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Abstract
An enormous amount of immature king coconut husk waste (KCHW) has accumulated as a result of the rising demand for king coconut water worldwide,

creating environmental problems. This study investigates the potential of KCHW as a sustainable resource for producing soil conditioners through pyrolysis.

Biochar, produced at 300, 400, and 500 °C for 1 h, and ash, produced at 400, 500, and 600 °C for 4 h, analyzed for their nutritional composition and physical

properties.  The  results  revealed  that  increasing  pyrolysis  temperature  significantly  influenced  nutrient  profiles,  leading  to  higher  available  potassium,

calcium,  and  magnesium  concentrations.  Biochar  exhibited  high  fixed  carbon  content  (>  70%),  indicating  potential  for  carbon  sequestration,  while  ash

samples  showed  high  inorganic  matter  content  (>  50%),  suggesting  value  as  a  mineral-rich  amendment.  In  conclusion,  this  study  confirms  biochar's

potential to enhance available potassium, calcium, and magnesium levels in soil. The study underscores the critical importance of systematically refining

pyrolysis parameters to develop biochar with optimal nutritional characteristics that precisely match specific soil nutrient deficiencies. It provided insights

for devising future sustainable waste management approaches for coconut industries and seemingly made suggestions for the enhancement of the state of

the plantation soil for coconut production.
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Introduction

The king coconut (Cocos nucifera var. aurantiaca) locally known as
'Thambili'  is  one  of  the  native  and  rare  types  of  coconuts  grown
abundantly only in Sri Lanka[1].  Specifically, the king coconut which
has a golden orange-colored husk is widely acclaimed culturally and
historically in Sri Lankan history tracing back to pre-historic periods.
One of the most cherished qualities of the king coconut is its extra-
sweet,  fragrant  nut  water,  renowned  for  its  high  concentration  of
total sugars (5−6 g/100 mL), predominantly inverted sugars (glucose
and fructose)[2]. This natural beverage is not only refreshing but also
highly hydrating,  containing natural  electrolytes (Na+,  K+,  Ca+2,  and
Mg+2), vitamins, and minerals with a neutral pH[3]. The unique flavor,
sweetness,  and  health  benefits  of  king  coconut  water  have  con-
tributed to its immense popularity in Sri Lanka, from roadside stalls
to  luxurious  hotel  offerings.  It  has  become  a  symbol  of  Sri  Lankan
culture  and  a  sought-after  export  commodity,  with  a  substantial
commercial market potential globally (Table 1).

However,  the increasing demand for  bottled king coconut water
has led to a significant accumulation of immature king coconut husk
waste (KCHW) from export factories[5]. This waste cannot be used for
value  addition  due  to  the  immaturity  of  the  husk.  While  KCH  has
been  traditionally  used  as  a  mulching  material  around  crops,  offe-
ring  benefits  such  as  moisture  retention,  weed  control,  and  soil
erosion  prevention,  it  has  limitations  compared  to  other  organic
mulching materials[6].  KCH exhibits  lower moisture absorbance abi-
lity and slower decomposition rates,  which can hinder its  effective-
ness as a mulch. The unsustainable management of this agricultural
waste poses a threat to the ecosystem, serving as a breeding ground
for  insects  and  mosquitoes,  and  potentially  causing  health  issues
such  as  dengue  and  elephantiasis[1].  Moreover,  mulching  and

burying in agricultural  lands may not be economical  or sustainable
solutions  for  managing  this  generated  agro-industrial  bio-waste.
Nonetheless,  major  king  coconut  water  exporters  generally  utilize
this resource as a biofuel feedstock in boilers to generate power for
their  operations.  However,  this  practice  may  not  be  environmen-
tally friendly or sustainable in the long run.

It  is  vital  to  investigate  long-term  solutions  for  the  valuation  of
immature  KCHW in  light  of  these difficulties.  One possible  strategy
that has to be considered is the utilization of this waste to produce
goods that may be beneficial  to the coconut plantations and other
coconut-based  agroforestry  systems  for  instance  through  the  pro-
duction of  biochar and ash,  which are widely used as soil  conditio-
ners  for  increase  in  overall  productivity[7,8].  This  can  be  a  good
source  of  potassium  (K)  nutrients[1].  And  it  increases  the  nutrient
retention  ability  of  soil[9].  Ultimately,  it  contributes  to  achieving
Sustainable  Development  Goals  (SDGs)  by  enhancing  soil  fertility
and  crop  yields,  thereby  ensuring  food  security  in  the  global
scenario[10−16].

