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Abstract
Fruit  quality  might  suffer  from bruising before and after  harvest.  Global  focus is  being paid to  fruit  bruise  detection,  especially  early  damage

detection. In this study, a method was developed to identify bruised pomegranate fruit (cv. 'Wonderful') immediately after bruising. After splitting

60 pomegranates into bruised and unbruised parts, hyperspectral images were taken immediately, 7 and 14 d afterwards. Two 30-fruit groups

were sampled. Group A had bruised pomegranates (dropped from a height of 60 cm onto a ceramic surface), whereas Group B had unbruised

counterparts.  The  study  analyzed  a  broad  spectrum  of  wavelengths  to  collect  vital  information  regarding  the  effects  of  injury.  This  was

accomplished with Vis-NIR (400–1,000 nm) and SWIR (1,000–2,500 nm) line scan mode equipment. The line scan mode was selected due to its

compatibility  with  conveyor  belt  systems  typically  utilized  in  fruit  packaging  lines.  The  classification  prediction  model  employed  the  2-Layer

Feedforward  artificial  neural  network  due  to  its  advantageous  characteristics  of  simplicity  and  robustness.  This  study  confirmed  early  bruise

detection for pomegranate fruit  with an accuracy of 88.3% and 86.7% based on full  and selected wavelengths,  respectively.  Storage duration

improves bruise recognition. Bruises are hard to spot early and become more visible with time. Hence, this technique's capacity to do so is a major

benefit in the post-harvest handling. This research reduced the VNIR and SWIR input dimensions from 186 and 288 to five, resulting in a quicker

and more compact classification algorithm. This will make it easier to create a cutting-edge sorting and grading system for bruise detection.
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 Introduction

Bruise damage to fresh produce is the most common defect
in  the  horticultural  industry.  It  reduces  fruit  quality  for  the
consumer and decreases the revenue of the growers[1−5]. Bruise
damage  can  cause  substantial  economic  losses  and  result  in
serious  food  safety  concerns.  Bruises  on  fruit  surfaces  can
potentially result in tissue degradation, facilitating the develop-
ment  of  a  favourable  environment  for  the  growth  of  mold
and/or bacteria[2]. Bruise damage is caused largely by excessive
impact  and/or  compression  forces  on  the  produce[1,3,4].  These
forces  cause  the  fruit's  outer  layer  to  break  without  getting
ripped[1,3,6].  Bruising  causes  cells  to  break  down  and  become
exposed  to  oxygen  that  causes  browning.  The  reaction  does
change the color as well  as make the tissue feel softer or even
mushy[3,6].  Several  factors  regulate  the  susceptibility  of  fruit  to
bruise  damage,  some  of  these  include  genetic  (species/geno-
type),  seasonality,  climate  change  and  environmental  condi-
tions,  farming/orchard  practices;  and  the  effect  of  fruit
properties[7],  the  major  contributing  factor  has  been  linked  to
the  amount  of  mechanical  energy  applied  and  absorbed  by
produce  during  its  preharvest  and  postharvest  handling
chain[4,7,8].

Pomegranate  (Punica  granatum L.)  is  an  ancient  deciduous
fruit  of  Middle  Eastern  origin  with  over  500  different  cultivars

grown in many parts  of  the world,  including South Africa[9−11].
Pomegranate  fruit  is  usually  eaten  fresh,  but  it  can  also  be
eaten  in  juice,  dried  arils,  jams,  etc.  The  pomegranate  fruit
industry has received a boost in revenue and production owing
to the many health benefits of the product[12−15]. The pomegra-
nate  fruit  possesses  a  significant  concentration  of  anti-inflam-
matory and antioxidant chemicals, which have the potential to
contribute  to  the  prevention  of  inflammatory  illnesses.  Addi-
tionally, these compounds may also have anti-proliferative and
antimetastatic effects in humans[12].

