ul

tu
ra

l e
xt

en
si

on
ev

al
ua

tio
n 

pr
og

ra
m

Official
registration

Evaluation of crop model
on field data

Phenotyping for model
parameterization

Current variety assessment chain Model based approach to assist variety testing

1

2

3

Ye
ar

(n
 +

 1
)

Ye
ar

(n
 −

 1
)

Ye
ar

(n
 −

 2
)

Ye
ar

(n
)

C
ro

p 
va

rie
ty

ev
al

ua
tio

n 
pr

og
ra

m

Fig. 4    Framework to include crop modeling in the variety evaluation process (modified from Casadebaig et al.[128]).
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Step 3: proposal of numerical experiments for providing
varietal recommendation

The  numerical  experimentation  layout  was  made  by  the  stake-
holders  by  merging  crop  varieties,  target  environments,  and  crop
management  strategies[124].  Further,  to  deal  with  climatic  ambigui-
ties,  the  SUNFLO  model  was  run  with  30  years  of  weather  data,
which provide simulated rankings (mean and standard deviation) on
sunflower grain and oil yields for separate grouping of soil, climate,
and  crop  management.  From  this,  advisers  could  select  the  best
crop  varieties  and  associated  crop  management  strategies  and
broadcast their recommendations over standard media[124].

Using the above methodology, a previous study[128] carried out a
variety of testing and implemented this methodology on sunflower
crops  using  the  SUNFLO  simulation  model.  After  the  estimation  of
the  parameters  with  plant  phenotyping  for  new  genetic  material,
model  estimation  capacity  was  evaluated  on  multi-environment
trials.  The  result  showed  the  comparative  root  mean  square  error
(RMSE)  of  oil  yield  was  16.4% with a  model  accuracy of  54.4%.  The
model  further  ranked the  commercial  hybrids  with  a  relative  RMSE
of  11%  and  Kendall's  Ʈ =  0.41  ( p <  0.01),  which  confirmed  the
model's performance in ranking ability. For identifying the best crop
variety-associated  management  practices,  the  numerical  experi-
ment  was  designed  by  unifying  earlier  confirmed  genetic  material
and  unknown  cropping  conditions  in  French  production
counties[124].  Finally,  they  improved  the  variety-environment-
management  choice  and  suggested  the  effectiveness  of  their
approach in finding operational outcomes to endorse crop varieties
rendering  to  environmental  conditions.  This  spatially  managed
genetic  property  might  enhance  crop  performance  by  decreasing
the genotype-phenotype discrepancy in the farming community. 

Crop modeling in the face of climate change and
environmental constraints – challenges and
opportunities

Today,  the  earth  is  warmer  than  anticipated  because  of  the
enhancement  of  greenhouse  gases  (GHGs)  in  the  atmosphere[127].
The increasing concentrations of CO2 and other GHGs are predicted
to  escalate  the  ambient  temperature  of  the  earth[127].  As  crop  pro-
duction in the field is heavily reliant on climatic conditions (precipi-
tation, air temperature, humidity, vapor pressure, etc.), seasonal vari-
abilities  in  climatic  patterns  adversely  affect  crop  production[45,129].
Hence, the consistent change in global climate greatly impacts crop
yield productivity[46]. Crop physiological processes like photosynthe-
sis, respiration, plant growth and development, plant reproduction,
root water uptake, etc., are jointly affected by elevated temperature
and carbon dioxide[74,129]. However, in the tropics and sometimes in
sub-tropics,  where  radiation  and  rainfall  availability  are  more  pro-
found across  the year,  the probable rise  in  the air  temperature can
reduce  the  positive  effects  of  elevated  carbon  dioxide  concentra-
tion  and  cause  substantial  yield  losses  and  water  consumption[47].
Therefore,  an  improved  understanding  of  the  impacts  of  global
climate  change  on  agricultural  production  is  required  to  assist  far-
mers,  breeders,  and  policymakers  in  making  suitable  management
decisions like crop cultivar selection, scheduling irrigation, and crop
sowing  to  curtail  the  associated  risks.  Agricultural  adaptation  to
global  climate  change includes  careful  consideration of  factors  like
changing farming practices,  cropping patterns,  and the application
of innovative technologies that should be included together to help
make decisions[47].