This study aims to investigate the nutritional properties of KCHW
biochar and ash as potential soil conditioners with different pyroly-
sis temperatures and times including 300, 400, and 500 °C for 1 h for
biochar and 400, 500, and 600 °C for 4 h for ash production. There-
fore,  this  will  extend  understanding  and  recommend  their  applica-
tion in coconut production to reduce the detrimental effects of king
coconut cultivation. 

Methodology
 

Feedstock collection and sample preparation
The investigation was carried out in the Agronomy Division of the

Coconut Research Institute situated in Lunuwila, Sri Lanka. The steps
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were to place the KCHW in small chips and expose the chips to oven
drying at  a  temperature of  60 °C for  72 h.  Following this,  the dried
chips  underwent  pyrolysis  utilizing  a  Muffle  Furnace  (Model  P330,
Nabertherm, Germany) at three different heating levels: Those were
300, 400, and 500 °C for making biochar production. In the produc-
tion of ash, 400, 500, and 600 °C temperatures were used. Over these
hours,  the  pyrolysis  process  was  conducted  in  a  regulated  setting
with  a  restricted  air  supply,  maintaining  a  heating  rate  of  7  °C  per
minute.  This  biochar  was  permitted  to  cool  to  room  temperature
and more analysis was done at a later time after cooling. 

Characterization of KCH biochar and ash
The properties of KCHW ash and biochar were examined through

various  analyses.  The  samples'  electrical  conductivity  (EC)  and  pH
were  measured  using  standard  protocols  with  an  Edge  meter
(Hanna,  Romania)[17].  The  Kjeldahl  method  determined  the  total
nitrogen  (N)  content[18].  In  contrast,  the  modified  dry  ash  method
was  used  to  analyze  the  levels  of  phosphorus  (P),  potassium  (K),
magnesium  (Mg),  calcium  (Ca),  and  micro-nutrient  components
[iron  (Fe),  sodium  (Na),  lead  (Pb),  zinc  (Zn),  nickel  (Ni),  and  copper
(Cu)] in the samples[19]. Proximate analysis was conducted using the
muffle furnace pyrolysis method. 

Statistical analysis
R software (4.1.3) was utilized for all statistical studies. A One-way

Analysis  of  Variance  (ANOVA)  was  performed  on  the  data  mean
values  at  a  5%  significance  level.  Tukey's  honestly  significant  diffe-
rence  (HSD)  comparison  test  was  then  used  to  conduct  statistical
comparisons. 

Results and discussion
 

Nutrient composition of KCHW-biochar 

Macronutrient composition of KCHW-biochar
The biochar's nutrient composition is controlled by the tempera-

ture at  which it  is  produced,  for  the amount of  N,  P,  K,  Ca,  and Mg
that  is  both  total  and  available  (Table  2).  The  total  N  content  of
produced KCHW-biochar  decreased significantly  with  rising pyroly-
sis temperature, from 1.99% at 300 °C to 0.58% at 500 °C. However,
the  available  N  content  remained  constant  (0.08%)  across  all
temperatures.  Higher  pyrolysis  temperatures  lead  to  a  significant
reduction in the total N level of the KCHW-biochar. As the pyrolysis

temperature  increases,  these  nitrogen-containing  compounds
undergo  further  decomposition  and  transformation,  leading  to  a
decline  in  the  total  nitrogen  content  of  the  biochar[20].  The  N
amount in biochar was found to be positively correlated with the N
content in the biomass and negatively correlated with the pyrolysis
temperature[21].  However,  the available  N content  remains unaffec-
ted by the temperature, suggesting that the remaining N is present
in  a  stable  form.  This  stabilization  could  occur  through:  (1)  the
formation  of  recalcitrant  nitrogen-containing  aromatic  structures;
(2)  the  creation  of  nitrogen-rich  heterocyclic  compounds;  and  (3)
the  conversion  of  labile  nitrogen  compounds  into  more  resistant
forms.

