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Abstract

This study investigated the dynamic effects of nutrient solution concentrations on the growth adaptability of hydroponic tomato seedlings. The chlorophyll
fluorescence parameters, growth, and physiological conditions of the seedlings were measured during a 14-day experiment with six EC (electrical
conductivity) gradients. These gradients were designated as T1, T2, T3, T4, T5, and T6, representing different nutrient solution concentrations. The
continuous chlorophyll fluorescence parameters were integrated with a genetic algorithm-optimized support vector regression (GA-SVR) model to quantify
plants' responses to the nutrient solution. The results showed that tomato seedlings under T2 and T3 exhibited optimal photosynthetic recovery and
environmental adaptability, but their morphological and physiological indicators showed relatively average performance across all nutrient solution
concentrations. In contrast, seedlings under T5 and T6, despite slower photosynthetic recovery compared with T2 and T3, demonstrated superior
morphological and physiological indicators, higher chlorophyll content in later stages, and exhibited greater growth potential. A GA-SVR-based dynamic
model for the maximum photochemical efficiency of Photosystem Il (PSll), i.e., F,/F,, (input: EC and time; output: F,/F,,) showed high accuracy in both the
training (R? = 0.83, root mean square error [RMSE] = 0.0143) and test sets (R? = 0.83, RMSE = 0.0141), revealing concentration-dependent differences in
photosynthetic efficiency recovery rates. A dynamic regulation strategy was proposed: Applying T2 nutrient concentrations post-transplantation to
accelerate the adaptation of PSlI, then progressively increasing to T6 concentrations after the seedlings have acclimatized to enhance biomass accumulation
and growth potential. This study provided valuable insights for precision management of hydroponic tomato cultivation and the application of intelligent
algorithms in plant physiology research.
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Introduction

Tomato, a widely cultivated agricultural crop!', is one of the most
common vegetables grown around the world?. With the develop-
ment of agricultural planting techniques, the scale of hydroponic
tomato cultivation has progressively expandedtl. Compared with
traditional soil-based cultivation, hydroponic technology overcomes
geographical and climatic constraints through a soilless cultivation
systeml, It is particularly suited for urban agriculture and space-
restricted environmentsl], with year-round production®l. Mean-
while, hydroponic technology also demonstrates advantages in water
conservationl”8! and effective avoidance of pests and diseasesll.
However, there are still some challenges in the application of hydro-
ponics, such as high costs!'% and insufficient management of the
nutrient solution""). In hydroponic systems, tomato seedlings'
growth exhibits high sensitivity to the environmental conditions,
with the nutrient solution being a critical regulatory factor!'2-14, The
nutrient solution's concentration affects the growth of hydroponic
tomato seedlings, and differential adaptive responses to varying
concentrations lead to divergent final growth performancel’>-8l,
However, the adaptive performance of tomato seedlings across
nutrient solution concentration gradients has not yet been suffi-
ciently investigated. Therefore, it is of great significance to study
the adaptability changes of tomato seedlings to varying solution
concentrations for optimizing hydroponic cultivation techniques.

© The Author(s)

Chlorophyll fluorescence technology can provide critical insights
for investigating the adaptability of plant growth in hydroponic
environments by analyzing the photosynthetic characteristics of
tomato seedlings under varying nutrient solution concentrations!'9.
This technique evaluates the photochemical efficiency of Photosys-
tem Il (PSIl) through light-dependent fluorescence signal mea-
surements, particularly using chlorophyll fluorescence induction
curves, thereby revealing the functional status of photosynthetic
systems[20.21], The changes in the photosynthetic efficiency of plants
can be revealed by the alterations in chlorophyll fluorescence
parameters?223] like F,/F, (maximum photochemical efficiency
of PSII), Y(Il) (effective photosynthetic efficiency of PSIl) and F,,
(maximum fluorescence), which are able to reflect the functional
state of PSII2425, NPQt (nonphotochemical quenching transient
index), Y(NPQ) (proportion of nonphotochemical quenching), and
Y(NO) (nonregulatory energy dissipation)26271 show the light reten-
tion mechanism under high light through non-photochemical
quenching, thereby regulating photosynthetic efficiency and pre-
venting photodamage. The SPAD (soil plant analysis development)
value reflects the chlorophyll content in the leaves, which is essen-
tial for evaluating the nutritional status of the plant?8l, The
growth adaptability and photosynthetic mechanisms of tomato
seedlings under different nutrient solution concentrations were
thoroughly explored by analyzing their chlorophyll fluorescence
parameters.
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Intelligent algorithms have been widely applied in modern
agriculturel?°-32, demonstrating unique advantages in analyzing
patterns of continuous physiological variation within agricultural
data systems[33-35], Traditional methods acquire data through gradi-
ent experiments(3¢], yet discrete data points often fail to comprehen-
sively reflect the parameters' continuity. Intelligent algorithms can
construct continuous models in the discrete datasets that bridge
data gaps across experimental conditions37:38l, This discrete-to-
continuous modeling paradigm enables scientists to transcend the
limitations of conventional gradient-based approaches394%, There-
fore, these algorithms were employed to develop dynamic models
through the integration of chlorophyll fluorescence parameters for
systematically analyzing variations in photosynthetic efficiency in
tomato seedlings under varying nutrient conditions.

In summary, the adaptive responses of hydroponic tomato
seedlings to varying nutrient concentrations constitute a complex
process involving the interactions between photosynthetic effi-
ciency and photoprotective mechanisms. Thus, this study quanti-
fied chlorophyll fluorescence parameters and growth conditions
to uncover the changes in adaptability in tomato seedlings. The
genetic algorithm-support vector regression (GA-SVR) model was
developed to dynamically track variations in F,/F,, providing mech-
anistic insights into photosynthetic adaptation processes.

Material and methods

Plant material and the cultivation conditions

The experiment was conducted at Anhui Agricultural University
using tomato seedlings (Solanum lycopersicum cv. 'Xinyan') from
Xinyan Floriculture. Seedlings were grown in a deep water culture
(DWC) system using 4-liter cultivation pots (26.5 cm X 16.5 cm X
11 cm). The standard Japanese garden test nutrient solutions
(Table 1) were added to the pots, with five seedlings evenly
planted per container. The light intensity was maintained at
150 + 2 pmol'm~2s-1, and the light source spectrum is shown in
Fig. 1. The environmental conditions for planting were as follows:
The photoperiod was set at 14 hours of light and 10 hours of dark-
ness, with an ambient temperature (25 £ 1 °C) and a relative humid-
ity of 65% + 5%. The entire experiment was repeated twice under
identical conditions to ensure the reliability of the results.