A  previous  study[46] reports  that  it  is  of  utmost  importance  to
understand  the  possible  impacts  of  climate  change  and  its  varia-
bility  on  agricultural  production  on  a  site  and  region-specific  basis

while  using  crop  simulation  modeling  and  a  straight  interaction
should be established among simulation models, agro-meteorology,
and  the  social  concerns.  Thus,  a  robust  scientific  approach  is
required  by  combining  General  Circulation  Models  (GCMs)[127] and
crop simulation models to investigate their performance in forecas-
ting  agricultural  productivity.  The  CROPGRO  (DSSAT)  is  one  of  the
well-known  crop  simulation  models  that  adapted  weather  simula-
tion generators to assess model performance under climate change
scenarios[38,117].  In the future,  it  is  anticipated to be more useful  for
the world farming community,  if  DSSAT modelers look at GCMs for
integrating  more  precise  and  satisfactory  weather  generators  in  its
framework.  This  effort  will  be  helpful,  specifically  in  underdeve-
loped  countries,  in  discovering  answers  to  many  questions  related
to crop production under climate change situations[38,117].  To adapt
crop modeling that can improve forecasting of agricultural produc-
tion in the face of climate change and other increasing environmen-
tal  constraints,  the  following  considerations  should  be  taken  into
account. 

Understanding genotype × environment interactions
Beeding  new  crop  genotypes  is  a  complex  and  time-consuming

process  that  needs  at  least  5−15  years  for  its  development.  In
contrast, an alternative and more effective approach is to test a wide
range  of  genotypes  in  a  site  and/or  region-specific  environments
and  identify  their  suitability  for  drought/water  stress  tolerance,
specific  disease tolerance,  higher water and nutrient use efficiency,
and  yield  production[130−133],  where  remote  sensing  imagery,  soil
and agronomic traits, and weather variables can be integrated with
crop  simulation  modeling  approaches  to  provide  useful  tools  and
knowledge  of  genotype  into  environment  interactions  (G  ×
E)[96,131,133,134].  Such  methods  can  aid  in  lessening  the  number  of
locations  or  time needed for  field  assessment  and thus,  promoting
the  proficiency  of  the  crop  variety  development  process.  Since,  a
crop  simulation  model  uses  a  multitude  of  information  and/or
factors on agronomic traits, genotypic information, weather compo-
nents,  crop physiological changes in a specific environment, etc.  to
train  with,  it  is  important  to  characterize  crop/genotype-specific
information  and  to  quantify  G  ×  E  before  simulation.  Theoretical
values  could  then  be  simulated  by  grouping  the  crop  parameters
deliberating  the  most  benefit  as  a  sign  of  appropriate  characters
and  breeding  targets[125].  A  modeling  approach  can  also  offer  the
probability  of  yield  prediction  in  a  new  region  based  on  the  G  ×  E
interactions[134,135].  Process-based  crop  growth  simulation  models
have been verified to be the paramount useful  tools for this  perse-
verance, as they can explore G × E × management relations making
them  crucial  modes  for  understanding  the  courses  of  the  multi-
faceted interconnections in cropping systems[123].  Deficiency of soil
moisture due to drought decreases transpiration rate due to reduc-
tion  of  stomatal  conductance  and  crop  turgor  is  hampered.  Accor-
dingly, CO2 flux into the intracellular space is decreased as well and
restricts  photosynthesis  consequences  in  the  lower  green  area  for
assimilation.  Additionally,  crop  nutrient  uptake  is  condensed.  The
crop  simulation  models  have  the  potential  to  be  used  in  climate
change  studies  to  understand  the  potential  impacts  of  changing
climate on the food system. Together, the timing and length of a dry
spell of reduced soil moisture defines the extent of yield loss or crop
damage[90].  For  crops  like  wheat,  maize,  or  barley,  the  time  near
flowering  has  been  recognized  to  be  most  sensitive  to  drought
stress[91,135].  Similarly,  when  the  temperature  surpasses  the  opti-
mum  range  for  a  specific  crop,  the  photosynthesis  rate  is
restricted[85] and  generally  growth  rate  is  enhanced  while  respira-
tion[26], and evaporation rise[40,73], which consequences in decreased
biomass  production  and  yield.  For  cereals  during  the  reproductive
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stage,  temperature  outside  the  optimal  range,  additionally,
decreases  grain  number  and  grain  filling  rate  and  hastens  leaf
senescence[75,76]. Acute high-temperature thresholds[6,10] vary accor-
ding  to  the  crop  genotypes  and  growth  stages  as  revealed  for
rice[108], wheat[25], and maize[113]. 

