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Abstract
This study investigated the dynamic effects of nutrient solution concentrations on the growth adaptability of hydroponic tomato seedlings. The chlorophyll

fluorescence  parameters,  growth,  and  physiological  conditions  of  the  seedlings  were  measured  during  a  14-day  experiment  with  six  EC  (electrical

conductivity)  gradients.  These  gradients  were  designated  as  T1,  T2,  T3,  T4,  T5,  and  T6,  representing  different  nutrient  solution  concentrations.  The

continuous chlorophyll fluorescence parameters were integrated with a genetic algorithm-optimized support vector regression (GA-SVR) model to quantify

plants'  responses  to  the  nutrient  solution.  The  results  showed  that  tomato  seedlings  under  T2  and  T3  exhibited  optimal  photosynthetic  recovery  and

environmental  adaptability,  but  their  morphological  and  physiological  indicators  showed  relatively  average  performance  across  all  nutrient  solution

concentrations.  In  contrast,  seedlings  under  T5  and  T6,  despite  slower  photosynthetic  recovery  compared  with  T2  and  T3,  demonstrated  superior

morphological and physiological indicators, higher chlorophyll content in later stages, and exhibited greater growth potential. A GA-SVR-based dynamic

model for the maximum photochemical efficiency of Photosystem II (PSII), i.e., Fv/Fm (input: EC and time; output: Fv/Fm) showed high accuracy in both the

training (R2 =  0.83,  root  mean square error  [RMSE]  = 0.0143)  and test  sets  (R2 =  0.83,  RMSE = 0.0141),  revealing concentration-dependent  differences in

photosynthetic  efficiency  recovery  rates.  A  dynamic  regulation  strategy  was  proposed:  Applying  T2  nutrient  concentrations  post-transplantation  to

accelerate the adaptation of PSII, then progressively increasing to T6 concentrations after the seedlings have acclimatized to enhance biomass accumulation

and growth potential. This study provided valuable insights for precision management of hydroponic tomato cultivation and the application of intelligent

algorithms in plant physiology research.
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 Introduction

Tomato, a widely cultivated agricultural crop[1], is one of the most
common  vegetables  grown  around  the  world[2].  With  the  develop-
ment  of  agricultural  planting  techniques,  the  scale  of  hydroponic
tomato  cultivation  has  progressively  expanded[3].  Compared  with
traditional soil-based cultivation, hydroponic technology overcomes
geographical  and  climatic  constraints  through  a  soilless  cultivation
system[4].  It  is  particularly  suited  for  urban  agriculture  and  space-
restricted  environments[5],  with  year-round  production[6].  Mean-
while, hydroponic technology also demonstrates advantages in water
conservation[7,8] and  effective  avoidance  of  pests  and  diseases[9].
However, there are still some challenges in the application of hydro-
ponics,  such  as  high  costs[10] and  insufficient  management  of  the
nutrient  solution[11].  In  hydroponic  systems,  tomato  seedlings'
growth  exhibits  high  sensitivity  to  the  environmental  conditions,
with the nutrient solution being a critical regulatory factor[12−14]. The
nutrient  solution's concentration  affects  the  growth  of  hydroponic
tomato  seedlings, and  differential  adaptive  responses  to  varying
concentrations  lead  to  divergent  final  growth  performance[15−18].
However,  the  adaptive  performance  of  tomato  seedlings  across
nutrient  solution  concentration  gradients  has  not  yet  been  suffi-
ciently  investigated.  Therefore,  it  is  of  great  significance  to  study
the  adaptability  changes  of  tomato  seedlings  to  varying  solution
concentrations for optimizing hydroponic cultivation techniques.