Studies  show that  pomegranate  fruit  is  vulnerable  to  bruise
damage[1].  Bruising  occurs  during  harvesting  and  postharvest
handling  operations[4,8].  Bruising  makes  fruit  rind  soft  and
susceptible  to  insect  attack.  Opara  et  el.[8] reported  a  signifi-
cant  correlation  between  bruised  fruits  and  decay/insect
damage.  Several  research  studies  have  revealed  that  bruising
degrades  pomegranate  fruit's  physical  and  biological
qualities[16−18].  Some  of  the  changes  induced  by  bruising
include increased peel electrolyte leakage (PEL), higher brown-
ing  score  and  increased  polyphenol  oxidase  (PPO)  enzyme
activity.  Hussein  et  al.[17] has  reported  a  high  respiration  rate
and several physicochemical changes, including colour brown-
ing,  peel  electrolyte  leakage  and  polyphenol  oxidase  (PPO)
enzyme  activity  after  bruise  damage.  Bruising  also  results  in
weight loss and hence a decrease in saleable value.
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Pomegranate fruit possess a hard and thick rind/peel making
bruise damage detection difficult compared to apple and pear
fruits[1,19,20].  Bruises  in  pomegranate  fruit  only  become  visible
after  several  days[21] (Fig.  1)  and  early  detection  of  bruised
pomegranates visually is difficult in the sorting line. At present,
the  practice  of  employing  manual  fruit  sorting  in  packhouses
for  the  purpose  of  detecting  and  removing  bruised  samples
from the sorting line is deemed inefficient[1].  To this end, there
is  strong  interest  in  improving  bruise  detection  and  sorting
capability.

The machine vision system (MVS) has long been used to clas-
sify and evaluate food and horticulture goods[22]. The MVS func-
tions  using  only  spatial  parameters  like  colour  and  fruit  size.
The  MVS  evaluation  of  internal  quality  features  is  hindered  by
the lack of full spectrum information[19,22]. Multi and hyperspec-
tral imaging offer precise physical and chemical measurements,
advancing  fruit  quality  monitoring.  This  improvement  allows
objective  fruit  quality  distribution assessment[23,24].  The hyper-
spectral imaging's high spectral resolution and large number of
bands—often hundreds or thousands—allow it to detect previ-
ously  undetected  occurrences[25].  The  HSI  combines  spectro-
scopy  and  imaging  in  a  non-invasive,  nondestructive
device[24−27].  The  HSI  acquires  a  three-dimensional  data  set
called  hypercube  with  two  spatial  and  one  spectral
dimension[25,28]. The HSI provides more reliable diagnostic data
than  traditional  machine  vision  or  spectroscopy  techniques  in
analyzing  the  characteristics  of  objects[29,30].  However,  hyper-
spectral  data  collection,  manipulation,  and  interpretation  are
difficult[25,28−31].

Artificial  intelligence  (AI)  has  made  good  progress  in  the
analysis  and  recognition  of  images,  which  has  also  triggered
some  researchers  to  explore  the  area  of  combining  machine
learning with hyperspectral  images of  biological  materials  and
achieve some progress. Particularly in the postharvest industry,
several machine learning methods have been explored for fruit
quality  analysis[31−33].  For  most  applications,  the  convolutional
neural  networks  (CNN)  are  preferred  in  computer  vision  tasks
over traditional artificial neural network (ANN) algorithms such
as Multilayer Perceptron (MLP), Linear Regression (LR), Random
Forest,  Support  Vector  Machine,  etc.[30,33−35].  However,  CNN
requires huge amounts of data and computational power and a
long  time  for  training  which  introduce  lots  of  research  limita-
tions[36−39].  Deep  learning  (DL),  a  branch  of  machine  learning
(ML)  and  AI  is  nowadays  considered  as  a  core  technology  to
handle  more  data,  connectivity  and  analytics  for  digitalizing
and  automating  produce  sorting,  grading,  and  packing.
However, deep learning models require huge amounts of data
and  an  expert  team  to  train  the  models.  It  is  advisable  not  to
use deep learning if you don't have enough labeled data and a
dedicated  team[36].  The  MLP  on  the  other  hand,  has  been
shown  to  provide  excellent  results  in  non-destructive  identifi-
cation  and  detection  of  bruises  and  diseases  in  the  fresh

produce  industry[44−52].  Examples  includes  apples  (Malus
domestica)[44],  strawberries  (Fragaria  ×  ananassa Duch.)[45],
blueberries  (Vaccinium)[46],  peaches  (Amygdalus  persica L.)[47],
kiwifruit  (Actinidia  deliciosa)[48],  pears  (Pyrus)[49],  jujube  (Zizy-
phus Jujuba Mill.)[50] and cucumbers (Cucumis sativus)[51].