The  total  and  available  P  content  did  not  show  significant  varia-
tions  across  the  different  pyrolysis  temperatures  in  the  process  of
KCHW-biochar  production.  This  indicates  that  P  is  relatively  stable
and  retained  in  the  biochar  across  the  temperature  range
studied[22]. Wang et al. mentioned that volatilization of P-containing
compounds  happens  at  nearly  around  760  °C  of  the  pyrolysis
temperature[23].  The  same  results  were  observed  in  the  coconut
husk-biochar production process[1].

The  total  K  content  enhanced  slightly  with  rising  temperature,
from  2.41%  at  300  °C  to  3.33%  at  500  °C  in  produced  biochar.  The
available K content followed a similar pattern, increasing from 2.37%
at 300 °C to 2.93% at 500 °C. Some studies show that processes asso-
ciated  with  temperature  sensitivity  are  involved  in  the  release  of
readily  available  K.  The  rate  of  thermal  decomposition  of  K  corre-
lates with temperature, and the amount of K made more available at
500 °C is greater than that of the less available K implants. Neverthe-
less, the release of available K is less efficient at lower temperatures,
which  causes  the  output  of  less[24,25].  This  paper  further  highlights
that  pyrolysis  temperature  influences  the  chemical  contents  and
processes of K compounds within the biochar and its release to the
soil  solution[26].  Hence,  the  established  differences  in  available  K
availability  at  various  temperatures  reflect  on  the  temperature
deposition  on  the  mechanisms  from  which  available  K  can  be
released in the compounds in the soil[27].

The total Ca level increased significantly with rising temperature,
from 0.29% at 300 °C to 1.16% at 500 °C in here. As organic compo-
nents volatilize at higher temperatures, the relative concentration of
mineral  elements  increases.  This  is  not  necessarily  due  to  more  Ca
being  added,  but  because  other  volatile  components  are  being
removed[28].  The  process  creates  a  'concentration  effect'  where  the
same amount of Ca appears to increase as a percentage due to the
reduction  of  other  components.  The  available  Ca  content  also
showed  an  increasing  trend,  but  the  differences  were  not  statisti-
cally  significant.  Comparable  characteristics  were  noted  in  various
forms of biochar generated from seaweed, orange pomace, chicken
litter, and vine pruning[29].

The  total  Mg  amount  of  KCHW-biochar  remained  relatively  con-
stant  across  the  temperatures.  However,  the  available  Mg  content
increased significantly with rising temperature, from 0.03% at 300 °C

 

Table 1.    Export performance of king coconut nuts in Sri Lanka[4].

Period Volume of king coconut
nut export (MT)

Value generated from king
coconut nut exportation

(LKR. millions)

January to
September 2022

8,236,427 1,516.58

January to
September 2023

9,991,401 2,556.24

Change (%) 21 69

 

Table 2.    Macronutrient composition of KCHW-biochar at different pyrolysis temperatures.

Pyrolysis temperature (°C)
Total nutrient content (%) Available nutrient content (%)

N P K Ca Mg N P K Ca Mg

300 1.99a 0.42 2.41 0.29b 0.37 0.08 0.05 2.37b 0.21 0.03b

400 1.37b 0.46 3.02 0.35b 0.41 0.08 0.16 2.62ab 0.21 0.08b

500 0.58c 0.46 3.33 1.16a 0.41 0.08 0.16 2.93a 0.38 0.24a

p-value 0.000 0.560 0.116 0.000 0.688 0.980 0.478 0.047 0.055 0.017
CV 47.55 13.92 19.27 71.42 12.55 25.72 132.38 11.58 40.68 96.38

* In each column, means that do not share a letter differ significantly at p < 0.05.
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to  0.24%  at  500  °C.  At  higher  temperatures,  the  biochar  matrix
undergoes significant structural changes that fundamentally alter its
composition  and  characteristics.  These  thermal  transformations
break  down  complex  organic  structures  that  previously  encapsu-
lated Mg, creating a more porous and open matrix. As the structure
becomes  increasingly  fragmented  and  permeable,  Mg  becomes
more  readily  accessible  and  extractable.  Consequently,  the  enhan-
ced  porosity  facilitates  improved  availability  and  extraction  of  Mg,
revealing more of the mineral that was previously locked within the
intricate  organic  complexes.  The  same  results  have  been  obtained
for Gliricidia sepium wood-biochar also[30].