Experimental design

To analyze the adaptability of tomato seedlings to varying nutri-
ent concentrations, a 14-day time-sequenced nutrient concentra-
tion response experiment was designed. Six levels of nutrient solu-
tion concentrations were prepared with the same base formulation

Table 1.
solution

Composition of stock solutions for the Japanese garden test nutrient

Concentration in

Stock solution Chemical reagent stocksol1ution Function
(gL™)
A (100 x Ca(NOs;),-4H,0 94.5 Provides
concentration) KNO 80.9 macronutrients
} (N, Ca, K)
B (100 x KH,PO, 15.3 Provides
concentration)  pMgSO,-7H,0 493 macronutrients
9B (P, K, Mg, S)
C (1,000 x NaFe-EDTA 30 Provides
concentration) H;BO; 2.86 microelements
MnS0,7H,0 213 (Fe, B, Mn, Zn, Cu, Mo)
CuS0,-5H,0 0.08
ZnS0,-7H,0 0.22
(NH4)¢Mo0,0,4-4H,0 0.02
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Fig. 1  Full-spectrum light source under the light intensity level of
150 umol-m=2s7",

(Table 2) and administered to hydroponic tanks with the same speci-
fications. Tomato seedlings with consistent growth were randomly
assigned after root washing and transplanted into the prepared
hydroponic tanks. The other environmental parameters of the
experiment remained consistent.

Measurement of the indicators and methods

Chlorophyll fluorescence parameters

The third leaf from the growth point was sampled, and chloro-
phyll fluorescence was monitored at fixed intervals over 14 consecu-
tive days. For each treatment concentration, two independent
trials were conducted under identical conditions. The first trial com-
prised three experimental groups, and the second trial included two
experimental groups. Each group consisted of five seedlings, and
chlorophyll fluorescence parameters were measured individually for
every seedling. Chlorophyll fluorescence parameters were quanti-
fied using the PhotosynQ MultispeQ V2 (PhotosynQ, Inc., East Lans-
ing, MI, USA) portable device, and the following parameters were
recorded.

The maximum photochemical efficiency of PSII, F,/F,, serves as
a critical indicator in photosynthesis research. This parameter has
been widely used to reflect plants' health status and responses to
environmental stressi'l. Y(II), indicating the effective photosynthetic
efficiency of PSII, provides insights into the photosynthetic state of
cropsi*2, F,,, maximum fluorescence, whose variations correlate with
changes in photosynthetic efficiency, serves as an important marker
for assessing plant physiological status“3l. Y(NPQ), denoting the
quantum yield of nonphotochemical quenching, reflects dynamic
changes in plant photoprotective capacity®!. Y(NO), representing
the quantum yield of nonregulated energy dissipation, quantifies
the fraction of energy in PSII that is neither utilized for photochem-
istry nor actively regulated by the plant?’l. NPQt (nonphotochemi-
cal quenching), a parameter frequently applied for rapid estimation

Table 2. Different nutrient solution concentrations and their corresponding
electrical conductivity (EC) values.
Treatment Nutrient solution dosage EC (mS-cm™)

T1 0 0.22

T2 1/4 0.90

T3 1/2 1.56

T4 3/4 2.16

T5 1 2.78

T6 3/2 3.82
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and imaging, quantitatively reflects nonphotochemical quenching
within the antenna pigment-protein complexes associated with
PSII26l. SPAD values were recorded to evaluate the relative chloro-
phyll contentl.

Plant growth data, health index, and moisture content

Following two independent replicate experiments, nine plants
were selected from each nutrient solution concentration group.
Plant height was measured using a ruler, and stem diameter was
measured with calipers. The leaves of each tomato plant were
removed, laid flat (from bottom to top), and photographed with a
white background and a black ruler for scale. The images were
processed and analyzed for leaf area using Image J (National Insti-
tutes of Health, Bethesda, USA). An electronic balance was used to
weigh the fresh biomass of the aboveground and underground
parts. The samples were then placed in an oven at 105 °C for
15 minutes to kill the tissues, followed by drying at 75 °C until a
constant weight was achieved, allowing the dry weight of both
the aboveground parts and roots to be recorded. The health index
of the tomato seedlings was calculated using the following
formula:

Health Index = [(Stem diameter / Plant height) + (Root weight /
Aboveground weight)] X Plant dry weight!#9],

The moisture content of the tomato stems and leaves was calcu-
lated using the formula:

Moisture content = (Fresh weight of stems and leaves - Dry
weight of stems and leaves) / Fresh weight of stems and leaves*7..

Data visualization and analysis methods

Pearson correlation coefficient calculations, data organization,
and algorithm modeling were implemented using Python. Data
visualization was conducted using Origin Pro 2022 (OriginLab
Corporation, Northampton, MA, USA). Duncan's new multiple range
test method, implemented through one-way analysis of variance
(ANOVA), was used to analyze the significance with the significance
level set at p < 0.05 using SPSS (SPSS, Inc., Chicago, IL, USA).

Modeling

Data normalization
Min-max normalization was applied. Time and F,/F,, were normal-
ized using a linear normalization function within the range [0, 1].
X = X Xmin_ o)
Xmax — Xmin
where, x is the selected raw data, and x,,;, and x,,,, are the minimum
and maximum values in the selected raw data, respectively.

Support vector regression

Support vector regression (SVR) is a machine learning method
based on the Vapnik-Chervonenkis (VC) dimension theory and the
principle of structural risk minimization in statistical learning®8l. It
has advantages when dealing with small sample sizes**land demon-
strates strong generalization and robustness in data regression(5%l,

In the application of SVR, different penalty parameters affect
the model's performance. The parameters C (a penalty parameter
controlling the model's complexity and error tolerance) and g
(gamma, an Radial Basis Function (RBF) kernel parameter defining
the sample's influence radius) were optimized using a genetic algo-
rithm (GA), a popular global optimization technique with excellent
global search capabilitiesl®'l. The ranges for C and g were set to
[0.05, 30] and [0.0001, 10], respectively. The GA population size was
50, with 100 iterations, and the crossover and mutation rates were
set to 0.85 and 0.1, respectively. SVR is suitable for smaller samples.

In the experiment, 252 sets of F,/F, data were obtained from
six nutrient solution treatments in terms of electrical conductivity
(EC) across 14 days of experimentation (Time), with the average
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values taken from three replicates. The nutrient solution treatments
(EC) and experiment time (Time) were used as inputs, and F /F,,
was used as the output for modeling. Additionally, 70% of the data
were randomly selected as training samples for the model, while
30% were randomly selected as test samples.