Chlorophyll  fluorescence technology can provide critical  insights
for  investigating  the  adaptability  of  plant  growth  in  hydroponic
environments  by  analyzing  the  photosynthetic  characteristics  of
tomato seedlings under varying nutrient solution concentrations[19].
This technique evaluates the photochemical efficiency of Photosys-
tem  II  (PSII)  through  light-dependent  fluorescence  signal  mea-
surements,  particularly  using  chlorophyll  fluorescence  induction
curves,  thereby  revealing  the  functional  status  of  photosynthetic
systems[20,21]. The changes in the photosynthetic efficiency of plants
can  be  revealed  by  the  alterations  in  chlorophyll  fluorescence
parameters[22,23] like Fv/Fm (maximum  photochemical  efficiency
of  PSII),  Y(II)  (effective  photosynthetic  efficiency  of  PSII)  and Fm
(maximum  fluorescence),  which  are  able  to  reflect  the  functional
state  of  PSII[24,25].  NPQt  (nonphotochemical  quenching  transient
index),  Y(NPQ)  (proportion  of  nonphotochemical  quenching),  and
Y(NO) (nonregulatory energy dissipation)[26,27] show the light reten-
tion  mechanism  under  high  light  through  non-photochemical
quenching,  thereby  regulating  photosynthetic  efficiency  and  pre-
venting photodamage.  The SPAD (soil  plant  analysis  development)
value reflects the chlorophyll  content in the leaves,  which is  essen-
tial  for  evaluating  the  nutritional  status  of  the  plant[28].  The
growth  adaptability  and  photosynthetic  mechanisms  of  tomato
seedlings  under  different  nutrient  solution  concentrations  were
thoroughly  explored  by  analyzing  their  chlorophyll  fluorescence
parameters.
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Intelligent  algorithms  have  been  widely  applied  in  modern
agriculture[29−32],  demonstrating  unique  advantages  in  analyzing
patterns  of  continuous  physiological  variation  within  agricultural
data systems[33−35]. Traditional methods acquire data through gradi-
ent experiments[36], yet discrete data points often fail to comprehen-
sively  reflect  the  parameters'  continuity.  Intelligent  algorithms  can
construct  continuous  models  in  the  discrete  datasets  that  bridge
data  gaps  across  experimental  conditions[37,38].  This  discrete-to-
continuous modeling paradigm enables  scientists  to  transcend the
limitations  of  conventional  gradient-based  approaches[39,40].  There-
fore,  these  algorithms  were  employed  to  develop  dynamic  models
through the integration of  chlorophyll  fluorescence parameters  for
systematically  analyzing  variations  in  photosynthetic  efficiency  in
tomato seedlings under varying nutrient conditions.

In  summary,  the  adaptive  responses  of  hydroponic  tomato
seedlings  to  varying  nutrient  concentrations  constitute  a  complex
process  involving  the  interactions  between  photosynthetic  effi-
ciency  and  photoprotective  mechanisms.  Thus,  this  study  quanti-
fied  chlorophyll  fluorescence  parameters  and  growth  conditions
to  uncover  the  changes  in  adaptability  in  tomato  seedlings.  The
genetic  algorithm-support  vector  regression  (GA-SVR)  model  was
developed to dynamically track variations in Fv/Fm, providing mech-
anistic insights into photosynthetic adaptation processes.

 Material and methods

 Plant material and the cultivation conditions
The  experiment  was  conducted  at  Anhui  Agricultural  University

using  tomato  seedlings  (Solanum  lycopersicum cv.  'Xinyan')  from
Xinyan  Floriculture.  Seedlings  were  grown  in  a  deep  water  culture
(DWC)  system  using  4-liter  cultivation  pots  (26.5  cm  ×  16.5  cm  ×
11  cm).  The  standard  Japanese  garden  test  nutrient  solutions
(Table  1)  were  added  to  the  pots,  with  five  seedlings  evenly
planted  per  container.  The  light  intensity  was  maintained  at
150  ±  2 μmol·m−2·s−1,  and  the  light  source  spectrum  is  shown  in
Fig.  1.  The  environmental  conditions  for  planting  were  as  follows:
The photoperiod was set at 14 hours of light and 10 hours of dark-
ness, with an ambient temperature (25 ± 1 °C) and a relative humid-
ity  of  65%  ±  5%.  The  entire  experiment  was  repeated  twice  under
identical conditions to ensure the reliability of the results.

 Experimental design
To analyze the adaptability  of  tomato seedlings to varying nutri-

ent  concentrations,  a  14-day  time-sequenced  nutrient  concentra-
tion response experiment was designed. Six levels of  nutrient solu-
tion concentrations were prepared with the same base formulation

(Table 2) and administered to hydroponic tanks with the same speci-
fications.  Tomato  seedlings  with  consistent  growth  were  randomly
assigned  after  root  washing  and  transplanted  into  the  prepared
hydroponic  tanks.  The  other  environmental  parameters  of  the
experiment remained consistent.