Analysis of bruise detectability during the first few days after
injury  provides  vital  information  for  the  sorting  and  grading
process. It could also be crucial in monitoring the development
of  bruise  induced  infections  in  fruits[44,45,47−51].  Prior  research
has  explored  the  utilisation  of  hyperspectral  imaging  tech-
niques  for  the  purpose  of  identifying and categorising bruises
present  on  delicate  fruits  such  as  apples  and  pears[44−52].  The
diagnosis  of  bruising  on  pomegranate  fruit  during  its  early
stage,  however,  is  difficult  due  to  the  tough  thick  structure  of
its  outer  peel.  It  would be worthwhile  to  investigate  the feasi-
bility  of  using  hyperspectral  imaging  technique.  A  successful
algorithm will aid in the development of bruise sorting system,
which will have a significant economic impact in the sector. The
hyperspectral  imaging  approach  can  be  used  to  identify  and
quantify  mechanical  damage  to  a  fruit  (owing  to  fruit  juice
collection in areas of  damage).  The purpose of  this  paper is  to
evaluate the potential of hyperspectral imaging to capture and
identify this phenomenon.

This study examined the capability of hyperspectral imaging
utilising two HSI cameras, HySpex VNIR-1800 (400 to 1,000 nm)
and HySpex SWIR-384 (950 to 2,500 nm), to identify bruises on
pomegranate fruit non-destructively. Hence, this study acquires
the hyperspectral image of pomegranate fruits at different post
bruise  stages  (0,  7  and  14  d)  to  achieve  the  following  specific
objectives:

a)  To  collect  hyperspectral  data  for  bruised  and  unbruised
pomegranate fruit using visible near-infrared (Vis-NIR) (ranging
from 400 to 1,000 nm) and short-wave infrared (SWIR) (ranging
from 1,000 to 2,500 nm).

b)  To  select  optimal  wavelengths  that  provide  the  highest
correlation between the spectral data and fruit bruising.

c) To create Feed Forward-Artificial Neural Network (FF-ANN)
models for early pomegranate bruise classification prediction.

 Materials and methods

 Fruit procurement and sample preparation
The present study obtained pomegranate fruit (cv. 'Wonder-

ful')  at  the  commercial  harvest  maturity  stage  from  the  2021
harvest  season.  The  fruit  came  from  Sonlia  Fruit  Packhouse  in
Western Cape, South Africa. Pomegranate fruit samples weigh-
ing  280  ±  45  g  were  sorted,  washed,  and  stored  at  optimal
conditions (7.0 ± 1 °C and 90% ± 2% RH)[21]. Pomegranate fruits
without visible surface defects were selected from the prepared
samples.  The  fruit  samples  had  an  average  TSS  of  16.36  ±
1.05°Brix and a TSS/TA of 10.08% ± 2.13%. The measurement of
TSS  was  conducted  using  a  digital  hand-held  refractometer

 
Fig. 1    Evolution of bruising damage over 8 d in pomegranate fruit (cv. Wonderful) that was dropped from 60 cm vertically (impact energy of
about 1.8 J).
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(Palette,  PR-32α,  Atago,  Tokyo,  Japan).  TA  was  determined  by
diluting  2  mL  of  supernatant  in  70  mL  of  distilled  water  and
subsequently  titrating  with  0.1  M  NaOH  using  a  Metrohm  862
compact  titrosampler  (Herisua,  Switzerland).  This  process
allowed for the calculation of the TSS/TA ratio.

 Bruise simulation
Samples were split  into two groups of 30 samples,  Group A,

representing  bruised  samples,  was  created  by  dropping
pomegranates  from  a  height  of  60  cm  onto  a  ceramic  surface
according  to  the  method  of  Hussein  et  al.[17] (Fig.  2).  The  fruit
was  bruised  sideways  around  the  equatorial  area.  The  sample
pomegranate  fruits  were  of  the  same  average  size.  Group  B
represents unbruised pomegranates.

 System for hyperspectral imaging
The research employs the two most commonly utilised spec-

tral  ranges,  namely  visible  and  near  infrared  (vis-NIR,  400  to
1,000 nm), as well as short wavelength infrared (SWIR, 1,000 to