The result of model training is shown in Eq. (2)

F0=3" @ -a)K(nx)+b ¢)
where, f(x) is the output of the model, x is the input, x; is the i training
sample of the input, @ and a; are Lagrangian multipliers, K(x, x;) is

the kernel function, b is the function bias, and n is the number of
support vectors.

Results and discussion

Growth performance and biomass accumulation of
tomato seedlings

The growth performance and biomass accumulation of tomato
seedlings are shown in Figs 2 and 3. One-way ANOVA revealed
that different nutrient solution treatments significantly affected
root length, leaf area, fresh weight, dry weight, and health index
(p < 0.05), whereas no significant effects were observed on plant
height, stem diameter, number of leaves, water content, and
root-shoot ratio (p > 0.05). For morphological parameters, among
the significantly affected indices, root length in T1 was significantly
longer than in T3, with no significant differences from T5 or T6
(Fig. 2d). Leaf area in T6 was significantly larger than in T1 but
showed no significant differences from T4 or T5 (Fig. 2e). Among the
nonsignificantly affected parameters, plant height and leaf number
showed a numerical trend of T6 > T2 > other treatments (Fig. 2a, c).
For stem diameter, T6 ranked first and T2 ranked third (Fig. 2b).

For the physiological parameters, among the significantly
affected parameters, fresh weight in T6 was significantly higher than
in T1 and T3, and showed no significant difference from T2, T4, and
T5 (Fig. 3c). Dry weight showed no significant difference among T6,
T2, T4, and T5, but dry weight in this group was significantly higher
than in T1 and T3 (Fig. 3d). The health index in T2 was significantly
higher than in T1 and T3, and showed no significant difference from
T4, T5, and T6 (Fig. 3e). Simultaneously, dry matter accumulation
exhibited a strong positive correlation with the health index (corre-
lation coefficient = 0.823). Among the nonsignificantly affected
parameters stem and leaf water content gradually increased from
T1 to T6 (Fig. 3a). Root-shoot ratio showed no consistent change
pattern (Fig. 3b).

The results demonstrated that T2 achieved the highest health
index while also maintaining favorable fresh and dry weights
compared with higher nutrient concentrations (T4-T6). This indi-
cated that the T2 nutrient concentration provided a relatively
suitable growth environment for transplanted tomato seedlings.
This closely aligns with Yang et al.'s study®?, which documented
enhanced growth performance in cucumber seedlings under low-
concentration nutrient solution treatments during the seedling
stage. In contrast, T6 significantly promoted leaf growth. Mean-
while, both biomass accumulation and the growth indices showed
excellent performance, though the health index was slightly lower
than that of T2. This is consistent with previous studies, confirming
that sufficient nutrients can promote the initial growth of crops®3->4,
T1 consistently showed the poorest performance across nearly all
metrics, especially leaf development and biomass, but its root
length was the longest among all treatments. This is consistent with
the study by Jia et al.l>], which reported that crops prioritize root
growth under nutrient deficiency to develop a more exploratory
root system.
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Analysis of changes in F,/F,,,, Y(Il), and F,,

The recovery of photosynthetic efficiency in tomato seedlings  coefficients (R?) and root mean square errors (RMSE), showed that
varied under different treatments (Fig. 4). Trend fitting was applied  the fitted curves effectively represent the trends of the scattered
to the data of the chlorophyll fluorescence parameters F,/F,, Y(lI), data (Supplementary Table S1). Additionally, treatments and time
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Fig. 4 The trend of (a) F,/F,, (b) Y(Il), and (c) F,, changes over time under different treatments. Treatment refers to the different nutrient solution
concentrations, and Time indicates the duration of the experiment. The points represent discrete original data points, which are the means of five
replicate datasets. The lines illustrate the continuous trend after fitting the data. Asterisks (**) denote significant correlations at the p < 0.01 level (n = 25).
Each parameter is based on the average of three repetitions. "Ns" indicates no significant correlation.

had significant effects on F,/F,, Y(ll), and F,, and the interaction
between treatments and time had a significant effect on F,,,

The results of the F,/F,, trend fitting indicated that F,/F,, exhib-
ited an upward trend in the early stage for all treatments except T1,
but the magnitude of the increase and its duration varied (Fig. 4a).
T1 showed little increase, remaining within a stable range. T2 and T3
displayed the fastest increases, reaching steady states on the fourth
and fifth days, respectively. The remaining three treatments (T4, T5,
T6) consistently exhibited an upward trend, with T6 surpassing T2
and T3 around Day 11 to take the leading position. The trend fitting
results of Y(Il) revealed distinct patterns among the treatments
(Fig. 4b). T1 exhibited a slow and continuous increase; T2 stabilized
by the sixth day; both T3 and T5 showed a slow upward trend, with
T3 maintaining relatively higher values; and T4 and T6 peaked on
around Day 3 before gradually declining. For F,, the trend fitting
results demonstrated varied responses (Fig. 4c). T1 increased slightly
in the early stage before declining rapidly. T2 and T3 exhibited a
slight downward trend with a minimal decrease. T4, T5, and T6
showed a continuous upward trajectory, surpassing T3 on around
Day 8.

The changesin F,/F,,, Y(ll), and F,,, were closely interrelated, directly
reflecting the tomato seedlings' photosynthetic performance and
growth under varying nutrient concentrations. Previous studies
have frequently revealed that plants exhibit sensitivity to nutrient
levels¢l. When nutrients are lacking, various adaptive responses
occur; for example, T1 exhibited the longest root length as the most
evident manifestation. Compared with the nutrient-deficient T1
treatment, T2 had concentrations that were likely better aligned
with the early-stage requirements after tomato transplantation,
which may have contributed to enhanced photosynthetic recovery
and photosystem stability’®’.. It has also been demonstrated that
elevated nutrient concentrations impose stress on crops, conse-
quently triggering detrimental effects>8. One reason why T4-T6
initially exhibited slower F,/F,, recovery rates and lower F,, values
than T2 and T3 during the early stage may have been the stress
imposed on the tomato seedlings by elevated nutrient concentra-
tions. However, later-stage increases in F,, and higher biomass
(Fig. 3¢, d) suggested that elevated concentrations promoted
growth potential despite the initial stress. This indicates that after
crops acclimate to their environment, their nutrient demand
exhibits a progressive increase as growth progressestl,

Analysis of changes in NPQt, Y(NPQ), and Y(NO)

The photoprotective mechanisms of tomato seedlings exhibited
different variations under different treatments (Fig. 5). Trend fitting
was performed on the data for the chlorophyll fluorescence para-

Huang et al. Technology in Horticulture 2025, 5: €036

meters NPQt, Y(NPQ), and Y(NO). The results of the trend fitting,
along with their coefficients of determination (R2) and RMSE values,
indicate that the fitted curves effectively represent the trends of the
scattered data (Supplementary Table S1). Additionally, treatments
and time had significant effects on NPQt, Y(NPQ), and Y(NO), and
the interaction between treatment and time had a significant effect
on Y(NO).