These  findings  can  help  optimize  the  pyrolysis  conditions  to
produce biochar with desirable nutrient profiles for specific applica-
tions, such as soil conditioning or fertilizer production. 

Micronutrient composition of KCHW-biochar
The  content  of  the  total  of  different  micronutrients  and  trace

elements  in  the  biochar  obtained  from  KCHW  at  various  pyrolytic
temperatures  are summarized in Table 3.  It  shows that  the process
temperature  does  not  affect  the  total  content  of  the  micronutrient
(Na, Fe, Cu, and Zn) and potentially toxic heavy metal ions (Pb, Ni) in
the biochar prepared at the studied temperature range of pyrolysis
(300−500  °C).  On  this  basis,  it  can  be  concluded  that  the  pyrolysis
temperature  within  this  range,  may  not  influence  the  concentra-
tions  of  the  micronutrients  and  the  trace  elements  in  the  biochar.
Nonetheless, it must be pointed out that the solubility or the extent
of leaching of these elements, elements which are more related with
the bio-availability and possible effects on the soil and plant systems
in the present investigation were not determined. 

Nutrient composition of KCHW-ash 

Macronutrient composition of KCHW-ash
When the pyrolysis temperature was raised, the total N content of

KCHW-ash  dropped  dramatically,  going  from  2.27%  at  400  °C  to
0.77% at 600 °C (Table 4)[31]. As with the KCHW-biochar, an increase
in the pyrolysis temperature might desirably result in a massive cut
in  the  total  N  content  of  the  KCHW-ash.  This  could  be  because  of
losses of nitrogen compounds at higher temperatures and relatively
higher  stabilities  of  N  compounds  in  KCHW[21].  However,  the  avai-
lable  N  content  did  not  show  a  statistically  significant  difference
across  temperatures.  Though  N-containing  compounds  undergo

structural  changes  at  higher  temperatures,  these  transformations
convert  labile  (easily  decomposable)  nitrogen  into  more  stable
forms.  Also,  some  N  compounds  become  embedded  within  com-
plex  C  structures.  These  structures  act  as  a  protective  matrix,
preventing nitrogen from being completely lost.

The  total  P  content  of  KCHW-ash,  got  higher  by  elevating  the
degree of heating, from 1.58% at 400 °C to 2.47% at 600 °C (Table 4).
The available P level followed a similar trend, increasing from 0.82%
at  400  °C  to  2.27%  at  600  °C.  The  increased  P  content  with  rising
temperature may be attributed to the higher reactivity and availabi-
lity of  phosphorus at  higher temperatures.  At higher temperatures,
the  reaction  kinetics  are  more  favorable  for  forming  phosphorus
compounds, leading to a higher total P content in the samples[32].

The  total  K  content  raised  with  elevated  temperatures,  from
11.79%  at  400  °C  to  16.16%  at  500  °C,  but  the  difference  between
500  and  600  °C  was  not  statistically  significant  in  KCHW-ash
(Table 4). Due to the volatilization of organic components at higher
temperatures,  a  relative  K  concentration happens.  Moreover,  struc-
tural  transformations  in  the  ash  matrix  caused  by  higher  tempera-
tures,  can  release  K  from  complex  organic  compounds  and  create
more  compact  mineral  structures  potentially  altering  the  chemical
form of  K.  The available K content did not show a significant varia-
tion across temperatures in the present study. It suggests that ther-
mal  processing  does  not  significantly  affect  K  extractability.  K  may
be  bound  in  forms  that  are  relatively  resistant  to  temperature-
induction. At 300 °C during manufacture, KCHW ashing revealed the
highest K level (6.50%) at 300 °C[33].