Ideo-type design of future cultivars
Since  the  last  decade,  crop  simulation  modeling  has  played  an

important role in plant breeding, specifically, in designing crop ideo-
types for  various crops and agronomic environments[135].  However,
forthcoming  crop  cultivation  is  likely  to  be  vulnerable  to  frequent
and severe weather-related phenomena, which include heat waves,
drought,  cold  waves,  etc.,  and  are  the  main  challenges  to  plant
breeders  and  agricultural  scientists  to  secure  future  food  demand
from  agricultural  products.  Therefore,  it  is  important  to  focus  on
new ideo-types that are tolerant to severe weather phenomena and
can  further  be  transferable  to  different  agronomic  environments
of  similar  climatic  impacts  using  crop  simulation  and  prediction
approaches.  The  interactions  among  the  crop  genotypes,  environ-
ment,  and  management  practices  are  generally  simulated  in
process-oriented  crop  models  that  are  developed  to  assess  the
impacts  of  climate  and  weather  extremes  on  crop  phenological
progress,  crop  water  use,  heat/drought  tolerance,  yield  potential,
etc[135].  The main restrictions of crop simulation modeling for deve-
loping  crop-ideotype  breeding  was  discussed  in  a  previous  study
and  showed  how  the  crop  simulation  model  had  reinforced  the
assessment  and  design  of  cereal  cultivars  for  upcoming
conditions[135].  The  study  also  showed  a  success  story  where  the
potential  of  simulation  modeling  has  been  applied  for  ideotype
breeding.  They  have  combined  the  usual  crop  simulation  model
with new breeding,  and genetic modeling,  which holds promise to
hasten  the  transfer  of  future  cereal  variety  for  different  locations.
The robustness of the simulated model-aided ideotype strategy can
also  be  improved  by  the  continued  development  of  simulation
models  for  capturing  better  impacts  of  extreme  events  and  the
usage of multi-model ensembles. 

Adjustment of sowing dates
The  sowing  date  is  a  crucial  factor  for  estimating  crop

production[125].  However, the selection of appropriate sowing dates
has  been  a  longstanding  challenge  in  agriculture  under  variable
climate  and  other  associated  environmental  constraints.  While  too
early sowing may expose the crop to weather extremes like damage
by frost during emergence in certain climatic conditions,  too much

delay in sowing may result  in the occurrence of  high temperatures
and  heat  stress  effects  during  reproductive  stages[136,137].  The
Gregorian  calendar  has  customarily  been  used  to  monitor  crop
development[102].  In  traditional  field  experiments,  current  weather
and soil conditions can be used to find the optimum sowing date for
crop cultivation, but it is not always possible to predict the futuristic
sowing  window  to  tackle  the  impacts  of  climate  change.  In  such
cases,  the  crop  simulation  models  could  play  an  important  role  in
helping  forecast  appropriate  sowing  dates  for  specific  crops/
genotypes[137].  The  range  of  optimum  sowing  dates  is  estimated
from  location  and  crop-specific  field  experiments  that  were  per-
formed  systematically  for  a  limited  period  using  local  varieties  in  a
particular location. Further, crop simulation models can be extrapo-
lated to other locations and environments[136]. Despite these efforts,
the  responses  of  yield  of  some  specific  grain  crops  e.g.,  wheat  to
different  sowing  dates  rely  on  seasonal  weather  variability  across
the locations and years.