The trend fitting results of NPQt indicated that NPQt exhibited a
downward trend in the early stages for all treatments, but the rate of
decrease and the stabilization time varied (Fig. 5a). T1 exhibited the
smallest decline magnitude and maintained consistently high NPQt
values throughout. In contrast, T2 and T3 started with lower initial
values, showed a decreasing trend in the early stage, and stabilized
by Day 6. T4 and T5 began with higher initial values but declined
rapidly in the initial phase before gradually stabilizing later. T6
displayed similar dynamics to T2 and T3. Y(NPQ) displayed similar
patterns to NPQt (Fig. 5b). Except for T1, all treatments exhibited
rapid initial declines in magnitude, followed by progressively slower
reduction rates. Notably, T2 showed the steepest initial decline.
Except for T1 which remained largely stable, Y(NO) exhibited
broadly similar trends across treatments (Fig. 5c). T2 to T6 all
showed upward trajectories with progressively decelerating increas-
ing rates. Notably, T6 demonstrated the most pronounced increase.

These variations demonstrate distinct photosynthetic adaptabil-
ity and photoprotective mechanisms across nutrient gradients.
T2 and T3 showed rapid declines in NPQt and Y(NPQ), indicating
efficient activation of nonphotochemical quenching mechanisms
that enhanced PSlI's stabilization through optimized light energy
allocation. In contrast, the persistently high NPQt in T1 indicated
sustained activation of photoprotective mechanisms. Concurrently,
the rapid decline in F,, demonstrated that the prevailing light inten-
sity may have imposed significant stress on the plants. These find-
ings align with the research by Kratika Singh et al.l5%, demonstrat-
ing that deficiency or excess of nutrient elements can compromise
plants' stress resistance and environmental adaptability. For T4-T6,
NPQt and Y(NPQ) gradually decreased toward stabilization with
consistently low final values. Although Y(NO) increased across these
treatments, the magnitude of its rise remained substantially smaller
compared with the declines in NPQt and Y(NPQ). Collectively, these
dynamics reflect significantly alleviated stress on plants under
T4-T6. This indicates that plants can develop strategies to avoid or
tolerate stress, enabling them to adapt to and protect themselves
from stressful situations(®'l, T2 and T3 accelerated photoprotective
adaptation in seedlings, whereas T5 and T6 had prolonged acclima-
tion but higher growth potential. These results demonstrate that
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Fig. 5 The trend of (a) NPQt, (b) Y(NPQ), and (c) Y(NO) changes over time under different treatments. Treatment refers to the different nutrient solution
concentrations, and Time indicates the duration of the experiment. The points represent discrete original data points, which are the means of five
replicate datasets. The lines illustrate the continuous trend after fitting the data. Asterisks (**) denote significant correlations at the p < 0.01 level (n = 25).
Each parameter is based on the average of three repetitions. "Ns" indicates no significant correlation.

plants dynamically adapt to nutrient conditions through photo-  similar trends. In T1, the synchronous decline in SPAD and F,, led
protective regulation. This is consistent with what Zhang et all2l  to reduced photosynthetic efficiency. T2 and T3 maintained stable
stated: That plants can regulate themselves through photorespira- ~ SPAD values without a significant increase. However, T3 exhibited
tion to adapt to the environment. relatively poor overall physiological performance, whereas T2
retained better physiological indices despite developing a smaller
leaf area. Nevertheless, compared with T6, T2 demonstrated limited

seedlings ) . . growth potential. Consistent with the previously demonstrated
The changes in SPAD values varied under different treatments, as | -rease in nutritional requirements during crop development!s,

shown in Fig. 6. Trend fitting was performed on the SPAD data. The  {hase results reflect the dynamic nutrient demand patterns in
results of the trend fitting, including their R? and RMSE values, indi-  {omato seedlings. The early inhibition and subsequent recovery
cate that the fitted curves effectively represent the trends in the  gpserved in T4 demonstrated dynamic adjustments for environmen-
scattered data (Supplementary Table S1). Treatments, time, and the  ta] adaptation, consistent with the previously described role of
interaction between treatments and time all had significant effects  photorespiration in plants' environmental acclimation(62. The late-
on SPAD. The SPAD values of T1 continuously decreased, indicating  stage increases in SPAD and F,, for T5 and T6 indicated elevated
poor plant adaptability. T1 exhibited a continuous decline in SPAD  chlorophyll levels, which enhanced light absorption. The underlying
values. T2 and T3 maintained relatively stable SPAD values. T4  causes of the decline in Y(ll) in T4 and T6 may differ. For T4, reduced
showed an initial decrease in SPAD values, followed by an upward  chlorophyll levels at the early stage likely impaired photosynthetic
trend. T5 and T6 demonstrated consistently increasing SPAD values. function. For T6, the decrease may represent a self-regulatory

The changes in SPAD values were significantly correlated with the  response to light stress induced by excessive light absorption.
changes in F,, values (correlation coefficient = 0.771) and exhibited =~ The phenomena align with the research outcomes reported by
Shi et al®®3l, Overall, the dynamic changes in SPAD values revealed
that tomato seedlings adapted to varying nutrient levels by regulat-

Analysis of changes in the SPAD values of tomato

-~ —E ing the photosynthetic system as a physiological strategy.