2,500  nm)  devices  operating  in  line  scan  mode.  The  line  scan
mode  is  suitable  for  implementation  in  conveyor  belt  systems
in  a  production  line. Figure  3 depicts  the  schematic  of  the
hyperspectral  imaging  system  and  hyperspectral  3D  spectral
image acquisition process. Samples were scanned with HySpex
VNIR-1800 and SWIR-384 hyperspectral imaging cameras (NEO,
Norway).  The  cameras  were  set  up  next  to  each  other  and
imaging was done at the same time at Stellenbosch University's
central  analytical  facility  (CAF)  vibrational  spectroscopy  unit
(Fig.  3).  The  cameras  were  mounted  atop  a  speed-controlled
translation  stage.  The  investigation  used  a  30  cm  lens  with  a
9.470  cm  SWIR  and  9.733  cm  VNIR  field  of  view.  The  SWIR
camera contains 384 spatial pixels and 288 spectral wavebands
with a 6 nm spacing. The VNIR camera features 1,800 pixels and
186  wavebands  with  3.26  nm  spectral  spacing. Table  1
compares  both  equipment's  camera  specs.  Before  scanning
samples,  the  speed  of  sample  movement  across  the  camera
and the time of exposure were assessed to avoid image distor-
tion  and  to  ensure  the  spectral  images  remained  clear.  Based
on  a  trial  and  check  pre-test,  these  parameters  were  set  to
1.2 mm s−1 and 50 ms, respectively. The distance from the lens
to  the  conveying  stage  was  set  to  450  mm.  Two  lamps  were
mounted at 45° angles from the horizontal plane, respectively.
During the image acquisition,  every pomegranate fruit  sample
was manually placed on the conveying stage and moved to the
field of view (FOV) of the camera and then scanned line by line.
The sample was placed with its  side facing the camera so that
the  calix  and  stem  end  of  the  fruit  were  out  of  focus.  The
system  operation  and  picture  acquisition  were  performed
using  'Breeze'  software  (version  2021.1.5,  Umeå,  Prediktera,
Sweden)  on  a  Windows  10  computer.  Reflectivity  reference
data were collected for each fruit in less than a minute by both
cameras.  Each  scan  yields  a  three-dimensional  hyperspectral
picture cube comprising two-dimensional spatial (x, y) and one-
dimensional spectral (λ) data. Hyperspectral images were taken
immediately,  7 d,  and 14 d later.  Samples returned to the cold
storeroom at 7.0 ± 1 °C and 90% ± 2% RH after imaging.

a

b

c

 
Fig.  2    Schematic  showing dimensions of  'Class  1  pomegranate'
(cv  Wonderful)  fruit  used  in  the  test  ((a)  front  view  and  (b)  side
view) and (c) illustration of the drop simulation setup.

 
Fig. 3    Schematic showing the hyperspectral image system and image acquisition and preprocessing, process.
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 Hyperspectral image calibration

ρre f (λ)

The  acquired  raw  hyperspectral  images  are  usually  with
uneven intensity  of  illumination.  Hence,  the raw hyperspectral
image  was  corrected  by  using  grey  reference  image  of  a  grey
calibration  plate  and  a  dark  reference  image  with  0%
reflectance.  The  standard  calibration  method  for  most  hyper-
spectral  (HS)  image  investigations  comprises  a  linear  correc-
tion  to  the  original  image,  as  stated  in  Eqn  (1).  This  equation
compensates  for  non-uniform  gain  using  an  inverse-model
perspective.  Using  this  standard  calibration  method,  spectral
fingerprints  from  different  HS  cameras  and  scenarios  with  the
same  components  are  comparable.  The  corrected  image
( ) was computed based on Eqn. (1).

ρxy (λ) = ρre f (λ)
Rxy (λ)−Rdark (λ)
Rre f (λ)−Rdark (λ)

(1)

ρre f (λ)

ρxy(λ)

where  is the 50% grey calibration plate reflectivity (Zenith
Polymer® Reflectance  standard,  SphereOptics  GmbH,  Germany);
Rxy(λ)  measures  the  reflectance  of  the  uncorrected  hyperspectral
image, Rref(λ)  measures  the  white  calibration  plate  (Teflon  white
cuboid  panel  with  99%  reflectance), Rdark(λ)  measures  the  black
image (about 0% reflectance), and  measures the corrected
image spectra.

 Hyperspectral image correction
Subsequently, the Evince version 2.7.13 software (Prediktera,

Umeå, Sweden) was used to further explore and minimize irrel-
evant  information  including  noise  and  background  signal
caused  by  random  interferences.  Explorative  PCA  analysis  was
used  to  segment  the  fruit  from  its  background.  In  spectral
preprocessing,  the  SNV  transformation  was  applied.  The  SNV
reduces  spectral  data  disruption  by  correcting  spectra  using
average and standard deviation[53].  Matlab Hyperspectral Tool-
box was used to analyse the image and train, validate, and test
a bruise classification prediction model.