In this perspective, the crop simulation models that are evaluated
with local  experimental  data could be a treasured tool for inferring
the  experimental  results  in  other  time  scales  (years)  and
locations[138].  Likewise,  crop simulation models  are  used to  explore
the  performance  of  different  cultivars  during  different  dates  of
sowing  under  varying  soil  conditions  and  climate  scenarios[139−141].
Inferring  the  results  from  a  limited  number  of  environments  in
which  the  experimental  data  are  not  considered  may  not  only  be
challenging  but  also  misleading[102,136,141].  A  comparison  of  simula-
tion  results  with  experimental  data  to  identify  the  optimal  sowing
date  of  wheat  for  Mediterranean  regions  emphasized  the  impor-
tance  of  verifying  the  measured  phenology  and  specifically,  the
observed anthesis  dates  for  evaluating the general  performance of
the  model  instead  of  a  single  value  per  cultivar  regardless  of  the
sowing date. The use of a specific phyllochron for each sowing date
as  generally  done  in  APSIM  simulation,  enhanced  the  anthesis
predictions and other features of the model[139].  When crop simula-
tion models integrate with web-based decision-support tools, high-
performance computing (HPC),  and Internet-of-Things (IoT),  can be
more  effective  in  providing  decision-support  tools  that  syndicate
freely accessible information into a user-friendly interface, such that
real-time assessment of soil, plant, and weather information is made
possible  (Fig.  6).  Monitoring of  such tools  before  the  crop-growing
periods  would  help  the  farmers  and  breeders  to  minimize  the
effects of extreme weather events during the critical stages of crop
development[138]. 
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Conclusions and recommendations

Crop  simulation  modeling  provides  improved  decision-making
tools to enhance agricultural system productivity to meet the global
food demand. For evaluating and forecasting crop growth and yield,
a variety of models,  including statistical,  mechanistic,  deterministic,
stochastic,  dynamic,  static,  and  simulations  are  used.  A  particularly
useful  tool  for  estimating  the  effects  of  climate  change  on  crop
growth  and  production  is  the  crop  growth  model.  These  models
may be used for  a  variety  of  real-world  agricultural  issues.  Globally
valid  simulation  models  must  be  created,  and  enough  human
resource capability must be enhanced. Independent model creation
and  its  use  can  help  identify  knowledge  gaps  as  a  research  tool,
enabling  more  effective  and  targeted  study  planning.  Models  that
are  based  on  reliable  physiological  data  can  extrapolate  to  other
cropping  cycles  and  locales,  allowing  for  the  measurement  of
temporal and spatial variability.

However,  producing  locally  appropriate  and  climate-informed
crop simulation model outputs throughout a range of time frames,
from seasonal to future climate change, is difficult. Effective adapta-
tion  strategies  must  be  devised  to  create  resilient  and  sustainable
agricultural  systems  in  the  face  of  climate  change  and  other
associated  increasing  environmental  constraints.  To  achieve  this,  a
cross-scale  and  cross-disciplinary  approach  will  be  necessary.  The
outcomes  of  such  measurements  should  be  validated  based  on
regional  socio-cultural  and  agroecological  circumstances.  Agricul-
tural adaptation methods, such as livelihood adjustments and farm
management practices, should be suitable.