—_—3 Dynamic model of variation in F /F,, based on the GA-
Bl —m4 SVR algorithm

40 TS i/ Previous analyses of chlorophyll fluorescence parameters (such as
—T6 ; ] F/Fn Y (1), Frp, €tc) in tomato seedlings under different treatments
% 351 1 revealed nonintuitive relationships between these parameters and
304 t the nutrient solution concentration (EC) and time. As a critical indi-
1 cator of photosynthesis, F,/F,, is widely used to assess the maxi-
251 l mum photochemical efficiency of PSII. To visualize the dynamic vari-
204 T Firreameny: 18:5447 ations of F,/F,, with EC and time, this study constructed a genetic
Fo 3654 algorithm-optimized support vector regression (GA-SVR) model,
151 F‘T"“") o Laog” with EC and time as input variables and F,/F,, as the output variable
10 (T‘m"“""‘ T'""“) ' ' ' . ' (Fig. 7). Data were normalized to the [0, 1] range using the min-max
0 2 4 6 8 10 12 14 method, and the optimal SVR parameters were determined through
Time (d) parameter optimization (C = 70.00, g = 0.3700). The model exhib-
ited high fitting performance on both the training and testing
Fig. 6 The trend of SPAD changes over time under different treat- datasets (training set: R2 =0.83, RMSE = 0.0143; testing set: R2=0.83,
ments. Treatment refers to the different nutrient solution concen- RMSE = 0.0141), demonstrating its effectiveness in characterizing

trations. Time indicates the duration of the experiment. The points
represent discrete original data points, which are the means of five
replicate datasets. The lines illustrate the continuous trend after fitting

the dynamic features of variations in F,/F,,.
According to the model's results (Fig. 7a), the adaptive diffe-
the data. Asterisks (**) denote significant correlations at the p < 0.01 rences in hydroponic tomatoes to varying EC levels became more

level (n = 25). Each parameter is based on the average of five repetitions. apparent. f,/F,, values near the EC ranges of T2 and T3 showed
"ns" indicates no significant correlation. rapid increases during the early stage, whereas those near T5 and

Page 6 of 9 Huang et al. Technology in Horticulture 2025, 5: €036
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Fig.7 Visualization of the (a) F,/F,, model, (b) evolutionary process, and (c), (d) validations of the models.

T6 exhibited slower initial recovery but significant late-phase
improvements. By analyzing the dynamic changes in F,/F,, values,
the model clearly characterized the synergistic effects of EC and
time on variations in F,/F,, further revealing differences in photo-
synthetic adaptability under varying nutrient concentrations.

Conclusions

This study revealed the dynamic adaptive mechanisms of hydro-
ponic tomato seedlings to variations in the nutrient solution
through a combined analysis of chlorophyll fluorescence and intelli-
gent algorithms. The findings demonstrated that nutrient concen-
tration-time synergies govern the recovery dynamics of photosyn-
thetic efficiency and physiological response strategies. Seedlings in
T2/T3 solutions showed rapid activation of photoprotective mecha-
nisms, optimized light energy allocation, and accelerated the stabi-
lization of PSIl. Although T5/T6 seedlings exhibited delayed initial
photosynthetic adaptation, their subsequent increase in chloro-
phyll content and enhanced photosynthetic efficiency unlocked
significant growth potential. This highlights plants' physiological
strategy of adaptive growth through a dynamic balance between
photosynthetic systems and stress-protective mechanisms under
nutrient variations.

The dynamic variations in F,/F,, in response to the nutrient
concentration and time was described with the F /F,, model estab-
lished by GA-SVR. The model's results indicated concentration-
dependent differences in photosynthetic recovery rates and growth
potential accumulation. Specifically, the application of an appro-
priate nutrient solution concentration (T2) can accelerate the accli-
mation of PSIl in tomato seedlings after transplantation. After the
seedlings adapted to the environment, a gradual increase to a

Huang et al. Technology in Horticulture 2025, 5: €036

higher nutrient solution concentration (T6) can improve biomass
accumulation and growth potential in the seedlings.

This study integrated intelligent algorithms with chlorophyll
fluorescence-based physiological analysis and proposed a dynamic
regulation strategy for hydroponic tomato seedling cultivation.
Linking real-time nutrient adjustments to photosynthetic adapt-
ability enhances interdisciplinary applications of artificial intelli-
gence and plant science, advancing sustainable practices in
controlled-environment agriculture.

Author contributions

The authors confirm their contributions to the paper as follows:
ideas, formulation, and evolution of overarching research goals and
aims, designing and carrying out the experiments, and article writ-
ing and editing: Huang L; data collection: Ma H, Chen Y; assisting for
experiment and paper ideas modification: Zhang J, Chen D; provid-
ing experimental technical guidance: Zhang L; providing experi-
mental funds: Chen D. All authors reviewed the results and
approved the final version of the manuscript.

Data availability

The datasets generated during and/or analyzed in the current
study are available from the corresponding author on reasonable
request.

Acknowledgments

This work was supported by the National Natural Science Founda-
tion of China (grant numbers 32302643, 32301687), the research
start-up funds of Anhui Agricultural University (grant numbers

Page 7 of 9



Technology in
Horticulture

rc482205, rc482206), the open project of the Key Laboratory of
Modern Agricultural Equipment and Technology (Jiangsu Univer-
sity) of Ministry of Education and High-Tech Key Laboratory of
Agricultural Equipment and Intelligence of Jiangsu Province
(MAET202317), the 2024 Southern Xinjiang Facility Agriculture
Corps key laboratory open project (NJS52024106), and Zhenjiang
City Science and Technology Program (NY2024020). Thanks to all
the members of the Intelligent Agriculture—Intelligent Decision
and Control System Laboratory for their help.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary information accompanies this paper at
(https://www.maxapress.com/article/doi/10.48130/tihort-0025-0031)

Dates

Received 22 May 2025; Revised 6 September 2025; Accepted 12
September 2025; Published online 13 November 2025

References

1. Zhang C, Zhang W, Yan H, Ni Y, Akhlag M, et al. 2022. Effect of micro-
spray on plant growth and chlorophyll fluorescence parameter of
tomato under high temperature condition in a greenhouse. Scientia
Horticulturae 306:111441

2. Zhang G, Li X, Yan H, Ullah |, Zuo Z, et al. 2020. Effects of irrigation quan-
tity and biochar on soil physical properties, growth characteristics, yield
and quality of greenhouse tomato. Agricultural Water Management
241:106263

3. Goh YS, Hum YC, Lee YL, Lai KW, Yap WS, et al. 2023. A meta-analysis:
Food production and vegetable crop yields of hydroponics. Scientia
Horticulturae 321:112339

4. Fussy A, Papenbrock J. 2022. An overview of soil and soilless cultivation
techniques—chances, challenges and the neglected question of
sustainability. Plants 11:1153

5. Ragaveena S, Shirly Edward A, Surendran U. 2021. Smart controlled
environment agriculture methods: a holistic review. Reviews in Environ-
mental Science and Bio/Technology 20:887—913

6. Zhou D, Chretien RL, South K, Evans M, Lowman S, et al. 2024. Beneficial
bacterial endophytes promote spinach plant growth under indoor verti-
cal hydroponics. Technology in Horticulture 4:015