 Measurement of the indicators and methods
 Chlorophyll fluorescence parameters

The  third  leaf  from  the  growth  point  was  sampled,  and  chloro-
phyll fluorescence was monitored at fixed intervals over 14 consecu-
tive  days.  For  each  treatment  concentration,  two  independent
trials were conducted under identical conditions. The first trial com-
prised three experimental groups, and the second trial included two
experimental  groups.  Each  group  consisted  of  five  seedlings,  and
chlorophyll fluorescence parameters were measured individually for
every  seedling.  Chlorophyll  fluorescence  parameters  were  quanti-
fied using the PhotosynQ MultispeQ V2 (PhotosynQ, Inc., East Lans-
ing,  MI,  USA)  portable  device,  and  the  following  parameters  were
recorded.

The  maximum  photochemical  efficiency  of  PSII, Fv/Fm,  serves  as
a  critical  indicator  in  photosynthesis  research.  This  parameter  has
been  widely  used  to  reflect  plants'  health  status  and  responses  to
environmental stress[41]. Y(II), indicating the effective photosynthetic
efficiency of  PSII,  provides insights  into the photosynthetic  state of
crops[42]. Fm, maximum fluorescence, whose variations correlate with
changes in photosynthetic efficiency, serves as an important marker
for  assessing  plant  physiological  status[43].  Y(NPQ),  denoting  the
quantum  yield  of  nonphotochemical  quenching, reflects  dynamic
changes  in  plant  photoprotective  capacity[44].  Y(NO), representing
the  quantum  yield  of  nonregulated  energy  dissipation,  quantifies
the fraction of energy in PSII that is neither utilized for photochem-
istry  nor  actively  regulated by  the  plant[27].  NPQt  (nonphotochemi-
cal quenching), a parameter frequently applied for rapid estimation

 

Table 1.    Composition of stock solutions for the Japanese garden test nutrient
solution

Stock solution Chemical reagent
Concentration in

stock solution
(g·L−1)

Function

A (100 ×
concentration)

Ca(NO3)2·4H2O 94.5 Provides
macronutrients
(N, Ca, K)

KNO3 80.9

B (100 ×
concentration)

KH2PO4 15.3 Provides
macronutrients
(P, K, Mg, S)

MgSO4·7H2O 49.3

C (1,000 ×
concentration)

NaFe-EDTA 30 Provides
microelements
(Fe, B, Mn, Zn, Cu, Mo)

H3BO3 2.86
MnSO4·7H2O 2.13
CuSO4·5H2O 0.08
ZnSO4·7H2O 0.22

(NH4)6Mo7O24·4H2O 0.02

 

Fig.  1    Full-spectrum  light  source  under  the  light  intensity  level  of
150 μmol·m−2·s−1.

 

Table  2.    Different  nutrient  solution  concentrations  and  their  corresponding
electrical conductivity (EC) values.

Treatment Nutrient solution dosage EC (mS·cm−1)

T1 0 0.22
T2 1/4 0.90
T3 1/2 1.56
T4 3/4 2.16
T5 1 2.78
T6 3/2 3.82
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and  imaging,  quantitatively  reflects  nonphotochemical  quenching
within  the  antenna  pigment-protein  complexes  associated  with
PSII[26].  SPAD  values were  recorded  to  evaluate  the  relative  chloro-
phyll content[45].

 Plant growth data, health index, and moisture content
Following  two  independent  replicate  experiments,  nine  plants

were  selected  from  each  nutrient  solution  concentration  group.
Plant  height  was  measured  using  a  ruler,  and  stem  diameter  was
measured  with  calipers.  The  leaves  of  each  tomato  plant  were
removed,  laid  flat  (from  bottom  to  top),  and  photographed  with  a
white  background  and  a  black  ruler  for  scale.  The  images  were
processed  and  analyzed  for  leaf  area  using  Image  J  (National  Insti-
tutes  of  Health,  Bethesda,  USA).  An electronic  balance was  used to
weigh  the  fresh  biomass  of  the  aboveground  and  underground
parts.  The  samples  were  then  placed  in  an  oven  at  105  °C  for
15  minutes  to  kill  the  tissues,  followed  by  drying  at  75  °C  until  a
constant  weight  was  achieved,  allowing  the  dry  weight  of  both
the aboveground parts  and roots  to be recorded.  The health index
of  the  tomato  seedlings  was  calculated  using  the  following
formula:

Health  Index  =  [(Stem  diameter  /  Plant  height)  +  (Root  weight  /
Aboveground weight)] × Plant dry weight[46].

The moisture content of the tomato stems and leaves was calcu-
lated using the formula:

Moisture  content  =  (Fresh  weight  of  stems  and  leaves – Dry
weight of stems and leaves) / Fresh weight of stems and leaves[47].