Sometimes,  the  lack  of  seasonal  input  data  for  crop  simulation
modeling  serves  as  a  hindrance  to  crop  research  advancements.
While  accurate  input  data  for  crop  models  are  the  most  important
component, it may be possible to get useful information about how
and where crops should be planted in certain regions and to lower
the  margin  of  error  in  agronomic  and  field  management  practices.
The appropriate tools and use of diverse data collection techniques
may  illustrate  how  gaps  in  our  understanding  of  data  gathering
could be filled, assuring and enabling a more effective and targeted
study design. The measurement of temporal and geographical vari-
ability  is  made  possible  by  the  extension  of  simulation  results  to
alternative  cropping  cycles  and  locations  when  the  appropriate
climatic, agronomic, soil, and crop physiological data are employed.
Because  data  are  often  unavailable  and/or  not  available  in  the
proper  format,  validation of  crop models  is  often difficult  to  estab-
lish.  Many  researchers  are  concerned  about  this  issue.  Due  to  the
complexity of the models, a lack of high-quality data, a lack of model
testing,  and  the  unavoidable  errors  that  result  from  such  testing,
many  academics  are  hesitant  to  engage  in  research  involving  crop
simulation.  Given  the  availability  of  meteorological  data  and  crop
calendar  information,  region-specific  phenology  parameters  are
frequently simple to predict. However, for characteristics relating to
management and production, correction variables, such as planting
density,  fertilizer  application,  weeding,  water  management  tech-
niques, and information on their area specifics are typically lacking.

The present  review offers  a  multitude of  useful  methodical  tools
and  information  on  crop  model  parameters  including  cultivar  fea-
tures, management practices, and environmental variables common
in  a  certain  location  by  using  currently  available  data  sets  from
multiple  sources  to  optimize  simulation  parameters.  The  various
crop  simulation  models,  their  advantages,  limitations,  and  applica-
tions  in  agriculture  are  discussed.  The  potential  developments  in
crop simulation models in light of the rapidly developing technolo-
gies  in  agriculture  are  also  discussed.  The  methods  that  concur-
rently  integrate  soil,  plant,  and  climatic  aspects  in  evaluating  crop

demand  for  projecting  gain  yield  and  future  demands  including
crop  simulation  techniques  are  discussed.  Crop  simulation  models
for  better  agricultural  decision-making  will  undoubtedly  benefit
from  the  use  of  remote  sensing  and  geographic  information
systems.  The  availability  of  high-resolution  satellite  and/or  low-
altitude unmanned aerial  vehicles (UAVs) data will  aid crop models
for  better  evaluation  and  forecasting.  The  adaptive  and  heuristic-
based algorithm used in computational intelligence will help resolve
difficult agricultural problems like crop management optimization.

Additionally,  the potential  of  calibrating crop models  for  agricul-
tural  simulation  utilizing  a  variety  of  data  sources  are  emphasized,
hence  enabling  calibration,  validation,  and  simulation  with  crop
models. It is therefore appropriate to test and compile the methodo-
logy for a variety of vegetables, field and fodder crops, orchards, etc.
Further,  it  is  recognized that more study has to be done to make it
simpler  to  use  the  parameters  that  allow  one  crop  model  to  be
uploaded  into  databases,  downloaded,  and  reformatted  for  use  in
another  model.  The  problem  areas  related  to  several  climates  and
hydro-meteorological modeling issues are discussed including para-
meter estimation, the temporal and spatial scale of application, vali-
dation,  climate-scenario  generation,  data,  and  modeling  tools,
which  will  be  addressed in  part  by  addressing the  aforementioned
issues.

Finally, we conclude by stating that we have the possibilities and
capabilities to integrate the best practices of decision supported by
crop  simulation  and  optimization  to  bridge  the  gap  between
research  and  practical  implications  of  agricultural  systems.  In  the
future,  it  is  anticipated  that  crop  simulation  models  as  a  decision
support tool will  be the key to answering many complex questions
related to agricultural systems productivity and sustainability. 
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