 Selection of effective wavelength
The  noise-whitened  Harsanyi–Farrand–Chang  (NWHFC)

method  was  used  to  perform  optimal  wavelengths  selection.
The  NWHFC  is  a  virtual  dimensionality  (VD)  reduction  tech-
nique developed from the Neyman–Pearson detection theory-
based  thresholding  methods[54].  The  NWHFC  is  an  improve-
ment  on  the  Harsanyi–Farrand–Chang  (HFC)  method,  with  an

inclusion of noise estimation that decorrelates noise with signal
sources  for  improved  signal  detection[54,55].  The  number  of
spectrally  distinct  endmembers  in  each  sample  was  deter-
mined by the NWHFC, and the corresponding bands were iden-
tified by PCA for dimensionality reduction. After identifying the
effective  wavelength,  ROI  averaged  and  whole  fruit  surface
(WFS) averaged reflectance values at the effective wavelengths
were  obtained  and  used  as  training  data  for  the  classification
model  development.  The  process  of  identifying  and  eliminat-
ing redundant bands from the dataset resulted in a significant
reduction  in  data  size,  while  retaining  just  the  useful  bands.
This strategy resulted in the acquisition of a more concise clas-
sification model.

 Classification prediction model

 The MLP consist of simple processing units called neurons
They  work  on  the  relationship  between  a  set  of  inputs  and

outputs  by  updating  internal  interconnections  called  weights
using the back-propagation algorithm. Some of its advantages
include  the  ability  to  work  with  nonlinear  data,  robustness,
trainability  and  generalization  of  data  and  a  lower  test
time[30,33−35]. This study employed a two-layer feed-forward arti-
ficial  neural  network  (ANN)  for  the  sake  of  its  advantageous
characteristics of simplicity and robustness. The network model
is  composed  of  source  nodes  as  the  input  layer,  one  hidden
layer of computation nodes, and an output layer of two nodes
(corresponding  to  the  number  of  classification).  This  type  of
ANN  is  suited  for  multi-dimensional  mapping  problems  given
arbitrarily  consistent  data  and  enough  neurons  in  its  hidden
layer[33−35].  Classification  prediction  models  were  developed
based on average absorbance spectra data at full wavelengths
and selected wavelengths of  whole HS image and augmented
HS image data and compared. The model development appor-
tioned the data into training, validation, and testing sets with a
70-15-15 split.

 The three widely used network training algorithms
Levenberg-Marquardt  backpropagation  algorithm  (LMBA),

Bayesian regularization algorithms (BRA) and scaled conjugate
gradient algorithm (SCGA) were compared.  The fitting process
trains  the  neural  network  on  the  set  of  averaged  reflectance
values  to  produce  an  associated  set  of  target  bruise  category.
The problem of  classifying bruises,  which involves distinguish-
ing  between  two  classes  -  bruised  and  unbruised  samples,  is
associated  with  a  target  matrix  of  size  (1  ×  2).  In  this  matrix,
each column represents a category and contains a one in either
element 1 or 2 (refer to Fig. 4). The samples from the first class,
which  were  bruised,  were  characterised  by  the  dependent
vector [1 0], whilst the class without bruises was represented by
the  vector  [0  1].  Once  the  neural  network  has  fit  the  data,  it
forms a generalization of the input-output relationship and can
be used to generate outputs for inputs it was not trained on.

The  role  of  neural  network  structure—how  many  neurons
should  be  used  in  the  hidden  layer?  The  question  of  how  to
divide the sample into training, testing, and validation sets was
investigated  in  terms  of  classification  performance.  For  this
examination,  the  error  histogram,  confusion  matrix,  and  ROC
curve were examined. The confusion matrix, a common classifi-
cation statistic, was utilised in this study to report classification
performance findings.

Table  1.    Specifications  of  the  HySpex  SWIR  and  VNIR  cameras  used  in
the study.

Main specifications SWIR VNIR

Spectral range 930–2,500 nm 400–1,000 nm
Spatial pixels 384 1,800
Spectral channels 288 186
Spectral sampling 5.45 nm 3.26 nm
FOV 16° 17°
Pixel FOV across/along 0.73/0.73 mrad 0.16/0.32 mrad
Bit resolution 16 bit 16 bit
Dynamic range 7,500 20,000
Peak SNR (at full resolution) >1,100 >255
Max speed (at full resolution) 400 fps 260 fps
Power consumption 30 W 30 W
Dimensions (l-w-h) 38–12–17.5 cm 39–9.9–15 cm
Weight 5.7 kg 5.0 kg
Camera interface CameraLink CameraLink

FOV is field of view.
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 Results and discussion

 Spectral data analysis
Figure  5 depicts  the  segmentation  and  pre-processing  of

images from the VNIR and SWIR cameras. The VNIR camera has
a characteristically high dynamic range which means that more
detail in both highlights and shadows were captured using this
camera. However, the size of the raw hyperspectral image data
is  considerably  higher  and  larger  data  storage  capacities  are
needed for  analysis  than the SWIR camera.  The images shown
in Fig.  5a−c for  VNIR and (Fig.  5e−g)  for  SWIR)  do not  account
for  the  spatial  variations  in  the  light  intensities. Figure  4d & h
depict  the  images  after  correcting  the  spatial  intensity  varia-
tions  from  uneven  light  scattering  using  the  standard  normal
variable (SNV) transformation as shown in.