 Data visualization and analysis methods
Pearson  correlation  coefficient  calculations,  data  organization,

and  algorithm  modeling  were  implemented  using  Python.  Data
visualization  was  conducted  using  Origin  Pro  2022  (OriginLab
Corporation, Northampton, MA, USA). Duncan's new multiple range
test  method,  implemented  through  one-way  analysis  of  variance
(ANOVA), was used to analyze the significance with the significance
level set at p < 0.05 using SPSS (SPSS, Inc., Chicago, IL, USA).

 Modeling
 Data normalization

Min-max normalization was applied. Time and Fv/Fm were normal-
ized using a linear normalization function within the range [0, 1].

xi =
x− xmin

xmax − xmin
(1)

where, x is  the selected raw data,  and xmin and xmax are the minimum
and maximum values in the selected raw data, respectively.

 Support vector regression
Support  vector  regression  (SVR)  is  a  machine  learning  method

based on the  Vapnik–Chervonenkis  (VC)  dimension theory  and the
principle  of  structural  risk  minimization  in  statistical  learning[48].  It
has advantages when dealing with small sample sizes[49] and demon-
strates strong generalization and robustness in data regression[50].

In  the  application  of  SVR,  different  penalty  parameters  affect
the  model's  performance.  The  parameters C (a  penalty  parameter
controlling  the  model's  complexity  and  error  tolerance)  and g
(gamma,  an  Radial  Basis  Function  (RBF)  kernel  parameter  defining
the sample's influence radius) were optimized using a genetic algo-
rithm  (GA),  a  popular  global  optimization  technique  with  excellent
global  search capabilities[51].  The  ranges  for C and g were  set  to
[0.05, 30] and [0.0001, 10], respectively. The GA population size was
50,  with  100 iterations,  and the  crossover  and mutation rates  were
set to 0.85 and 0.1, respectively. SVR is suitable for smaller samples.

In  the  experiment,  252  sets  of Fv/Fm data  were  obtained  from
six  nutrient  solution  treatments  in  terms  of  electrical  conductivity
(EC)  across  14  days  of  experimentation  (Time),  with  the  average

values taken from three replicates. The nutrient solution treatments
(EC)  and  experiment  time  (Time)  were  used  as  inputs,  and Fv/Fm
was used as the output for modeling. Additionally, 70% of the data
were  randomly  selected  as  training  samples  for  the  model,  while
30% were randomly selected as test samples.

The result of model training is shown in Eq. (2)

f (x) =
∑n

i=1

(
a∗i −ai

)
K (x, xi)+b (2)

a∗i ai

where, f(x) is the output of the model, x is the input, xi is the i training
sample  of  the  input,  and  are  Lagrangian  multipliers, K(x, xi)  is
the  kernel  function, b is  the  function  bias,  and n is  the  number  of
support vectors.

 Results and discussion

 Growth performance and biomass accumulation of
tomato seedlings

The  growth  performance  and  biomass  accumulation  of  tomato
seedlings  are  shown  in Figs  2 and 3.  One-way  ANOVA  revealed
that  different  nutrient  solution  treatments  significantly  affected
root  length,  leaf  area,  fresh  weight,  dry  weight,  and  health  index
(p <  0.05),  whereas  no  significant  effects  were  observed  on  plant
height,  stem  diameter,  number  of  leaves,  water  content,  and
root-shoot  ratio  (p >  0.05).  For  morphological  parameters,  among
the significantly affected indices, root length in T1 was significantly
longer  than  in  T3,  with  no  significant  differences  from  T5  or  T6
(Fig.  2d).  Leaf  area  in  T6  was  significantly  larger  than  in  T1  but
showed no significant differences from T4 or T5 (Fig. 2e). Among the
nonsignificantly affected parameters,  plant height and leaf number
showed a numerical trend of T6 > T2 > other treatments (Fig. 2a, c).
For stem diameter, T6 ranked first and T2 ranked third (Fig. 2b).

For  the  physiological  parameters,  among  the  significantly
affected parameters, fresh weight in T6 was significantly higher than
in T1 and T3, and showed no significant difference from T2, T4, and
T5 (Fig. 3c). Dry weight showed no significant difference among T6,
T2, T4, and T5, but dry weight in this group was significantly higher
than in T1 and T3 (Fig.  3d).  The health index in T2 was significantly
higher than in T1 and T3, and showed no significant difference from
T4,  T5,  and  T6  (Fig.  3e).  Simultaneously,  dry  matter  accumulation
exhibited a strong positive correlation with the health index (corre-
lation  coefficient  =  0.823).  Among  the  nonsignificantly  affected
parameters  stem  and  leaf  water  content  gradually  increased  from
T1  to  T6  (Fig.  3a).  Root-shoot  ratio  showed  no  consistent  change
pattern (Fig. 3b).