Even  though  the  total  Ca  content  did  not  show  a  statistically
significant difference across temperatures,  the available Ca content
increased considerably from 1.13% at 400 °C to 1.87% at 500 °C, but
the difference between 500 and 600 °C  was  not  statistically  signifi-
cant (Table 4).  This suggests that higher temperatures enhance the
availability or extractability of Ca in the ash. Both the total and avai-
lable  Mg  content  in  KCHW-ash,  increased  with  higher  pyrolysis
temperatures,  from 1.30% (total)  and 0.45% (available)  at  400 °C to
1.78% (total)  and 0.41% (available) at 500 °C,  indicating that higher
temperatures  promote  the  concentration  and  availability  of  Mg  in
the  ash.  The  differences  were  not  statistically  significant  between
500 and 600 °C.

Table  5 presents  data  on  the  total  content  of  various  micronu-
trients  and  trace  elements  present  in  ash  derived  from  KCHW  at
different  treatments.  The  total  Na,  Fe,  and  Pb  contents  did  not
exhibit  a  statistically  significant  variation  across  the  pyrolysis  tem-
peratures studied. However, the total Cu content, expressed in ppm
(mg/kg),  increased significantly with higher pyrolysis  temperatures,
from 63.34 ppm at 400 °C to 88.79 ppm at 600 °C.  Other than that,
the  total  Zn  content,  also  expressed  in  ppm,  showed  a  significant
increase  with  higher  temperatures,  ranging  from  197.91  ppm  at
400 °C to 333.09 ppm at 500 °C. The increases in Cu and Zn are not
about adding more metals,  but about making existing trace metals
more concentrated and accessible through thermal processing. 

 

Table  3.    Micronutrient  composition  of  KCHW-biochar  at  different  pyrolysis
temperatures.

Pyrolysis
temperature
(°C)

Total nutrient content

Na (%) Fe (%) Cu (ppm) Zn (ppm) Pb (ppm) Ni (ppm)

300 0.69 0.59 20.56 82.47 1.85 14.45
400 0.98 0.21 17.37 92.33 0.49 14.16
500 1.04 0.40 19.66 75.24 0.56 16.51
p-value 0.142 0.078 0.724 0.377 0.154 0.442
CV 25.83 54.96 23.26 16.92 100.63 15.13

 

Table 4.    Macro-nutrient composition of KCHW-ash at different pyrolysis temperatures.

Pyrolysis temperature (°C)
Total nutrient content (%) Available nutrient content (%)

N P K Ca Mg N P K Ca Mg

400 2.27a 1.58b 11.79b 2.29 1.30b 0.07 0.82b 8.01 1.13b 0.45
500 1.15b 2.36a 16.16a 3.11 1.78a 0.05 1.35ab 12.40 1.87a 0.41
600 0.77b 2.47a 15.49ab 2.19 1.71a 0.04 2.27a 10.60 1.46ab 0.15
p-value 0.000 0.003 0.027 0.229 0.016 0.381 0.042 0.154 0.010 0.150
CV 49.68 21.20 16.84 27.68 16.30 42.58 53.19 27.15 24.45 62.62

* In each column, means that do not share a letter differ significantly at p < 0.05.
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Proximate analysis of KCHW-biochar and KCHW-ash
Proximate  analysis  for  both  KCHW-biochar  and  ash  was  carried

out  (Fig.  1).  Pyrolysis  temperature  significantly  affects  the  moisture
content of the biochar, with higher temperatures resulting in lower
moisture  content.  This  is  likely  due  to  increased  water  evaporation
at  higher  temperatures[34].  Volatile  matter,  ash  content  and  fixed
carbon  percentages  do  not  show  statistically  significant  changes
across  the  temperature  range  studied.  This  suggests  that  these
properties  are  relatively  stable  within  this  temperature  range.  The
high  percentage  of  fixed  carbon  (>  70%  across  all  temperatures)
indicates  that  biochar  has  good  potential  for  carbon  sequestration
and  stability[35].  As  confirmed  by  previous  literature,  cellulose  pri-
marily decomposes into volatile compounds, whereas lignin contri-
butes  more  significantly  to  the  formation  of  fixed  carbon  in  the
resulting product[36].  The volatiles  mainly  contain  CO,  CO2,  H2,  CH4,
N2,  and  other  gaseous  carbohydrates.  The  low  ash  content  (<  9%
across  all  temperatures)  suggests  that  the  biochar  may  have  mini-
mal impact on soil mineral content when used as an amendment[37].
The  ash  content  indirectly  gives  an  idea  about  its  alkaline
properties[36].