Figure 6 shows the average absorbance spectra of unbruised
(left)  and  bruised  (right)  pomegranates  under  VNIR  (top)  and
SWIR  (bottom)  cameras.  It  is  noted  that  the  trend  of  spectral
reflectance  curves  of  damaged  pomegranates  is  like  that  of
sound  samples.  However,  the  absorbance  spectra  of  the
unbruised  pomegranates  are  in  a  narrow  absorbance  range
(variability) than that of the bruised pomegranates. Comparing
the overall  spectral  absorbances  of  the bruised and unbruised
samples  revealed  characteristic  high  absorbance  values  in  the

band between 600 and 1,300 nm for the bruised pomegranates
(Fig.  6).  This might be due to a relatively higher water content
(strong  absorbance  capacity)  on  the  surface  of  bruised
pomegranates.

 Identification of location of effective bands
The  average  spectral  absorbance  curves  of  sound

pomegranates and bruised pomegranates at three stages (day
0, 7 d, and 14 d after bruising) are shown in Fig. 7. Generally, the
longer  the  sample  is  damaged,  the  lower  the  spectral
absorbance.  This  may  be  due  to  the  moisture  loss  and  drying
away  (less  absorbance  capacity)  of  the  pomegranate  during
storage.  There  is  an absorption peak at  685 nm,  this  might  be
ascribed to  the  characteristics  of  chlorophyll  on  the  surface  of
the  pomegranates[25].  Nine  hundred and seventy  nm is  a  typi-
cal  water  absorption  band,  which  is  caused  by  the  water
content of the pomegranate samples. Clearly absorbance spec-
tra decrease with storage time for both bruised and unbruised
sample.  The  absorbance  spectra  of  bruised  samples  were
higher than the unbruised, and this agrees with the literature as
reported  for  other  fruit  samples[56−58].  This  is  in  collaboration
with  the  fact  that  bruising  increases  moisture/water  loss  from
fruit[19].  Hence,  the  potential  of  capturing  the  change  in  the
moisture content of  the surface of  pomegranates immediately
after bruising using hyperspectral imaging technique is promis-
ing.  This  phenomenon  is  in  fact  supported  by  the  spectral
absorbance values around 970 in the VNIR system (Fig. 7a). The
spectra  absorbance looks  to  be  significantly  affected by  water
loss and the colour change during storage.

A  single  pixel  in  a  hyperspectral  image  has  186  and  288
values  representing  absorbance  at  different  wavelengths  for
the VNIR and SWIR systems, respectively. This is a huge amount
of  information  to  model  a  classification  prediction  model.
Owing  to  the  continuous  nature  of  the  spectral  wavelength,
information could be redundantly repeated. This will affect the
robustness and accuracy of the classification prediction model.
After  preprocessing,  the  noise-whitened  Harsanyi–Farrand–
Chang  (NWHFC)  method  was  used  to  perform  optimal  wave-
lengths  selection.  The  NWHFC  is  a  virtual  dimensionality  (VD)
reduction  technique  developed  from  the  Neyman–Pearson
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Fig.  4    Artificial  neural  network  architecture  for  bruise
classification.
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Fig. 5    Segmentation and pre-processing of images from the VNIR (upper raw) and SWIR (bottom raw) cameras. Raw (RGB) images (a) and (e),
false color image (b) and (f), segmented images (c) and (g), with corrected spatial intensity variations (d) and (h).
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detection  theory-based  thresholding  methods[58,59].  The
NWHFC  is  an  improvement  on  the  Harsanyi–Farrand–Chang
(HFC) method, with an inclusion of noise estimation that decor-
relates  noise  with  signal  sources  for  improved  signal
detection[54,55].  There  was  an  evident  absorption  peak  around
400  to  550  nm,  which  could  be  associated  with  carotenoid[59].
Peaks from 900 to 920 nm are reported to correlate with starch
and cellulose[60]. In addition, peaks were observed around 1,000
nm,  which  is  related  to  water  and  vitamin  ingredients[59,60].
Peaks  near  1,950  and  2,500  nm  correspond  to  oils  and  faty