The  results  demonstrated  that  T2  achieved  the  highest  health
index  while  also  maintaining  favorable  fresh  and  dry  weights
compared  with  higher  nutrient  concentrations  (T4–T6).  This  indi-
cated  that  the  T2  nutrient  concentration  provided  a  relatively
suitable  growth  environment  for  transplanted  tomato  seedlings.
This closely  aligns  with  Yang  et  al.'s  study[52],  which  documented
enhanced  growth  performance  in  cucumber  seedlings  under  low-
concentration  nutrient  solution  treatments  during  the  seedling
stage.  In  contrast,  T6  significantly  promoted  leaf  growth.  Mean-
while,  both  biomass  accumulation  and  the  growth  indices  showed
excellent  performance,  though  the  health  index  was  slightly  lower
than that of T2.  This is  consistent with previous studies,  confirming
that sufficient nutrients can promote the initial growth of crops[53,54].
T1  consistently  showed  the  poorest  performance  across  nearly  all
metrics,  especially  leaf  development  and  biomass,  but  its  root
length was the longest among all treatments. This is consistent with
the  study  by  Jia  et  al.[55],  which  reported  that  crops  prioritize  root
growth  under  nutrient  deficiency  to  develop  a  more  exploratory
root system.

Hydro tomato seedlings' adaptability via Chl-F
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 Analysis of changes in Fv/Fm, Y(II), and Fm
The  recovery  of  photosynthetic  efficiency  in  tomato  seedlings

varied under different treatments (Fig.  4).  Trend fitting was applied

to  the  data  of  the  chlorophyll  fluorescence  parameters Fv/Fm,  Y(II),

and Fm.  The  results  of  trend  fitting,  including  their  determination

coefficients  (R2)  and  root  mean  square  errors  (RMSE),  showed  that

the  fitted  curves  effectively  represent  the  trends  of  the  scattered

data  (Supplementary  Table  S1).  Additionally,  treatments  and  time

 

a

d e

b c

Fig. 2    (a) Plant height, (b) stem diameter, (c) number of leaves, (d) root length, and (e) leaf areaof tomato seedlings under different treatments. Different
letters in the columna indicate significant differences at the p < 0.05 level (n = 9). The data are presented as the means ± standard error.

 

a

d e

b c

Fig. 3    Water content in the (a) stems and leaves, (b) root-shoot ratio, (c) fresh weight, (d) dry weight, and (e) health index of tomato seedlings under
different treatments. Different letters in the vertical lines indicate significant differences at the p < 0.05 level (n = 9). The data are presented as the mean ±
standard error.
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had  significant  effects  on Fv/Fm,  Y(II),  and Fm,  and  the  interaction
between treatments and time had a significant effect on Fm.

The  results  of  the Fv/Fm trend  fitting  indicated  that Fv/Fm exhib-
ited an upward trend in the early stage for all treatments except T1,
but the magnitude of  the increase and its  duration varied (Fig.  4a).
T1 showed little increase, remaining within a stable range. T2 and T3
displayed the fastest increases, reaching steady states on the fourth
and fifth days, respectively. The remaining three treatments (T4, T5,
T6)  consistently  exhibited  an  upward  trend,  with  T6  surpassing  T2
and T3 around Day 11 to take the leading position. The trend fitting
results  of  Y(II)  revealed  distinct  patterns  among  the  treatments
(Fig. 4b). T1 exhibited a slow and continuous increase; T2 stabilized
by the sixth day; both T3 and T5 showed a slow upward trend, with
T3  maintaining  relatively  higher  values;  and  T4  and  T6  peaked  on
around  Day  3  before  gradually  declining.  For Fm,  the  trend  fitting
results demonstrated varied responses (Fig. 4c). T1 increased slightly
in  the  early  stage  before  declining  rapidly.  T2  and  T3  exhibited  a
slight  downward  trend  with  a  minimal  decrease.  T4,  T5,  and  T6
showed  a  continuous  upward  trajectory,  surpassing  T3  on  around
Day 8.