7. Regmi A, Rueda-Kunz D, Liu H, Trevino J, Kathi S, et al. 2024. Comparing
resource use efficiencies in hydroponic and aeroponic production
systems. Technology in Horticulture 4:2005

8. Kumar VA, Singh J. 2023. Trends in hydroponics practice/technology in
horticultural crops: a review. International Journal of Plant & Soil Science
35:57-65

9. Farvardin M, Taki M, Gorjian S, Shabani E, Sosa-Savedra JC. 2024. Assess-
ing the physical and environmental aspects of greenhouse cultivation: a
comprehensive review of conventional and hydroponic methods.
Sustainability 16:1273

10. Barghash MA, Shurbaji TR, Romman R. 2023. Applying operation
research methodologies to hydroponic crop scheduling in a closed
system: an integer programming approach. The Open Agriculture Jour-
nal 17:@187433152303150

11. Miller A, Adhikari R, Nemali K. 2020. Recycling nutrient solution can
reduce growth due to nutrient deficiencies in hydroponic production.
Frontiers in Plant Science 11:607643

12. Tola E, Al-Gaadi KA, Madugundu R, Patil VC, Sygrimis N. 2023.
Impact of water salinity levels on the spectral behavior and yield of
tomatoes in hydroponics. Journal of King Saud University — Science
35:102515

13. Fayezizadeh MR, Ansari NAZ, Albaji M, Khaleghi E. 2021. Effects of
hydroponic systems on yield, water productivity and stomatal gas

Page 8 0f9

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

Hydro tomato seedlings' adaptability via ChI-F

exchange of greenhouse tomato cultivars. Agricultural Water Manage-
ment 258:107171

Vardar G, Altikatoglu M, Ortag D, Cemek M, Isildak I. 2015. Measuring
calcium, potassium, and nitrate in plant nutrient solutions using ion-
selective electrodes in hydroponic greenhouse of some vegetables.
Biotechnology and Applied Biochemistry 62:663—68

Naciri R, Rajib W, Chtouki M, Zeroual Y, Oukarroum A. 2022. Potassium
and phosphorus content ratio in hydroponic culture affects tomato
plant growth and nutrient uptake. Physiology and Molecular Biology of
Plants 28:763-74

Moya C, Oyanedel E, Verdugo G, Flores MF, Urrestarazu M, et al. 2017.
Increased electrical conductivity in nutrient solution management
enhances dietary and organoleptic qualities in soilless culture tomato.
Hortscience 52:868-72

Venezia A, Colla G, Di Cesare C, Stipic M, Massa D. 2022. The effect of
different fertigation strategies on salinity and nutrient dynamics of
cherry tomato grown in a gutter subirrigation system. Agricultural Water
Management 262:107408

Al-Gaadi KA, Tola E, Madugundu R, Zeyada AM, Alameen AA, et al. 2024.
Response of leaf photosynthesis, chlorophyll content and yield of
hydroponic tomatoes to different water salinity levels. PLoS One
19:€0293098

Zhang C, Akhlag M, Yan H, Ni Y, Liang S, et al. 2023. Chlorophyll fluores-
cence parameter as a predictor of tomato growth and yield under CO,
enrichment in protective cultivation. Agricultural Water Management
284:108333

Guanter L, Zhang Y, Jung M, Joiner J, Voigt M, et al. 2014. Global and
time-resolved monitoring of crop photosynthesis with chlorophyll fluo-
rescence. Proceedings of the National Academy of Sciences of the United
States of America 111:E1327-E1333

Romero JM, Cordon GB, Lagorio MG. 2018. Modeling re-absorption of
fluorescence from the leaf to the canopy level. Remote Sensing of Envi-
ronment 204:138—-46

Xia Q, Tang H, Fu L, Tan J, Govindjee G, et al. 2023. Determination of
F/F, from chlorophyll a fluorescence without dark adaptation by an
LSSVM model. Plant Phenomics 5:0034

Torres R, Romero JM, Lagorio MG. 2021. Effects of sub-optimal illumina-
tion in plants. Comprehensive chlorophyll fluorescence analysis. Jour-
nal of Photochemistry and Photobiology B: Biology 218:112182

Ospina Calvo B, Lagorio MG. 2019. Quantitative effects of pigmentation
on the re-absorption of chlorophyll a fluorescence and energy partition-
ing in leaves. Photochemistry and Photobiology 95:1360—68

Kalaji HM, Schansker G, Brestic M, Bussotti F, Calatayud A, et al. 2017.
Frequently asked questions about chlorophyll fluorescence, the sequel.
Photosynthesis Research 132:13—-66

Tietz S, Hall CC, Cruz JA, Kramer DM. 2017. NPQyy: a chlorophyll fluores-
cence parameter for rapid estimation and imaging of non-photochemi-
cal quenching of excitons in photosystem-ll-associated antenna
complexes. Plant Cell & Environment 40:1243-55

Kuhlgert S, Austic G, Zegarac R, Osei-Bonsu |, Hoh D, et al. 2016. Multi-
speQ Beta: a tool for large-scale plant phenotyping connected to the
open PhotosynQ network. Royal Society Open Science 3:160592

Zait Y, Shemer OE, Cochavi A. 2024. Dynamic responses of chlorophyll
fluorescence parameters to drought across diverse plant families. Physi-
ologia Plantarum 176:e14527

Akkem Y, Biswas SK, Varanasi A. 2023. Smart farming using artificial
intelligence: a review. Engineering Applications of Artificial Intelligence
120:105899

Ayoub Shaikh T, Rasool T, Rasheed Lone F. 2022. Towards leveraging the
role of machine learning and artificial intelligence in precision agricul-
ture and smart farming. Computers and Electronics in Agriculture
198:107119

Guo Y, Gao J, Tunio MH, Wang L. 2023. Study on the identification of
mildew disease of cuttings at the base of mulberry cuttings by aeropon-
ics rapid propagation based on a BP neural network. Agronomy 13:106
Dai C, Sun J, Huang X, Zhang X, Tian X, et al. 2023. Application of
hyperspectral imaging as a nondestructive technology for identifying
tomato maturity and quantitatively predicting lycopene content. Foods
12:2957