acids. Figure  8 shows  NWHFC-PCA-estimated  input  data  cube
spectral bands. The top row of the picture shows the input data
cube's  spectral  bands,  while  the  bottom  row  shows  the  five
most  informative  bands  for  a  sound  pomegranate  fruit.  Infor-
mative  bands  show  spatial  and  spectral  distinction. Figure  9
shows  the  same  investigation  on  a  fruit  bruised  by  a  60-cm
drop. The lower row bruise mark is prominent (as seen through
the  informational  bands).  The  five  efficient  bands  use  VNIR
spectral  bands  of  440,  980,  950,  495,  and  850  nm  and  SWIR
bands of 2,348, 2,146, 2,517, 2,457, and 1,000 nm.

a b

c d

 
Fig. 6    Average absorbance spectra of (a) unbruised and (b) bruised pomegranates under the VNIR camera and (c) unbruised and (d) bruised
under the SWIR camera. Data corresponds to imaging immediately after bruising.

2.0a b

1.5

1.0

Ab
so

rb
an

ce
 fa

ct
or

0.5

0.0

−0.5
400 500 600

Wavelength (nm)
700 800 900

B_0
S_0
B_7
S_7
B_14
S_14

1,000

1.4

1.0

Ab
so

rb
an

ce
 fa

ct
or

0.6

0.2

−0.2
1,000 1,200 1,400 1,600

Wavelength (nm)
1,800 2,000 2,200 2,400

 
Fig.  7    The average spectra absorbance of unbruised (black curves)  and bruised (red curves)  of  pomegranates under (a)  VNIR and (b)  SWIR
cameras. Where the spectra of not bruised pomegranate in day 0 is S_0, sound fruit in day 7 is S_7, sound in day 14 is S_14, bruised in day 0 is
B_0, bruised in day 7 is B_7 and bruised scanned in day 14 is B_14.
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 Classification prediction model using artificial neural
networks

The artificial neural network (ANN) pattern recognition tech-
nique divides the data into three distinct sets at random: train-
ing  (70%),  testing  (15%),  and  validation  (15%).  This  divide
occurs  during  the  model's  creation  phase.  A  hidden  layer  of
four  neurons  was  discovered  to  be  the  best  configuration  for
the  artificial  neural  network  (ANN).  An  assessment  of  the
network's classification performance, which was tested using a
confusion  matrix,  led  to  this  finding.  The  performance  of  the
network  training  algorithm  (LMBA,  BRA  and  SCGBA)  were  not
significantly  different.  A  trained  and  ready  model  takes
reflectance  values  at  the  selected  bands  of  a  sample  as  input
and predicts its classification as bruised and unbruised.

Table  2 summarizes  the classification accuracies  for  the two
cameras  at  the  three  storage  days  based  on  full  or  selected
wavelengths. The classification prediction model, based on the
full  wavelength  of  the  VNIR  camera,  achieved  classification
accuracies ranging from 83.3%–90% on immediate bruise iden-
tification (Fig. 10). The model recognized sound fruit with 90%
accuracy while it  recognizes bruised fruit  with 86.7% accuracy.
The recognition accuracy increased with storage period. In day
7  and  day  14,  the  full  wavelength-based  model  predicts  the
class  of  sound  pomegranates  with  100%  accuracy  and  only

wrongly classified one bruised pomegranate. The model based
on selected wavelength has achieved an accuracy of 96.7% for
sound  samples  and  90%  for  bruised  samples  on  day  7  and
100%  for  day  14  after  bruise  damage.  A  similar  trend  was
observed in the study on apple[64]. The authors reported recog-
nition to increase from 1 min after bruising (87.04%) to an accu-
racy  of  98.15%  after  day  4  of  bruising.  Fu  &  Wang[49] reported
an  increase  in  recognition  accuracy  from  86.67%  immediately
after  bruising  to  96.67%  3  d  after  bruising.  Zhu  &  Li[64]

employed  PLS-DA  algorithm  for  rapid  detection  of  apple
bruises  and  reported  bruise  development  resulting  in  an
increased  recognition  accuracy  from  86.11%  immediately  to
97.22% after 4 d of bruising.