The changes in Fv/Fm, Y(II), and Fm were closely interrelated, directly
reflecting  the  tomato  seedlings'  photosynthetic  performance  and
growth  under  varying  nutrient  concentrations.  Previous  studies
have  frequently  revealed  that  plants  exhibit  sensitivity  to  nutrient
levels[56].  When  nutrients  are  lacking,  various  adaptive  responses
occur; for example, T1 exhibited the longest root length as the most
evident  manifestation.  Compared  with  the  nutrient-deficient  T1
treatment,  T2  had  concentrations  that  were  likely  better  aligned
with  the  early-stage  requirements  after  tomato  transplantation,
which may have contributed to enhanced photosynthetic  recovery
and  photosystem  stability[57].  It  has  also  been  demonstrated  that
elevated  nutrient  concentrations  impose  stress  on  crops,  conse-
quently  triggering  detrimental  effects[58].  One  reason  why  T4–T6
initially  exhibited  slower Fv/Fm recovery  rates  and  lower Fm values
than  T2  and  T3  during  the  early  stage  may  have  been  the  stress
imposed  on  the  tomato  seedlings  by  elevated  nutrient  concentra-
tions.  However,  later-stage  increases  in Fm and  higher  biomass
(Fig.  3c, d)  suggested  that  elevated  concentrations  promoted
growth  potential  despite  the  initial  stress.  This  indicates  that  after
crops  acclimate  to  their  environment,  their  nutrient  demand
exhibits a progressive increase as growth progresses[59].

 Analysis of changes in NPQt, Y(NPQ), and Y(NO)
The  photoprotective  mechanisms  of  tomato  seedlings  exhibited

different variations under different treatments (Fig.  5).  Trend fitting
was  performed  on  the  data  for  the  chlorophyll  fluorescence  para-

meters  NPQt,  Y(NPQ),  and  Y(NO).  The  results  of  the  trend  fitting,
along with their coefficients of determination (R2) and RMSE values,
indicate that the fitted curves effectively represent the trends of the
scattered  data  (Supplementary  Table  S1).  Additionally,  treatments
and  time  had  significant  effects  on  NPQt,  Y(NPQ),  and  Y(NO),  and
the interaction between treatment and time had a significant effect
on Y(NO).

The trend fitting results  of  NPQt indicated that  NPQt exhibited a
downward trend in the early stages for all treatments, but the rate of
decrease and the stabilization time varied (Fig. 5a). T1 exhibited the
smallest decline magnitude and maintained consistently high NPQt
values  throughout.  In  contrast,  T2  and  T3  started  with  lower  initial
values, showed a decreasing trend in the early stage, and stabilized
by  Day  6.  T4  and  T5  began  with  higher  initial  values  but  declined
rapidly  in  the  initial  phase  before  gradually  stabilizing  later.  T6
displayed  similar  dynamics  to  T2  and  T3.  Y(NPQ)  displayed  similar
patterns  to  NPQt  (Fig.  5b).  Except  for  T1,  all  treatments  exhibited
rapid initial declines in magnitude, followed by progressively slower
reduction  rates.  Notably,  T2  showed  the  steepest  initial  decline.
Except  for  T1  which  remained  largely  stable,  Y(NO)  exhibited
broadly  similar  trends  across  treatments  (Fig.  5c).  T2  to  T6  all
showed upward trajectories with progressively decelerating increas-
ing rates. Notably, T6 demonstrated the most pronounced increase.

These  variations  demonstrate  distinct  photosynthetic  adaptabil-
ity  and  photoprotective  mechanisms  across  nutrient  gradients.
T2  and  T3  showed  rapid  declines  in  NPQt  and  Y(NPQ),  indicating
efficient  activation  of  nonphotochemical  quenching  mechanisms
that  enhanced  PSII's  stabilization  through  optimized  light  energy
allocation.  In  contrast,  the  persistently  high  NPQt  in  T1  indicated
sustained activation of  photoprotective  mechanisms.  Concurrently,
the rapid decline in Fm demonstrated that the prevailing light inten-
sity  may  have  imposed  significant  stress  on  the  plants.  These  find-
ings  align  with  the  research  by  Kratika  Singh  et  al.[60],  demonstrat-
ing that  deficiency or  excess  of  nutrient  elements  can compromise
plants'  stress  resistance and environmental  adaptability.  For  T4–T6,
NPQt  and  Y(NPQ)  gradually  decreased  toward  stabilization  with
consistently low final values. Although Y(NO) increased across these
treatments, the magnitude of its rise remained substantially smaller
compared with the declines in NPQt and Y(NPQ). Collectively, these
dynamics  reflect  significantly  alleviated  stress  on  plants  under
T4–T6.  This  indicates that  plants can develop strategies to avoid or
tolerate  stress,  enabling  them  to  adapt  to  and  protect  themselves
from  stressful  situations[61].  T2  and  T3  accelerated  photoprotective
adaptation in seedlings, whereas T5 and T6 had prolonged acclima-
tion  but  higher  growth  potential.  These  results  demonstrate  that