Huang et al. Technology in Horticulture 2025, 5: €036


https://www.maxapress.com/article/doi/10.48130/tihort-0025-0031
https://www.maxapress.com/article/doi/10.48130/tihort-0025-0031
https://www.maxapress.com/article/doi/10.48130/tihort-0025-0031
https://www.maxapress.com/article/doi/10.48130/tihort-0025-0031
https://www.maxapress.com/article/doi/10.48130/tihort-0025-0031
https://doi.org/10.1016/j.scienta.2022.111441
https://doi.org/10.1016/j.scienta.2022.111441
https://doi.org/10.1016/j.agwat.2020.106263
https://doi.org/10.1016/j.scienta.2023.112339
https://doi.org/10.1016/j.scienta.2023.112339
https://doi.org/10.3390/plants11091153
https://doi.org/10.1007/s11157-021-09591-z
https://doi.org/10.1007/s11157-021-09591-z
https://doi.org/10.1007/s11157-021-09591-z
https://doi.org/10.48130/tihort-0024-0012
https://doi.org/10.48130/tihort-0024-0002
https://doi.org/10.9734/ijpss/2023/v35i22759
https://doi.org/10.3390/su16031273
https://doi.org/10.2174/18743315-v17-e230404-2022-53
https://doi.org/10.2174/18743315-v17-e230404-2022-53
https://doi.org/10.2174/18743315-v17-e230404-2022-53
https://doi.org/10.3389/fpls.2020.607643
https://doi.org/10.1016/j.jksus.2022.102515
https://doi.org/10.1016/j.jksus.2022.102515
https://doi.org/10.1016/j.jksus.2022.102515
https://doi.org/10.1016/j.jksus.2022.102515
https://doi.org/10.1016/j.jksus.2022.102515
https://doi.org/10.1016/j.agwat.2021.107171
https://doi.org/10.1016/j.agwat.2021.107171
https://doi.org/10.1016/j.agwat.2021.107171
https://doi.org/10.1002/bab.1317
https://doi.org/10.1007/s12298-022-01178-4
https://doi.org/10.1007/s12298-022-01178-4
https://doi.org/10.21273/HORTSCI12026-17
https://doi.org/10.1016/j.agwat.2021.107408
https://doi.org/10.1016/j.agwat.2021.107408
https://doi.org/10.1371/journal.pone.0293098
https://doi.org/10.1016/j.agwat.2023.108333
https://doi.org/10.1073/pnas.1320008111
https://doi.org/10.1073/pnas.1320008111
https://doi.org/10.1016/j.rse.2017.10.035
https://doi.org/10.1016/j.rse.2017.10.035
https://doi.org/10.1016/j.rse.2017.10.035
https://doi.org/10.34133/plantphenomics.0034
https://doi.org/10.1016/j.jphotobiol.2021.112182
https://doi.org/10.1016/j.jphotobiol.2021.112182
https://doi.org/10.1016/j.jphotobiol.2021.112182
https://doi.org/10.1111/php.13149
https://doi.org/10.1007/s11120-016-0318-y
https://doi.org/10.1111/pce.12924
https://doi.org/10.1098/rsos.160592
https://doi.org/10.1111/ppl.14527
https://doi.org/10.1111/ppl.14527
https://doi.org/10.1016/j.engappai.2023.105899
https://doi.org/10.1016/j.compag.2022.107119
https://doi.org/10.3390/agronomy13010106
https://doi.org/10.3390/foods12152957

Hydro tomato seedlings' adaptability via Chl-F

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

Zeng C, Zhang F, Luo M. 2022. A deep neural network-based decision
support system for intelligent geospatial data analysis in intelligent
agriculture system. Soft Computing 26:10813—-26

Chen W, Rao Y, Wang F, Zhang Y, Wang T, et al. 2024. MLP-based multi-
modal tomato detection in complex scenarios: Insights from task-
specific analysis of feature fusion architectures. Computers and Electron-
ics in Agriculture 221:108951

Chen X, Jiang Z, Yang J, Ren J, Rao Y, et al. 2023. Data-driven decision
support scheme for multi-area light environment control in green-
house. Computers and Electronics in Agriculture 211:108033

Nguyen B, Graham PJ, Sinton D. 2016. Dual gradients of light intensity
and nutrient concentration for full-factorial mapping of photosynthetic
productivity. Lab on a Chip 16:2785-90

Shi D, Yuan P, Liang L, Gao L, Li M, et al. 2024. Integration of deep
learning and sparrow search algorithms to optimize greenhouse micro-
climate prediction for seedling environment suitability. Agronomy
14:254

Sodini M, Cacini S, Navarro A, Traversari S, Massa D. 2024. Estimation of
pore-water electrical conductivity in soilless tomatoes cultivation using
an interpretable machine learning model. Computers and Electronics in
Agriculture 218:108746

Wang H, Fu T, Du Y, Gao W, Huang K, et al. 2023. Scientific discovery in
the age of artificial intelligence. Nature 620:47—-60

Xu Y, Liu X, Cao X, Huang C, Liu E, et al. 2021. Artificial intelligence: a
powerful paradigm for scientific research. The Innovation 2:100179
Sharma DK, Andersen SB, Ottosen CO, Rosengvist E. 2015. Wheat culti-
vars selected for high F,F,, under heat stress maintain high photosyn-
thesis, total chlorophyll, stomatal conductance, transpiration and dry
matter. Physiologia Plantarum 153:284-98

El-Desouki Z, Xia H, Abouseif Y, Cong M, Zhang M, et al. 2024. Improved
chlorophyll fluorescence, photosynthetic rate, and plant growth of
Brassica napus L. after co-application of biochar and phosphorus ferti-
lizer in acidic soil. Journal of Plant Nutrition and Soil Science 187:260-73
Zlatev Z. 2009. Drought-induced changes in chlorophyll fluorescence of
young wheat plants. Biotechnology & Biotechnological Equipment
23:438-41

Jiang H, Liu Z, Wang J, Yang P, Zhang R, et al. 2023. Combining chloro-
phyll fluorescence and vegetation reflectance indices to estimate
non-photochemical quenching (NPQ) of rice at the leaf scale. Remote
Sensing 15:4222

Naus J, Prokopova J, Rebi€ek J, Spundova M. 2010. SPAD chlorophyll
meter reading can be pronouncedly affected by chloroplast movement.
Photosynthesis Research 105:265—71

Kong L, Wen Y, Jiao X, Liu X, Xu Z. 2021. Interactive regulation of light
quality and temperature on cherry tomato growth and photosynthesis.
Environmental and Experimental Botany 182:104326

Chen D, Zhang J, Zhang Z, Wan X, Hu J. 2022. Analyzing the effect of
light on lettuce F,/F,,, and growth by machine learning. Scientia Horticul-
turae 306:111444

Sun'Y, Ding S, Zhang Z, Jia W. 2021. An improved grid search algorithm
to optimize SVR for prediction. Soft Computing 25:5633—-44

Huang et al. Technology in Horticulture 2025, 5: €036

49.
50.
51.
52.
53.
54.
55.
56.