A  similar  trend  was  reported  for  'Golden  Delicious'[44].  The
authors  applied  the  whole  signal  and  recognition  rate  was
64.23%  and  when  an  interval  of  10  was  considered,  accuracy
increased to 92.2%. Higher classification accuracy was obtained
for the early detection of bruises on 'McIntosh' apples for older
bruises as compared to recent ones[61].

Baranowski et al.[62,63] also reported better model accuracies
for the VNIR input data (90%) than the SWIR input (85%) in their
study  on  apple.  Model  consistently  showed  slightly  better
recognition accuracy for  sound fruit  classification over  bruised
samples.  This  trend  is  observed  in  a  similar  study  on

 
Fig. 8    Display of the first five spectral bands in the input data cube (top row) and the five most informative bands (bottom row) of a typical
pomegranate fruit without bruising.

 
Fig. 9    Display of the first five spectral bands in the input data cube (top row) and the five most informative bands (bottom row) of a typical
unbruised pomegranate fruit.
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strawberry[64].  The  authors  obtained  the  highest  classification
accuracy  of  99.9%  for  healthy  samples  and  86.1%  for  bruised
samples.

 Conclusions

The present study resulted in the development of a classifica-
tion  model  that  is  both  efficient  in  terms  of  computational
speed and compact  in  terms of  data  storage requirements.  By
employing  this  methodology,  the  development  of  a  cutting-
edge  machine  for  sorting,  grading,  and  packing  solutions  can
be facilitated.

This study confirmed early bruise detection for pomegranate
fruit  with  an  accuracy  of  88.3%  and  86.7%  based  on  full  and
selected wavelengths, respectively.

Fruit geometry and other factors including maturity, cultivar,
measurement temperature and relative humidity may have an
influence  on  model  performances.  We  recommend  that  these
variables be rigorously assessed in further research to uncover
more  intriguing  information,  accuracy,  and  methodologies,  as
well as to conduct a validation study to gauge the technique's
resilience.  The  simplified  and  compact  classification  model
outlined in this study enables the performance of a more prac-
tical investigation.
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Table  2.    Classification  results  of  test  data  set  of  ANN  model  for  distinguishing  sound  and  bruised  tissues  based  on  VNIR  and  SWIR  reflected  for  the
extracted (ROI) and the WFS of pomegranate fruit.

SWIR VNIR

Sample number Correct CA (%) OA (%) Sample number Correct CA (%) OA (%)

Day 0 AW Sound 30 26 86.7 85.0 30 27 90.0 88.3
Bruised 30 25 83.3 30 26 86.7

SW Sound 30 25 83.3 81.7 30 27 90.0 86.7
Bruised 30 24 80.0 30 25 83.3

Day 7 AW Sound 30 30 100.0 96.7 30 30 100.0 98.3
Bruised 30 28 93.3 30 29 96.7

SW Sound 30 28 93.3 93.3 30 29 96.7 93.3
Bruised 30 28 93.3 30 27 90.0

Day 14 AW Sound 30 30 100.0 98.3 30 30 100.0 100.0
Bruised 30 29 96.7 30 30 100.0

SW Sound 30 30 100.0 96.7 30 30 100.0 100.0
Bruised 30 28 93.3 30 30 100.0

AW  is  a  classification  prediction  model  based  on  all  wavelengths;  SW  is  model  based  on  selected  wavelengths;  CA  is  component  accuracy;  OA  overall
accuracy.

26
a b

B

B

Target class Target class

S

S B S

B

Target class Target class

S B S

B

SO
u
tp

u
t 
c
la

s
s

43.3%

4

6.7%

27

45.0%

3

5.0%

89.7%

10.3%

87.1%

12.9%

88.3%

11.7%

90.0%

10.0%

86.7%

13.3%

25

41.7%

5

8.3%

27

45.0%

3

5.0%

89.3%

10.7%

84.4%

15.6%

86.7%

13.3%

90.0%

10.0%

83.3%

16.7%

25
c d

B

S

B

SO
u
tp

u
t 
c
la

s
s

41.7%

5

8.3%

26

43.3%

4

6.7%

86.2%

13.8%

83.9%

16.1%

85.0%

15.0%

86.7%

13.3%

83.3%

16.7%

24

40.0%

6

10.0%

25

41.7%

5

8.3%

82.8%

17.2%

80.6%

19.4%

81.7%83.3%

16.7%

80.0%

20.0% 18.3%

 
Fig. 10    Confusion matrix for the independent test set on the VNIR (upper raw) and SWIR (bottom raw) spectral data immediately after bruise
damage. Model based on full wavelengths (left, (a) and (c)) and model based on selected wavelengths (right, (b) and (d)).
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