 

a b c

Fig.  4    The  trend  of  (a) Fv/Fm,  (b)  Y(II),  and  (c) Fm changes  over  time  under  different  treatments.  Treatment  refers  to  the  different  nutrient  solution
concentrations,  and  Time  indicates  the  duration  of  the  experiment.  The  points  represent  discrete  original  data  points,  which  are  the  means  of  five
replicate datasets. The lines illustrate the continuous trend after fitting the data. Asterisks (**) denote significant correlations at the p < 0.01 level (n = 25).
Each parameter is based on the average of three repetitions. "Ns" indicates no significant correlation.
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plants  dynamically  adapt  to  nutrient  conditions  through  photo-
protective  regulation.  This  is  consistent  with  what  Zhang  et  al.[62]

stated:  That  plants  can  regulate  themselves  through  photorespira-
tion to adapt to the environment.

 Analysis of changes in the SPAD values of tomato
seedlings

The changes in SPAD values varied under different treatments, as
shown in Fig. 6. Trend fitting was performed on the SPAD data. The
results of the trend fitting, including their R2 and RMSE values, indi-
cate  that  the  fitted  curves  effectively  represent  the  trends  in  the
scattered data (Supplementary Table S1). Treatments, time, and the
interaction between treatments  and time all  had significant  effects
on SPAD. The SPAD values of T1 continuously decreased, indicating
poor  plant  adaptability.  T1  exhibited a  continuous decline in  SPAD
values.  T2  and  T3  maintained  relatively  stable  SPAD  values.  T4
showed  an  initial  decrease  in  SPAD  values,  followed  by  an  upward
trend. T5 and T6 demonstrated consistently increasing SPAD values.

The changes in SPAD values were significantly correlated with the
changes in Fm values (correlation coefficient = 0.771) and exhibited

similar  trends.  In  T1,  the  synchronous  decline  in  SPAD  and Fm led
to  reduced  photosynthetic  efficiency.  T2  and  T3  maintained  stable
SPAD  values  without  a  significant  increase.  However,  T3  exhibited
relatively  poor  overall  physiological  performance,  whereas  T2
retained  better  physiological  indices  despite  developing  a  smaller
leaf area. Nevertheless, compared with T6, T2 demonstrated limited
growth  potential.  Consistent  with  the  previously  demonstrated
increase  in  nutritional  requirements  during  crop  development[59],
these  results  reflect  the  dynamic  nutrient  demand  patterns  in
tomato  seedlings.  The  early  inhibition  and  subsequent  recovery
observed in T4 demonstrated dynamic adjustments for environmen-
tal  adaptation,  consistent  with  the  previously  described  role  of
photorespiration  in  plants'  environmental  acclimation[62].  The  late-
stage  increases  in  SPAD and Fm for  T5  and  T6  indicated  elevated
chlorophyll levels, which enhanced light absorption. The underlying
causes of the decline in Y(II) in T4 and T6 may differ. For T4, reduced
chlorophyll  levels  at the  early  stage  likely  impaired  photosynthetic
function.  For  T6,  the  decrease  may  represent  a  self-regulatory
response  to  light  stress  induced  by  excessive  light  absorption.
The  phenomena  align  with  the  research  outcomes  reported  by
Shi  et  al[63].  Overall,  the  dynamic  changes  in  SPAD  values  revealed
that tomato seedlings adapted to varying nutrient levels by regulat-
ing the photosynthetic system as a physiological strategy.

 Dynamic model of variation in Fv/Fm based on the GA-
SVR algorithm

Previous analyses of chlorophyll fluorescence parameters (such as
Fv/Fm,  Y (II), Fm,  etc.) in tomato seedlings under different treatments
revealed  nonintuitive  relationships  between  these  parameters  and
the nutrient solution concentration (EC) and time. As a critical  indi-
cator  of  photosynthesis, Fv/Fm is  widely  used  to  assess  the  maxi-
mum photochemical efficiency of PSII. To visualize the dynamic vari-
ations  of Fv/Fm with  EC  and  time,  this  study  constructed  a  genetic
algorithm-optimized  support  vector  regression  (GA-SVR)  model,
with EC and time as input variables and Fv/Fm as the output variable
(Fig. 7). Data were normalized to the [0, 1] range using the min-max
method, and the optimal SVR parameters were determined through
parameter  optimization  (C =  70.00, g =  0.3700).  The  model  exhib-
ited  high  fitting  performance  on  both  the  training  and  testing
datasets (training set: R2 = 0.83, RMSE = 0.0143; testing set: R2 = 0.83,
RMSE  =  0.0141),  demonstrating  its  effectiveness  in  characterizing
the dynamic features of variations in Fv/Fm.