When considering the KCHW-ash, pyrolysis temperature does not
significantly  affect  the  moisture  content  and  volatile  matter  of  the
ash within the studied range.  Ash content shows a trend of  increa-
sing with temperature, but the differences are not statistically signi-
ficant.  This  suggests  that  the inorganic  matter  concentration tends
to  increase  at  higher  temperatures,  possibly  due  to  the  loss  of
organic compounds. Production temperature has a major impact on
fixed  carbon  content,  with  a  maximum  of  400  °C  and  decreased
contents at higher degrees. This suggests that higher temperatures
cause a greater amount of carbon to be lost, most likely as a result of
enhanced  oxidation  and  volatilization.  The  material  appears  to  be
rich  in  inorganic  compounds,  which  could  be  advantageous  if
applied as a soil amendment to supply minerals, based on the high
ash content (> 50% at all temperatures)[38]. 

Conclusions

Producing  biochar  and  ash  from  immature  KCHW  is  a  safe
approach  for  the  management  of  agricultural  waste.  It  has  the
potential  of  an effective soil  conditioner  that  contributes to impro-
ving  coconut  yield.  This  study  demonstrates  that  the  pyrolysis
temperature  affects  the  qualitative  and  quantitative  characteristics
of  the  obtained  products  as  well  as  their  nutritional  value.  For
biochar,  higher  pyrolysis  temperatures  led  to  decreased  total  N
content but increased available K, Ca, and Mg. The high fixed carbon
content  of  biochar  (>  70%)  suggests  excellent  potential  for  carbon
sequestration and soil  amendment applications.  Similar  patterns  in
the  nutrient  composition  variations  with  increasing  pyrolysis
temperature  were  seen  in  KCHW  ash.  While  higher  temperatures
(500  °C  for  biochar  and  600  °C  for  ash)  generally  show  improved

availability  of  certain  nutrients,  the  optimal  temperature  is  not
universally  applicable.  The  selection  of  the  most  suitable  pyrolysis
temperature  should  be  guided  by  the  nutrient  needs  of  the  target
crop,  existing  soil  nutrient  profile,  and  specific  deficiencies  in  the
agricultural system.

Results  of  this  study  revealed  that  producing  soil  conditioners
from immature KCHW resolves  concerns about  the safe  disposal  of
agricultural  wastes  while  promoting  ecological  coconut  farming.
Through pyrolysis,  the production of biochar and ash and its appli-
cation  contributed  to  the  recycling  of  soil  nutrients  as  well  as  the
improvement  of  the  soil  fertility  of  the  soils  of  the  coconut-based
farming  system.  Since  these  soil  conditioners  are  time  and  cost-
effective, future research should focus on field experiments to deter-
mine the long-term effects of these conditioners on the health and
productivity  of  the  coconut  plantations.  In  addition,  economic  and
environmental  effects  assessment  could  be  useful  in  determining
the  feasibility  on  an  increased  scale  of  applying  this  kind  of  waste
valuation approach. This strategy is in harmony with the ideas of the
circular economy and can contribute greatly to the further develop-
ment of even more eco-friendly ways of coconut cultivation. 
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Table  5.    Micronutrient  composition  of  KCHW-ash  at  different  pyrolysis
temperatures.

Pyrolysis
temperature
(°C)

Total nutrient content

Na (%) Fe (%) Cu (ppm) Zn (ppm) Pb (ppm) Ni (ppm)

400 4.13 0.68 63.34b 197.91b 0.75 10.65b

500 5.79 0.88 88.31a 333.09a 2.29 17.47ab

600 5.39 1.57 88.79a 320.32a 1.36 21.74a

p-value 0.082 0.132 0.024 0.008 0.157 0.048
CV 19.53 55.58 18.66 25.52 67.27 36.52

* In each column, means that do not share a letter differ significantly at p < 0.05.
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Fig. 1    Proximate analysis of KCHW-biochar and KCHW-ash.
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