57.

58.

59.

60.

61.

62.

63.

Technology in
Horticulture

Ding SF, Qi BJ, Tan HY. 2011. An overview on theory and algorithm of
support vector machines. Journal of University of Electronic Science and
Technology of China 40:1-10 (in Chinese)

da Silva Santos CE, Sampaio RC, dos Santos Coelho L, Bestard GA, Llanos
CH. 2021. Multi-objective adaptive differential evolution for SYM/SVR
hyperparameters selection. Pattern Recognition 110:107649

Luo Z, Hasanipanah M, Bakhshandeh Amnieh H, Brindhadevi K, Tahir
MM. 2021. GA-SVR: a novel hybrid data-driven model to simulate verti-
cal load capacity of driven piles. Engineering with Computers 37:823-31
Yang J, Xiao J, Hou SY, Li YL, Peng ZH. 2023. Effects of nutrient solution
concentration and spraying frequency on growth of cucumber under
aeroponics. Water Saving Irrigation 4:18-24

Capo L, Battisti M, Blandino M. 2024. The role of zinc fertilization and its
interaction with nitrogen and phosphorus starter fertilization on early
maize development and grain yield. Field Crops Research 307:109245
Recalde L, Cabrera AV, Mansur NMG, Rossi FR, Groppa MD, et al. 2024.
Seed priming with spermine improves early wheat growth under nitro-
gen deficiency. Journal of Plant Growth Regulation 43:3761-75

Jia Z, Giehl RFH, von Wirén N. 2020. The root foraging response under
low nitrogen depends on DWARF1-mediated brassinosteroid biosynthe-
sis. Plant Physiology 183:998—-1010

Francis B, Aravindakumar CT, Brewer PB, Simon S. 2023. Plant nutrient
stress adaptation: a prospect for fertilizer limited agriculture. Environ-
mental and Experimental Botany 213:105431

Neocleous D, Savvas D. 2019. The effects of phosphorus supply limita-
tion on photosynthesis, biomass production, nutritional quality, and
mineral nutrition in lettuce grown in a recirculating nutrient solution.
Scientia Horticulturae 252:379-87

Martin-Cardoso H, San Segundo B. 2025. Impact of nutrient stress on
plant disease resistance. International Journal of Molecular Sciences
26:1780

El Amrani B. 2024. Nutrient transporters as plant strategy to adapt to
nutrient fluctuations in the soil. Journal of Plant Nutrition 47:3272—83
Singh K, Gupta S, Singh AP. 2024. Review: Nutrient-nutrient interactions
governing underground plant adaptation strategies in a heteroge-
neous environment. Plant Science 342:112024

Lamalakshmi Devi E, Kumar S, Basanta Singh T, Sharma SK, Beemrote A,
et al. 2017. Adaptation strategies and defence mechanisms of plants
during environmental stress. Medicinal Plants and Environmental Chal-
lenges 359-413

Zhang Z, Zhu G, Peng X. 2024. Photorespiration in plant adaptation to
environmental changes. Crop and Environment 3:203—12

Shi Y, Ke X, Yang X, Liu Y, Hou X. 2022. Plants response to light stress.
Journal of Genetics and Genomics 49:735-47

Copyright: © 2025 by the author(s). Published by
Maximum Academic Press, Fayetteville, GA. This article

is an open access article distributed under Creative Commons
Attribution License (CC BY 4.0), visit https://creativecommons.org/
licenses/by/4.0/.

Page 90of9


https://doi.org/10.1007/s00500-022-07018-7
https://doi.org/10.1016/j.compag.2024.108951
https://doi.org/10.1016/j.compag.2024.108951
https://doi.org/10.1016/j.compag.2024.108951
https://doi.org/10.1016/j.compag.2023.108033
https://doi.org/10.1039/C6LC00619A
https://doi.org/10.3390/agronomy14020254
https://doi.org/10.1016/j.compag.2024.108746
https://doi.org/10.1016/j.compag.2024.108746
https://doi.org/10.1038/s41586-023-06221-2
https://doi.org/10.1016/j.xinn.2021.100179
https://doi.org/10.1111/ppl.12245
https://doi.org/10.1002/jpln.202300052
https://doi.org/10.1080/13102818.2009.10818458
https://doi.org/10.3390/rs15174222
https://doi.org/10.3390/rs15174222
https://doi.org/10.1007/s11120-010-9587-z
https://doi.org/10.1016/j.envexpbot.2020.104326
https://doi.org/10.1016/j.scienta.2022.111444
https://doi.org/10.1016/j.scienta.2022.111444
https://doi.org/10.1016/j.scienta.2022.111444
https://doi.org/10.1007/s00500-020-05560-w
https://doi.org/10.3969/j.issn.1001-0548.2011.01.001
https://doi.org/10.3969/j.issn.1001-0548.2011.01.001
https://doi.org/10.1016/j.patcog.2020.107649
https://doi.org/10.1007/s00366-019-00858-2
https://doi.org/10.12396/jsgg.2022329
https://doi.org/10.1016/j.fcr.2023.109245
https://doi.org/10.1007/s00344-024-11360-5
https://doi.org/10.1104/pp.20.00440
https://doi.org/10.1016/j.envexpbot.2023.105431
https://doi.org/10.1016/j.envexpbot.2023.105431
https://doi.org/10.1016/j.scienta.2019.04.007
https://doi.org/10.3390/ijms26041780
https://doi.org/10.1080/01904167.2024.2377815
https://doi.org/10.1016/j.plantsci.2024.112024
https://doi.org/10.1007/978-3-319-68717-9_20
https://doi.org/10.1007/978-3-319-68717-9_20
https://doi.org/10.1007/978-3-319-68717-9_20
https://doi.org/10.1016/j.crope.2024.07.001
https://doi.org/10.1016/j.jgg.2022.04.017
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

	Introduction
	Material and methods
	Plant material and the cultivation conditions
	Experimental design
	Measurement of the indicators and methods
	Chlorophyll fluorescence parameters
	Plant growth data, health index, and moisture content

	Data visualization and analysis methods
	Modeling
	Data normalization
	Support vector regression



	Results and discussion
	Growth performance and biomass accumulation of tomato seedlings
	Analysis of changes in Fv/Fm, Y(II), and Fm
	Analysis of changes in NPQt, Y(NPQ), and Y(NO)
	Analysis of changes in the SPAD values of tomato seedlings
	Dynamic model of variation in Fv/Fm based on the GA-SVR algorithm

	Conclusions
	Author contributions
	Data availability
	References