According  to  the  model's  results  (Fig.  7a),  the  adaptive  diffe-
rences  in  hydroponic  tomatoes  to  varying  EC  levels  became  more
apparent. Fv/Fm values  near  the  EC  ranges  of  T2  and  T3  showed
rapid  increases  during  the  early  stage,  whereas  those  near  T5  and
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Fig. 5    The trend of (a) NPQt, (b) Y(NPQ), and (c) Y(NO) changes over time under different treatments. Treatment refers to the different nutrient solution
concentrations,  and  Time  indicates  the  duration  of  the  experiment.  The  points  represent  discrete  original  data  points,  which  are  the  means  of  five
replicate datasets. The lines illustrate the continuous trend after fitting the data. Asterisks (**) denote significant correlations at the p < 0.01 level (n = 25).
Each parameter is based on the average of three repetitions. "Ns" indicates no significant correlation.

 

Fig.  6    The  trend  of  SPAD  changes  over  time  under  different  treat-
ments.  Treatment  refers  to  the  different  nutrient  solution  concen-
trations.  Time  indicates  the  duration  of  the  experiment.  The  points
represent  discrete  original  data  points,  which  are  the  means  of  five
replicate datasets.  The lines illustrate the continuous trend after  fitting
the  data.  Asterisks  (**)  denote  significant  correlations  at  the p <  0.01
level (n = 25). Each parameter is based on the average of five repetitions.
"ns" indicates no significant correlation.
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T6  exhibited  slower  initial  recovery  but  significant  late-phase
improvements.  By  analyzing  the  dynamic  changes  in Fv/Fm values,
the  model  clearly  characterized  the  synergistic  effects  of  EC  and
time  on  variations  in Fv/Fm,  further  revealing  differences  in  photo-
synthetic adaptability under varying nutrient concentrations.

 Conclusions

This study revealed the dynamic adaptive mechanisms of  hydro-
ponic  tomato  seedlings  to  variations  in  the  nutrient  solution
through a combined analysis of chlorophyll fluorescence and intelli-
gent  algorithms.  The  findings  demonstrated  that  nutrient  concen-
tration-time  synergies  govern  the  recovery  dynamics  of  photosyn-
thetic efficiency and physiological  response strategies.  Seedlings in
T2/T3 solutions showed rapid activation of photoprotective mecha-
nisms, optimized light energy allocation, and accelerated the stabi-
lization  of  PSII.  Although  T5/T6  seedlings  exhibited  delayed  initial
photosynthetic  adaptation,  their  subsequent  increase  in  chloro-
phyll  content  and  enhanced  photosynthetic  efficiency  unlocked
significant  growth  potential.  This  highlights  plants'  physiological
strategy  of  adaptive  growth  through  a  dynamic  balance  between
photosynthetic  systems  and  stress-protective  mechanisms  under
nutrient variations.

The  dynamic  variations  in Fv/Fm in  response  to  the  nutrient
concentration and time was described with the Fv/Fm model  estab-
lished  by  GA-SVR.  The  model's  results  indicated  concentration-
dependent differences in photosynthetic recovery rates and growth
potential  accumulation.  Specifically,  the  application  of  an  appro-
priate  nutrient  solution concentration (T2)  can accelerate  the accli-
mation  of  PSII  in  tomato  seedlings  after  transplantation.  After  the
seedlings  adapted  to  the  environment,  a  gradual  increase  to  a

higher  nutrient  solution  concentration  (T6)  can  improve  biomass
accumulation and growth potential in the seedlings.

This  study  integrated  intelligent  algorithms  with  chlorophyll
fluorescence-based physiological  analysis  and proposed a  dynamic
regulation  strategy  for  hydroponic  tomato  seedling  cultivation.
Linking  real-time  nutrient  adjustments  to  photosynthetic  adapt-
ability  enhances  interdisciplinary  applications  of  artificial  intelli-
gence  and  plant  science,  advancing  sustainable  practices  in
controlled-environment agriculture.
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